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Abstract 

 
Prior studies on the price formation in the Bitcoin market consider the role of Bitcoin 

transactions at the conditional mean of the returns distribution. This study employs in contrast a 

non-parametric causality-in-quantiles test to analyse the causal relation between trading volume 

and Bitcoin returns and volatility, over the whole of their respective conditional distributions. 

The nonparametric characteristics of our test control for misspecification due to nonlinearity and 

structural breaks, two features of our data that cover 19th December 2011 to 25th April 2016. 

The causality-in-quantiles test reveals that volume can predict returns – except in Bitcoin bear 

and bull market regimes. This result highlights the importance of modelling nonlinearity and 

accounting for the tail behaviour when analysing causal relationships between Bitcoin returns 

and trading volume. We show, however, that volume cannot help predict the volatility of Bitcoin 

returns at any point of the conditional distribution.  
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Highlights 

• Examine causal relation between Bitcoin return/volatility and traded volume. 
• Detect nonlinearity and structural breaks in the return-volume relationship. 
• Misspecified linear causality test shows no evidence of causality. 
• Use instead nonparametric causality in quantile test. 
• Reveal that volume can predict returns, but not volatility, at some quantiles. 
 

1. Introduction 

Studying the volume–return relationship is important to an understanding how information is 

transmitted to the market and embedded in asset prices. It also helps in increasing the power of 

forecasting asset return and volatility. In times