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Energy Efficiency Drivers in South Africa: 1965-2014  
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Abstract: This paper presents an assessment of energy performance in South Africa from 

1965-2014 using the Technique for Order of Preference by Similarity to Ideal Solution 

(TOPSIS). In this research, TOPSIS is used first in a two-stage approach to assess how energy 

in South Africa has performed using the most frequent indicators adopted by the literature. 

Afterwards, in the second stage, neural networks are combined with TOPSIS results as part 

of an attempt to produce a model for energy performance with good predictive ability. The 

results reveal different impacts of contextual variables such as the rise of China in foreign 

trade, the Apartheid Regime, and oil shocks on energy performance in South Africa. 
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1. Introduction 

 This paper analyzes the energy performance in South Africa from 1965-2014. The 

motivations for this research are twofold. First, this paper is innovative in relation to energy 

performance because it evaluates its evolution in South Africa from a historical perspective. 

In this research, this evolutionary analysis is undertaken for the South African energy sector 

by adopting TOPSIS and neural networks in a two-stage approach. Second, the present 
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analysis enables a ranking of the relative performance for each year within the range 

comprised between 1965 and 2014 with a predictive focus.  

Performance is a broader concept that can be assessed by means of technical or cost 

efficiency. Efficiency is another stream of performance studies, with assumptions on the 

productive frontier or data envelop. Performance is usually employed at the public sector 

where there may be difficulties in comparing with peers and for quantifying monetary values 

for inputs and outputs (Mihaiu et al., 2010). Hence, productive efficiency is not the only way 

for accessing performance (Talley, 2007). Performance can also be assessed with Multi-

Criteria Decision Making (MCDM) methods like Technique for Order Preference by 

Similarity to Ideal Solution (TOPSIS) (Behzadian et al., 2012). Efficiency is saved to DEA 

and stochastic frontier analysis (SFA), that is, either parametric or nonparametric methods 

that compute performance based on productive frontiers that envelopes a data set. On the 

other hand, multicriteria methods develop cardinal or scale metrics on positive and negative 

ideal solutions or combinations that are obtained through linear combinations of the raw data. 

TOPSIS measures performance in qualitative terms while DEA measures it quantitatively 

(Zeydan and Çolpan, 2009). The distance or performance in traditional TOPSIS is cardinal, 

consisting of a second power metric, that is, an Euclidean n-space with the Euclidean 

distance, which are complete metric spaces (Olson, 2004). In other words, TOPSIS computes 

cardinal distances (scores) from ideal positive solutions while simultaneously presents an 

ordinal ranking of them (Behzadian et al., 2012). Therefore, we compute the performance of 

South African energy in the light of a possible ideal solution computed by the data.  

TOPSIS as a performance measure has been applied in several areas including human 

resources management (Kelemenis, et al., 2011; Boran, et al., 2011), supply chain 

management and logistics (Chen et al., 2006; Kahraman et al. 2009; Zeydan and Çolpan, 

2009), business and marketing management (Kahraman et al. 2009), financial management 

(Bulgurcu, 2012), engineering and manufacturing systems (Rao and Baral, 2011), water 

resources and environment (Gomez-Lopez, et al., 2009; Afshar et al., 2011) and energy 

management (Kaya and Kahraman, 2011; Yan, et al. 2011), amongst others. In energy 

performance for instance, Kaya and Kahraman (2011) proposed a modified fuzzy TOPSIS 

methodology to select the best energy technology according to technical, economic, 
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environmental and social criteria. Yan, et al. (2011) applied a new GRD–TOPSIS method to 

investigate the performance of coal enterprise energy conservation and pollutant emission 

reduction. Chamodrakas and Martakos (2011) presents a utility-based fuzzy TOPSIS method 

that takes into account user preferences, network conditions, QoS and energy consumption 

requirements in order to select energy efficient network in heterogeneous wireless networks. 

Afsordegan et al. (2016) evaluated seven energy alternatives under nine criteria according to 

the opinion of three environmental and energy experts. The weights of the criteria are 

determined by fuzzy AHP, and the alternatives are ranked using qualitative TOPSIS.  

As far as South Africa is concerned, most of the studies on the performance of energy 

are basically descriptive or exploratory in nature (see Gouws et al. (2012), Winkler and van 

Es (2007), and Fawkes (2005) for example). Perhaps the only quantitative studies are Kohler 

(2013), Inglesi-Lotz and Blignaut (2011), Inglesi-Lotz and Pouris (2012), and Song et al. 

(2013). These quantitative studies focused on analyzing energy performance via the route of 

energy efficiency that was computed based on the IEA energy intensity measure.  

Based on the literature review, our paper contributes in the following ways:  First, we 

consider energy performance in light of different contextual variables such as the rise of 

China in foreign trade, the Apartheid regime, and the oil shocks. Second, we use a much 

longer and recent sample (1965-2014) that enables us to track the trend of energy 

performance over time. Finally, our study also employs a different methodology for energy 

assessment in the energy literature (TOPSIS and neural networks) following a trend in other 

research areas (e.g. Barros and Wanke, 2015) that enables us to not only examine the energy 

performance, but also analyze contextual factors that may influence energy performance. We 

are not aware of any study that has used MCDM technique and specifically TOPSIS 

combined with neural networks to assess energy performance at the country level in such 

long time span as in this study. 

 The paper is structured as follows: after this introduction, the contextual setting is 

presented including a description of the energy sector in South Africa in section 2. Section 3 

presents the methodology section on TOPSIS, neural networks, and the global separability 

between contextual variables and performance scores in a two-stage approach. Section 4 



4 
 

presents the analysis of the results followed by the respective discussion. Policy implications 

for South Africa decision-makers are discussed in the conclusions under section 5. 

 

2. Contextual Setting: Energy Performance in South Africa 

Energy is a key input in a number of production and related processes. Its usefulness 

is evident in the industrial sector for transportation, street lighting, residential, commercial, 

and government buildings, among other sectors. Due to rising population and the pursuit of 

economic growth, the demand for energy has been increasing in recent times, thus putting an 

upward pressure on energy prices. The world population grew by 4 times, economic output 

by 22 times, and fossil fuel consumption by 14 times during the 20th century (UNEP, 2011). 

The global primary energy demand is projected to increase on average by 1.3% per year from 

2009 to 2035, while the average IEA crude oil import prices will approach USD 120 per 

barrel (in year-2010 dollars) in 2035 based on the WEO-2011 new policies scenario (OECD, 

2011). Improving energy performance in these countries is more important than ever given 

that energy demand in emerging economies is projected to grow significantly over the next 

decades. The 2013 World Energy Outlook (WEO) predicts that the center of gravity of energy 

demand will switch decisively to emerging economies, driving global energy use one-third 

higher under the New Policies Scenario. This scenario forecasts that emerging economies 

will account for more than 90% of global net energy demand growth by 2035 (IEA 2013a; 

IEA, 2015).  

South Africa, an emerging economy, and our case study, is reported to be one of the 

highest in energy intensity (primary energy use per unit of GDP) in the world, reaching 2.74 

tonnes of oil equivalent (toe) per capita in 2010, which is higher than the world average of 

1.87 (IEA 2013b). Both production and use of energy have grown steadily since 2001. Its 

Total Primary Energy Supply (TPES) and Total Final Consumption (TFC) reached 141 

million tonnes of oil equivalent (Mtoe) and 71 Mtoe respectively in 2011, which is 

approximately 20% of the African continent’s total energy supply (IEA, 2013b). South 

Africa’s energy intensity in recent years appears to have been declining according to IEA 

(2012, 2013b), but this compares unfavorably with larger average reductions for both OECD 

and non-OECD countries. Kohler (2013) noted that the high energy intensity of South Africa 
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partly reflects the natural resource endowments of coal and other mineral resources in 

particular, but it is also a function of the domestic underpricing of coal and electricity by the 

authorities for a long period of time. The low cost of power with inexpensive and subsidized 

domestic fossil energy resources allows large industrial and public sector customers to pay 

prices as low as South African Rand (ZAR) 0.18 per kilowatt hour (kWh) (USD 0.024 per 

kWh) (The International Finance Corporation and African Development Bank (IFC and 

AfDB, 2010) cited in IEA (2013b). 

The increasing demand for energy calls for concern and policy action because it not 

only impairs energy security, but also leads to increasing environmental damage due to 

greenhouse gas emissions, particularly CO2 emissions from fossil fuel combustion. South 

Africa is ranked as the 12th largest emitter of CO2 emissions in the world and is responsible 

for about 1.6% of global emissions and almost 50% of the CO2 emissions in Africa 

(International Emissions Trading Association, IETA, 2014). IETA (2014) also noted that 

carbon dioxide accounts for approximately 80% of total greenhouse gas emissions in South 

Africa. The entire world depends mostly on coal, the most carbon-intensive fossil fuel, for 

the generation of electricity and heat, and countries such as Australia, China, India, Poland, 

and South Africa produce over two-thirds of their electricity and heat through the combustion 

of coal (IEA, 2014a). About 94% of South Africa’s electricity is produced from coal (IEA, 

2013b). 

Although the South African government realized the need for greater generation and 

distribution capacity, which led its state-owned utility company, Eskom, to remobilize long-

decommissioned power stations, such measures were insufficient to prevent rolling 

blackouts. Therefore, Eskom had to return to load shedding, yet it still faces suboptimal 

reserve margins. A continuing power shortage remains one of the greatest motivations for 

energy improvement in South Africa. Hence, as energy security crisis looms, the South 

African government has put in place energy improvement policies and strategies to deal 

effectively with potential electricity capacity shortages, environmental concerns, and the 

rising price of energy sources. The latest overarching energy improvement target for South 

Africa comes from the 2005 National Energy Efficiency Strategy last reviewed in 2012, 

which emphasizes solving the energy security problem through Energy Efficiency (EE) and 
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Demand Side Management (DSM). It maintains a target for energy efficiency improvement 

at 12% by 2015 for the country as a whole (below a business-as-usual projection from 2000 

levels) measured as a 12% reduction in energy intensity (actual energy usage per Rand of 

GDP) (IEA, 2013b). According to the Department of Energy (DOE, 2014), this target was 

further disaggregated into sectoral targets as follows: industrial and mining (15%), 

commercial and public buildings (15%), residential (10%), and transport (9%). Energy 

improvements is expected to be achieved largely via enabling instruments and interventions 

such as economic and legislative means, efficiency labels and performance standards, energy 

management activities, energy audits, as well as the promotion of efficient practices, among 

others (Department of Minerals and Energy, 2005). Currently, the country implements a 12L 

tax incentive (45 cents per kilowatt hour) for businesses to reduce electricity demand and 

improve energy performance. This was formerly launched on December 4, 2013.  

 

3. Methodology 

 This section presents the major methodological steps adopted in this research. After 

presenting the data collected in terms of ranking of criteria and contextual variables, the two-

stage approach is explained in detailed. Section 4.2 is devoted to discussing the application 

of the TOPSIS method to this research in light of the major differences with respect to DEA 

models and section 4.3 depicts the neural network analysis adopted here and explains how 

the results were validated and interpreted by means of sensitivity analysis.  

3.1. The data 

 The data on the South African energy consumption and related variables covers from 

1965 to 2014 and were obtained from several sources. More precisely, data on employment 

and labor force were obtained from the International Monetary Fund’s International Financial 

Statistics, for CO2 emissions and energy consumption from BP’s 2015 statistical review of 

world energy, and for the GDP and the capital stock from the South African Reserve Bank. 

The variables collected are the observed inputs and outputs usually found in the literature 

review and based on data availability. The inputs are labor force (number of employees in 

thousands), energy consumption (in million tonnes of oil equivalent - Mtoe), and the 
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productive capital stock (in 2010 constant South African Rand - million ZAR). Due to its 

undesirable nature, CO2 emissions (in metric tons of Carbon) were also treated as an input—

or as a performance criterion—that should be minimized. In other words, the CO2 variable is 

assigned a negative sign for the weight in TOPSIS and hence it entered as a negative criteria, 

similarly to DEA models where it enter as an input. On the other hand, Gross Domestic 

Product (GDP, in 2010 constant South African Rand - million ZAR) was the single output 

considered. Their descriptive statistics are presented in Table 1. 

 Furthermore, a number of contextual variables were collected to explain differences 

in the performance levels that are also presented in Table 1 and are related to major 

demographics/economics of South Africa during these years. Dummies were created to 

access whether or not the country was under the Apartheid regime, whether or not the country 

was under the effect of both oil shocks of the 70´s, or whether or not the country was 

experiencing the impacts of the rising of the Chinese foreign trade and its impacts all over 

the world on the productive chains at a given moment of time. Besides a linear and a squared 

trend component, additional ratios were computed such as the capital-labor ratio (KL ratio) 

that was calculated by dividing the stock of productive capital by the labor force in a given 

year, and the CO2/Energy ratio obtained by dividing the CO2 emissions by the amount of 

energy consumed in a given year. At last, the seasonally adjusted manufacturing employment 

index was also considered. 

 

Table 1: Descriptive statistics for the TOPSIS criteria and the contextual variables 

Variables Min Max Mean SD 

Inputs and Outputs 

Labor Force 4608540.952 15146500.000 9098000.889 3045467.191 

Capital Stock in ZAR 

Millions 2183382.000 7456244.000 4693846.340 1373906.335 

CO2 emissions 114.864 457.474 294.397 109.991 

 Energy Consumption  30.263 126.691 80.508 31.053 

GDP 784781.000 3008576.000 1719701.220 610796.343 

Contextual and 

Business-related 

characteristics 

 KL Ratio  0.438 0.652 0.523 0.070 

 CO2/Energy Ratio  3.569 3.796 3.678 0.062 

Employment Index 74.444 130.107 110.778 14.161 

Apartheid Regime 0.000 1.000 0.600 0.490 

Oil Shock 0.000 1.000 0.160 0.367 
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China Emergence 0.000 1.000 0.400 0.490 

Trend 1.000 50.000 25.500 14.431 

Trend² 1.000 2500.000 858.500 759.152 

 

3.2. TOPSIS 

 The design and application of Multi-Criteria Decision Making (MCDM) methods 

have been a prolific research field in business analytics and engineering. As a matter of fact, 

over the course of the last three decades, a variety of different MCDM have been developed 

and empirically employed in the field of research. This list includes the AHP (Saaty, 1980; 

Ramanathan, 2013), Promethee (Brans and Vincke, 1985; Corrente et al., 2013), Electre 

(Hatami-Marbini and Tavana, 2011; Corrente et al., 2013), Dematel (Tsay et al., 2009), Vikor 

(Opricovic, 1998; Opricovic and Tzeng, 2007), and Uta (Siskos et al., 2014).  

The TOPSIS method (Technique for Order of Preference by Similarity to Ideal 

Solution), which was first developed by Hwang and Yoon (1981), is a widely accepted 

MCDM technique (Behzadian et al., 2012). According to Hwang and Yoon (2012), TOPSIS 

belongs to the group of methods devoted to the linear ordering of multidimensional objects. 

Broadly speaking, the ordering of objects from the best to the worst, considering an assumed 

synthetic measure that is not subject to a direct measurement, belongs to the task of linear 

ordering (Jefmański & Dudek, 2015). This distinctive feature of TOPSIS is a particular way 

to evaluate a synthetic criterion’s values taking into account the distance of an evaluated 

object to the positive-ideal solution as well as to a negative-ideal solution (Tavana et al., 

2013). Wang et al. (2014), Barros and Wanke (2015), and Wanke, et al. (2015a, 2015b) are 

examples of applications of the TOPSIS method in performance measurement problems in 

which the positive-ideal solution represents 100% performance and the negative-ideal 

solution 0% performance. Its basic principle, it assumes that any chosen alternative should 

simultaneously present the shortest distance from the positive-ideal solution and the farthest 

distance from the negative-ideal solution (Hwang and Yoon, 1981). Putting it in other words, 

the TOPSIS method is based on the concept that the positive ideal solution has the best level 

for all attributes considered, while the negative ideal is the one with the worst values 

attributed. Besides, it is possible to affirm that the positive-ideal solution is the one that 

maximizes benefits and also minimizes total costs. On the contrary, the negative-ideal 
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solution is the one that minimizes benefits while maximizing costs (Lai et al., 1994; Wu et 

al., 2010; Ertugrul and Karakasoglu, 2009).  

 TOPSIS is one of the MCDM approaches used where the weighting criteria for the 

choice of the most adequate solution is exogenously defined (Wang et al., 2014; Bilbao-

Terol, et al., 2014; Feng and Wang, 2001; Pirdavani et al., 2010; Chen et al., 2014; Hassan 

et al., 2013; Barros and Wanke, 2015). Due to this weighting flexibility, TOPSIS presents 

the advantages of geometric aggregation methods such as those presented in Zhou et al. 

(2006) and Zhou and Ang (2009), although it does not suffer from their major drawback, 

compensability, where poor performance in some criteria can be compensated by sufficiently 

high values in other criteria (Munda and Nardo, 2003). Besides, despite its general 

resemblance to DEA objectives where outputs may be maximized and/or inputs minimized 

in non-radial/radial models, the determination of the weights of the relative importance of 

each criteria, namely benefits and costs or simply outputs and inputs, respectively, is a 

milestone step in TOPSIS methodology, whereas, in the case of DEA, these weights are 

calculated within the ambit of the model (Behzadian et al., 2012). Moreover, DEA may suffer 

from a lack of discriminatory power due to the fact that many observations are located in the 

frontier of efficiency, which differs from TOPSIS and other MCDM models where 

discriminatory power is high. However, unlike SFA, both DEA and TOPSIS do not impose 

any functional form on the data, neither do they make any distributional assumption for the 

scores calculated. This issue is of utmost importance when conducting the robustness 

analysis on the global separability of criteria and contextual variables in the sense that 

conditional distributions on performance scores are assessed empirically rather than 

imposing a functional form between them as done in SFA models. Another difference from 

DEA models is the fact that, while DEA optimizes the distance from each observation to the 

convex-efficient production frontier by finding a proper set of weights for inputs and outputs 

(Chen, 2002), TOPSIS purely employs analytical methods based on applying Euclidean 

distance functions on normalized vectors of positive (outputs) and negative (inputs) criteria, 

given that the weights have already been defined previously by the decision-maker (Barros 

and Wanke, 2015). Since TOPSIS is comparatively simpler when compared to DEA models, 

there are virtually no computational constraints with respect to the number of observations 

and criteria that can be assessed. 
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The TOPSIS technique is built upon an evaluation matrix consisting of m alternatives 

and n criteria with the intersection of each alternative and criteria given as 𝑥𝑖𝑗. Therefore, 

one obtains a matrix (𝑥𝑖𝑗)
𝑚𝑥𝑛

. This matrix (𝑥𝑖𝑗)
𝑚𝑥𝑛

 should be firstly normalized from a 

regulated matrix 𝑅∗ =  (𝑟𝑖𝑗) as demonstrated in Eq. (1). 

 𝑟𝑖𝑗 =  𝑥𝑖𝑗 √∑ 𝑥𝑖𝑗
2𝑚

𝑖=1  ,⁄   𝑖 = 1,2, … 𝑚 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑛       (1) 

After normalization the weighted normalized decision matrix for performance 

assessment should be calculated, observing Eq. (2): 

𝑊 = (𝑤𝑖𝑗)𝑚𝑥𝑛 = (𝑤𝑗𝑟𝑖𝑗)𝑚𝑥𝑛        (2) 

where 𝑤𝑗 is the weight given to the criteria 𝑗 and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1.  

 With respect to defining the weighing criteria, several different methods can be found 

in literature. Because of this, there is not a single methodological procedure to be followed 

(Madeira Júnior et al., 2012). Hemmati et al. (2013) for instance used the Entropy technique. 

Seçme et al. (2009) and Shaverdi et al. (2011) in contrast used fuzzy AHP for determining 

the weights of main and sub-criteria. In our study, the five attributes or criteria presented in 

Table 1 have been initially given the same weight with a fair consideration since the literature 

review provides no clear indication about which criteria are preferable to the detriment of the 

others for assessing energy performance. However, a robustness analysis on the weighting 

criteria, based on a linear programming model, is further discussed in Section 3.4. The 

underlying idea is to assess how changes in weighting may affect the linear ordering of South 

African energy performance over the course of the years. 

Anyway, in a broader sense, once the weighting criteria is defined, the worst 

alternative (the negative ideal assessment unit) 𝐴𝑎 and the best alternative (the positive ideal 

assessment unit) 𝐴𝑏 should be defined using Equations (3) and (4): 

  𝐴𝑎 =  {〈min(𝑤𝑖𝑗| 𝑖 = 1,2, … , 𝑚)| 𝑗 ∈ 𝐽+〉, 〈max(𝑤𝑖𝑗| 𝑖 = 1,2, … , 𝑚)| 𝑗 ∈ 𝐽−〉} =  {𝛼𝑎𝑗|𝑗 = 1,2, … , 𝑛} (3) 

𝐴𝑏 =  {〈𝑚𝑎𝑥(𝑤𝑖𝑗|𝑖 = 1,2, … , 𝑚|𝑗 ∈ 𝐽+〉, ⟨min (𝑤𝑖𝑗|𝑖 = 1,2, … , 𝑚)|𝑗 ∈ 𝐽−⟩} = {𝛼𝑏𝑗|𝑗 = 1,2, … 𝑛}    (4) 
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where 𝐽+ =  {𝑗|𝑗 ∈ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒} and 𝐽− = {𝑗| 𝑗 ∈ 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒}, which are a set of positive 

(benefit) and negative (cost) attributes, respectively. 

Given the best and the worst alternatives, the distance dia between the target 

alternative i and the worst condition 𝐴𝑎 should be calculated using Eq. (5):  

 𝑑𝑖𝑎 = √∑ (𝑤𝑖𝑗
𝑛
𝑗=1 − 𝛼𝑎𝑗)

2
, 𝑖 = 1,2, … , 𝑚      (5) 

 and the distance 𝑑𝑖𝑏 between the alternative i and the best condition Ab by observing Eq. (6). 

 𝑑𝑖𝑏 = √∑ (𝑤𝑖𝑗
𝑛
𝑗=1 − 𝛼𝑏𝑗)

2
, 𝑖 = 1,2, … , 𝑚      (6) 

where dia and dib are the Euclidean distance from the target alternative i to the worst and best 

conditions, respectively. 

Then, the similarity of alternative i to the worst condition (the inefficient best 

conditions) should be computed, respectively, as: 

𝑆𝑖 = 𝑑𝑖𝑎/(𝑑𝑖𝑎 + 𝑑𝑖𝑏)         (7) 

where 0 ≤ Si ≤ 1, i = 1,2, ..., m. 

𝑆𝑖 = 0, if and only if the alternative solution has the worst condition. 

𝑆𝑖 = 1, if and only if the alternative solution has the best condition. 

According to Jahanshahloo et al. (2009), 𝑆𝑖 represents the performance scores for each 

alternative, which is each year of the South African sample, determined by the decision 

making criteria. 

Finally, the alternatives should be ranked according to 𝑆𝑖 where a value higher than 𝑆𝑖 

indicates a better solution with respect to higher performance levels within this 50-year time 

span of energy consumption in South Africa, allowing a subsequent assessment of the impact 

of contextual variables. 

 

3.3. On the use of artificial neural networks for performance prediction 
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In this research, the choice of the predictive modeling technique observes the fact that 

new developments in statistical software technologies can be used to support systematic 

theory testing and development (Tsui et al., 2000; Chen and Cheng, 2013; Osei-Bryson and 

Ngwenyama, 2014). Predictive modeling is the process by which a technique is created or 

chosen to try to best predict the probability of an outcome (Geisser, 1993). More specifically, 

established management science techniques such as TOPSIS can be used in combination with 

several predictive modeling techniques to more effectively explore research questions on 

performance measurement (Chen, 2007). In this paper, the ideas of Kuhn and Johnson (2013) 

are followed on how to manage the trade-off between interpretability and accuracy. Thus, if 

a model is created to make some prediction, it should not be constrained by the requirement 

of interpretability and/or significance of statistical results. Moreover, as long as the model 

can be appropriately validated, it should not matter whether it is a black box or a simple, 

interpretable model. 

 Therefore, rather than predicting performance itself, a more difficult problem is 

obtaining trustworthy estimates of performance for the artificial neural network employed. 

The apparent error rate can produce extremely optimistic performance estimates (Kuhn and 

Johnson, 2013). Resampling is the underlying idea for estimating the variability of a 

predictive technique fit (James et al., 2013). There are several resampling procedures, but 

they all operate quite similarly: a subset of samples is used to fit a model and the remaining 

samples are used to re-estimate the model’s accuracy (Kuhn and Johnson, 2013). 

 Cross-validation and bootstrap are two of the most commonly used resampling tools 

for the practical application of many statistical learning techniques (James et al., 2013). For 

example, cross-validation can be used to estimate the test error associated with the artificial 

neural network in order to evaluate its accuracy. There is a number of resampling procedures 

frequently used in cross-validation: Bootstrap, k-Fold, Repeated k-Fold, and Leave One Out. 

A comprehensive review of these techniques can be found in Kuhn and Johnson (2013) and 

James et al. (2013).  

 Importantly, with respect to the context of energy performance, most of the studies 

previously presented aimed to explain the factors affecting performance (using bootstrapped 

truncated and Tobit regressions, for example), yet no predictive analysis has been done in the 
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sense of pushing up the predictive limits of the model. Whereas the prediction of energy 

performance is extremely important, poor performance may lead to an eventual failure in 

achieving the goals of the Kyoto´s protocol. Thus, conceiving a predictive model for energy 

performance would be useful in avoiding or at least limiting such undesirable consequences 

related to CO2 emissions. Therefore, this study also proposes the use of contextual variables 

to predict energy performance. More specifically, neural networks are trained to assess how 

contextual variables could be used as predictors of energy performance levels in South 

Africa. Emerging literature exists that combines MCDM results (TOPSIS included) from the 

first stage with variations on the neural network architecture from the second stage for 

predictive modelling in several areas of knowledge (Azadeh et al., 2014). 

 Artificial Neural Networks (ANNs) are powerful nonlinear regression techniques 

inspired by theories about how the brain works (Bishop, 1995; Ripley, 1995; Titterington, 

2010). They are formed by a set of computing units (the neurons) linked to each other 

(Claveria and Torra, 2014). Each neuron executes two consecutive calculations: a linear 

combination of its inputs followed by a nonlinear computation of the result to obtain the 

output value that is then fed to other neurons in the network (Torgo, 2011). 

 Like partial least squares, the outcome is modelled by an intermediary set of 

unobserved variables called hidden layers (Kuhn and Johnson, 2013). These hidden layers 

are located in between the first layer, which contains the input neurons, and the final layer, 

which contains the predictions of the neural network for any case presented at its inputs 

neurons (Torgo, 2011; Chen et al., 2015). Therefore, one needs to decide on the number of 

hidden layers and the number of inputs in the various layers, as well as the weights that 

connect the inputs and the outputs of these layers (Ledolter, 2013; Feng and Zhang, 2014). 

 ANNs are known to be sensitive to different scales of the variables used in a 

prediction problem. In this context, it makes sense to transform the data before introducing 

them to the network, usually by normalizing (Torgo, 2011). Additionally, like their 

regression counterparts, neural networks for classification have a significant potential for 

over-fitting that should be handled by cross-validation (Kuhn and Johnson, 2013). 
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3.4 Robust TOPSIS weighting: Applying the Ng model 

 With respect to the definition of the weighing criteria, several different methods can 

be found in literature, thus, there is not a single methodological procedure to be followed 

(Madeira Junior, Cardoso Junior, Belderrain, Correia, & Schwanz, 2012). In our study, the 

four inputs and the single output presented in Table 1 were initially given the same weight, 

since the literature review provides no clear indication as to which criteria should be 

prioritized for ranking years in the South African energy context.  

 Importantly, this study conducts a robustness analysis based on the guidelines 

provided in Wanke et al. (2015, 2016). The underlying idea is to assess how different 

weighting criteria would impact the computation of TOPSIS performance scores, compared 

to those derived from the initial ones, where the equal weighting assumption was considered. 

The steps taken in generating different weightings are further detailed in the next paragraphs 

and presented in the discussion section. Readers should note, however, that despite the 

weighting criteria adopted, the contextual variables are further used as performance 

predictors in the Tobit regression and in the Neural Network analyses, for the base case where 

all weights are assumed to be equal.  

The Ng weighting model applied to this research assumes that there are I  year 

observations, and that they should be ranked in terms of J  inputs and outputs. Further, let 

the performance of i  th year observation in terms of each of the j  th input and output be 

denoted as ijy . The purpose is to aggregate multiple performance scores of a year 

observation with respect to different input and outputs into a single score for the subsequent 

ranking. In the Ng-model, the author first transforms all measures to a baseline for purposes 

of comparison. Using the transformation:  

min{ }

max{ } min{ }

ij ij

ij ij

y y

y y




         (8) 

The Ng-model converts all measurement in a 0–1 scale for all items. To facilitate the 

year ranking under multiple input/output, Ng defines a nonnegative weight ijw  which is the 

weight of contribution of performance of the i  th  year under the j  th criteria (input or 
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output) to the score of the item. The criteria are assumed to be ranked in a descending order, 

such that 
1 2 ...i i iJw w w    for all year i. The Ng (2007) model for computation purposes 

is given as follows: 

max  
1

J

i ij ij

j

S y w


  

s.t.    
1

1
J

ij

j

w


           (9) 

         
1 2 ...i i iJw w w    

         0ijw  , 1,..., & 1,...,i I j J   

 

4. Results and Discussion 

The performance levels calculated for the energy consumption in South Africa from 

1965 to 2014 using the TOPSIS approach and considering different grouping criteria are 

given in Fig. 1 and the complete  ranking is presented in the Appendix. One can easily note 

that energy performance in South Africa is systematically decreasing over the course of this 

50-year time span. Generally speaking, energy performance in South Africa might be 

decreasing due to a proportionally larger amount of energy consumption, CO2 emissions, 

labor force, and capital stock with respect to the GDP achieved each year, or due to a 

combination of these variables to some extent. Additionally, Fig. 2 reveals substantial 

differences when performance  are grouped by each dummy contextual variable related to 

the Apartheid regime, the rise of China´s foreign trade, and the oil shock. Energy 

performance  in South Africa were clearly better during the Apartheid, prior to the rise of 

China as a commercial and industrial superpower, in parallel to the oil shocks in the 70s that 

stimulated the use of alternative fuel sources and various programs for energy conservation 

and saving. As a matter of fact, the decline of the South African energy performance 

coincided with the change of its economy towards low-value added services, which is 

detrimental to industrial, capital intensive activities that are more pollutant, due to an excess 

of workforce liberated from the end of the Apartheid regime and the relocation of global 
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industrial activity to China (cf. Fig. 3) (Statistics South Africa, 2015).1 Furthermore, the 

participation of the industrial activity in South Africa’s GDP declined from an average 22-

23% in the 60s, 70s, and 80s to less than 15% in more recent years. 

 

 

Fig. 1. Energy performance in South Africa from 1965-2014. 

 

                                                           
1 http://www.statssa.gov.za/?page_id=735&id=1. 
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Fig. 2. Distribution of performance scores per dummy contextual variables (1 = yes / 0 = 

no). 
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Fig 3. Evolution of contextual variables over time (x-axis indicates the time span; 1 

corresponds to 1964 and 50 to 2014) 
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 Putting this scenario into perspective, a robustness analysis was then performed in 

order to compare the TOPSIS scores with those computed from the traditional BCC (Banker 

et al., 1984) and CCR (Charnes et al., 1978) models (cf. Fig. 4). It should be mentioned that 

the undesirable output of CO2 emissions was considered as an input that should be 

minimized, a common practice in DEA models (Apergis et al., 2015), which was also adopted 

in TOPSIS modelling (cf. section 4.1) for the sake of comparability of results. The main idea 

is not only to assess whether the TOPSIS method increases the discriminatory power of the 

analysis, but also whether their scores are less symmetrical around the mean when compared 

to the traditional models in order to increase contrasts for the subsequent neural network 

analysis. 

 

Fig. 4 Robustness analysis 

 

 The mean overall performance scores in the TOPSIS method is 0.49, whereas the 

traditional BCC and CCR models presented mean values of 0.97 and 0.96, respectively. 

These results suggest that the discriminatory power of the TOPSIS method is higher than 
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those observed in traditional models because their scores are lower. The impact of TOPSIS 

performance modeling can also be found in other statistical properties derived from the 

frequency distribution of the performance estimates in both models. Skewness is close to 

zero (0.158 against -1.475 [BCC] and -1.294 [CCR]), suggesting that, in the TOPSIS method, 

performance scores are more symmetrical around the mean, thus favoring the neural network 

analysis. Nevertheless, Spearman rank correlations between  performance scores derived 

from traditional DEA models and the TOPSIS method were found to be significant at 0.01 

(0.23 and 0.28 in the CCR and BCC cases, respectively), thus suggesting isotonic results for 

both models when the yearly performance ranks for energy  performance in South Africa are 

placed into perspective for these three models. 

 Now, as regards to the contextual variables and test of global separability (Daraio et 

al., 2010), the empirical value of the test statistic for the TOPSIS scores was not only found 

to be close to zero (0.0512), but also to be inferior than the test values on the BCC (0.146) 

and the CCR frontiers (0.092). As expected, this test value goes far from zero in cases where 

estimates are biased towards one (cf. Fig. 4). Global separability, therefore, appears to be 

consistent with the use of TOPSIS on the sample data to the detriment of DEA models. This 

suggests that the contextual variables considered here affect only the distribution of 

performance scores and not the attainable input/output combinations (or the shape of the 

underlying production set). 

In addition, the weighted linear optimization model proposed by Ng (2007) and 

inspired in Pearman (1977) is used to generate various sets of weights for the inputs and the 

output before conducting the robustness analysis on TOPSIS performance scores with respect 

to the weighting criteria. Under Ng´s approach, the weights are endogenous, that is, they are 

automatically generated when the model is optimized and, therefore, they are not subjective. 

Besides, Ng´s approach can be used in a supplementary fashion with several MCDM 

techniques, such as TOPSIS, in which weights can be specified exogenously by decision-

makers, thus involving some degree of subjectivity.  

 However, as long as in the model presented in Ng (2007) the decision maker has to 

rank the importance of criteria before solving the model, we used combinatorial analysis to 

generate - within the ambit of the R statistical package - the full universe of combinations 
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where the four inputs and the single output are ranked in different orders of importance. More 

precisely, the model presented in Ng (2007) was run 5! = 120 times for the full set of 

inputs/output combinations in different orders of importance. In all times, the summation of 

the weights for the inputs and the output was equal to one, observing the constraints of the 

linear program. Readers should refer Section 3.4 for a full description of the model features 

and its specificities. Then, as a final step, this full set of inputs-output weight combination 

was used to re-compute the TOPSIS performance scores. 

 Table 2 depicts the results for the mean TOPSIS criteria weights with respect to 

different groups of results in terms of the Spearman´s rank correlations and their respective 

significances between the original TOPSIS scores with equal weights and each one of the 

120 input-output weight combinations. Four groups were defined. In the first group, the 

correlations are found to be positive and significant at 0.05. This group is not only the most 

numerous by far with 91.67% of the total 120 cases, but also within this group it is possible 

to affirm that this set of weights is robustly represented by the original TOPSIS scores with 

equal weights. Isotonicity thus holds when performance scores are compared. On the other 

hand, in the second group, although correlations are still positive, they are not significant. No 

case was verified, however. The third and the fourth groups with negative correlation 

presented fewer cases, less than 9% in total, but with no isotonicity with the original 

performance scores computed for equal weights. This corroborates the robustness of the 

sensitivity analysis performed, since a few negative correlations were found, irrespectively 

of their significance level. These few cases are counterintuitive ones, since labor and capital 

account only for a quarter of total weight, while value creation (GDP), energy consumption, 

and CO2 emissions account for around three-quarters of it, as such a huge production output 

could have come from a tiny physical and human resource base. 

 Readers should observe that, considering only the positive and significant cases, as 

regards the inputs/single output criteria, higher weights on CO2 emissions and capital stock 

to the detriment of labor force and GDP make the original TOPSIS scores with equal weights 

more representative, while energy consumption stands in between with an intermediate 

weight. This suggests a trade-off, mediated by the energy consumption level, between a dirty 

industrial economy that is high-performer and a cleaner one with low value added that is low-
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performer. Low value added can be inferred or proxied by the smallest weight attributed to 

GDP. 

 

 

 

Table 2: Mean TOPSIS criteria weights per group of result 

TOPSIS Criteria 
Positive Correlation Negative Correlation 

Significant 

Not 

Significant Significant 

Not 

Significant 

Inputs 

Labor Force 0.216 0.000 0.040 0.054 

Capital Stock 0.228 0.000 0.177 0.205 

CO2 

Emissions 0.250 0.000 0.257 0.179 

Energy 

Consumption 0.220 0.000 0.130 0.191 

Output GDP 0.084 0.000 0.397 0.371 

Number of cases 110 0 1 9 

% of cases 91.67% 0% 0.83% 7.50% 

 

Furthermore, another robustness analysis was also performed before running the 

neural network analysis. This time with respect to the impact of contextual variables on 

performance scores. More precisely, TOPSIS scores were regressed against the set of 

contextual variables presented in Table 1 using Tobit regression (see Moyo, 2012, for 

instance, for further details on Tobit regression). The results presented in Table 3 corroborate 

previous analysis derived from Fig. 2 and show a significant impact of the dummy variables 

of oil shock, China’s emergence, and Apartheid regime on the performance levels. Readers 

should note, however, that the emergence of China (1995-2014) was modeled as a 

complement of the Apartheid regime (1965-1994), which has been discarded by the model 

due to collinearity.  

The linear and squared trend components also showed significant results, 

corroborating with the overall picture described in Fig. 1 of decreasing energy performance 

over the course of 50 years. Besides these results, it is worth noting that although the KL 

ratio showed no significant effect over performance levels—different from the positive 

impact that was expected and found for the manufacturing employment index—the 
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CO2/Energy ratio presented a negative impact, thus suggesting, as expected, that energy 

performance decreases either as a consequence of pollutant economic activities (higher CO2 

emissions) or as a result of energy intensive economic activities. One possible explanation 

for this phenomenon encompassing both high CO2 emissions and energy intensive activity 

in the context of an economy that is increasingly low value-added and service-driven—as 

indicated in Fig 3—is road transportation, the most pollutant and energy inefficient of all 

transportation modes. As a matter of fact, in South Africa, road transportation for cargoes 

accounts for 87.9% in terms of tonnage and 69.5% in terms of tonnage per kilometers, with 

railway accounting for the remainder (10th Annual State of Logistics Survey for South Africa 

2013). This amount is much higher than that seen in the US, for instance, where road 

transportation accounts for about 15% of cargo transportation in all transport modes. 

 

Table 3: Tobit regression results 

Coefficients                          Estimate             Std. Error             z value             Pr(>|z|)     

(Intercept)                            1.415e+00           3.503e-01            4.038            5.40e-05 *** 

KL Ratio                            -2.870e-02             5.526e-02           -0.519           0.6034     

CO2/Energy Ratio              -2.323e-01             9.236e-02           -2.516           0.0119 *   

Employment Index              1.915e-03             4.872e-04            3.930           8.50e-05 *** 

China Emergence               -2.760e-02             1.137e-02            2.427           0.0152 *   

Oil Shock                             1.950e-02             7.937e-03            2.456           0.0140 *   

Trend                                  -1.795e-02             1.843e-03           -9.741           < 2e-16 *** 

Trend.2                                1.975e-04              3.098e-05           6.376            1.82e-10 *** 

Log(scale)                          -4.289e+00             1.000e-01         -42.886           < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Log-likelihood: 143.5 on 9 Df 

Wald-statistic:  3239 on 7 Df, p-value: < 2.22e-16 

Pseudo-R square: 0.9847979 

 

 Next, a neural network analysis was conducted on the TOPSIS performance scores 

using the contextual variables presented in section 4 as their predictors. All steps taken 

followed those presented in Faraway (2006) and in Kuhn and Johnson (2013). When different 
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cross-validation measures are applied and different numbers of hidden layers are considered, 

a clear picture emerges with respect to the response bias or the over-fitting within each 

predictive technique. Fig. 5 illustrates the apparent Root Mean Squared Error (RMSE), which 

tends to decrease with the number of hidden layers of the neural network. This result clearly 

suggests a positive response bias towards a larger number of hidden layers (errors decay with 

a larger number of hidden layers).  

 

 

Fig 5. Apparent RMSE. 

 Additionally, Fig. 6 illustrates that a common pattern within the cross-validation 

methods is seen where RMSE is smaller for higher hidden layer values and peaks at lower 

values in the context of this particular neural network. The most accurate neural network 

obtained (RMSE = 0.00825) used the 10-fold cross-validation technique for 15 hidden layers 
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and a decay rate of 0.0168. This represents a mean error rate of 0.82 percent points if we 

consider the performance scale ranging from 0 to 100% and a pseudo R square of 0.999. 

 

 

 

Fig 6. Cross-validated performance profiles over different values of the tuning parameter. 

 The relative importance of each contextual variable is given in Fig. 7. As regards to 

TOPSIS performance scores, the top predictors for the neural networks of South African 

energy performance are variables related to the industrial (manufacturing employment index) 

and to the pollutant (CO2/Energy ratio) activities besides the overall declining trend, which 

can be also described by the Apartheid regime, the Chinese rise as a superpower, and the KL 

ratio. The remainder variable, oil shock, presented a negligible impact on energy performance 

in South Africa in an isolated way. 
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Fig 7. Relative importance of contextual variables. 

 Figure 8 presents the sensitivity analysis on the TOPSIS performance estimates for 

the best neural network model. Results confirmed the signs found in the Tobit regression 

results despite their significance levels and relative importance, as measured by the 

regression coefficients, unveiling non-linear relationships between these variables. They 

corroborate the transition of the South African economy to a low-value added, service-based 

one. Although the ratio of the CO2 emissions over the course of the years are diminishing 

against the overall energy consumption, the ratio of the productive capital stock, capable of 

leveraging and sustaining accelerated GDP growth, is also diminishing when compared to 

the workforce amount. The decrease in energy performance scores therefore is mostly 

explained in the output side by the deceleration in GDP growth and, in the input side, by 
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changes in the overall productive structure of the South African economy towards low value 

added services, intensive in energy consumption and CO2 emissions.  
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Fig 8. Neural network sensitivity analysis for the performance scores. 

 

5. Conclusion 

 This paper presents an analysis of the energy performance in South Africa using 

TOPSIS and neural networks. While TOPSIS enables the assessment of the evolution of this 

performance over the course of the years, neural networks help in explaining several 

determinants of performance. South Africa’s energy performance score has declined 

systematically over the years. The major factor relates to the structural changes undergone 

by the South African economy over the last 50 years. Specifically, the decrease in energy 

performance is mainly explained by the manufacturing employment index and changes in the 

overall productive structure of the South African economy towards low value added services, 

which are intensive in energy consumption and CO2 emissions. These findings have 

important policy implications. Economic and industrial policies need to be integrated to 

ensure a balance between energy performance and economic growth. This is because 

improved energy performance is associated with a number of benefits: energy security, 

environmental quality, development, consumer welfare, among other benefits that eventually 

promote growth. Although South Africa’s government is already helping to stimulate 

investment into energy improvement via its national energy efficiency strategy, there is the 

need to monitor, enforce, and evaluate such strategies on a continuous basis as these are key 
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to identifying gaps and reaching the targets set both at the aggregate and sectoral levels. 

Competitive energy markets, coupled with the appropriate regulations, need to be put in 

place. The government may for instance, consider revising the electricity tax incentive 

upwards in the coming years to motivate the businesses to invest in energy efficiency in 

particular and general performance of the energy sector. Collaborating with the private 

financial institutions to facilitate energy improvement financing and the market could also 

be beneficial. Further, there is a need to continuously integrate and coordinate new and 

emerging technologies that enhance energy performance. A move away from fossil fuel-

based energy to a greener and renewable energy sources may be helpful. Barriers to the large 

scale spread of energy efficient technologies, which are often related to governance, 

institutions and information, among other actions, rather than economic justifications, can be 

overcome with carefully designed regulations policies, strategies, and enforcement 

mechanisms. The government can review regulations and subsidies in order to ensure that 

energy retail prices reflect the full costs of energy supply, delivery, and environmental costs. 

However, policies aimed at increasing the electricity level should be done in conjunction 

with policies that insulate the effect of such on low-income households. The need for a 

structural change towards sectors that consume less energy per unit of output and hence emit 

low CO2 cannot be overstressed. The government is already proposing to shift the economy 

to sectors such as trade and services. The benefits may not come so fast as other short term 

measures, but it will surely be sustainable in the long term. 
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Appendix - Performance ranking 

Ranking 

TOPSIS 

Score Year  Ranking 

TOPSIS 

Score Year 

1 0.6467 1967  30 0.4514 1994 

2 0.6465 1968  31 0.4378 1995 

3 0.6465 1969  32 0.4128 1996 

4 0.6456 1970  33 0.4115 1998 

5 0.6441 1966  34 0.4094 1997 

6 0.6427 1965  35 0.3861 2002 

7 0.6423 1971  36 0.3838 1999 

8 0.6386 1972  37 0.3658 2007 

9 0.6328 1973  38 0.3657 2001 

10 0.6310 1974  39 0.3651 2003 

11 0.6197 1975  40 0.3631 2005 

12 0.6117 1976  41 0.3624 2006 

13 0.6089 1978  42 0.3617 2000 

14 0.6062 1977  43 0.3607 2013 

15 0.6038 1979  44 0.3600 2012 

16 0.5940 1980  45 0.3582 2014 

17 0.5634 1981  46 0.3523 2011 

18 0.5380 1982  47 0.3511 2008 

19 0.5322 1983  48 0.3482 2010 

20 0.5131 1984  49 0.3459 2004 

21 0.5059 1985  50 0.3404 2009 

22 0.5018 1986     
23 0.4971 1987     
24 0.4818 1989     
25 0.4756 1991     
26 0.4717 1990     
27 0.4642 1988     
28 0.4611 1993     
29 0.4600 1992     

 


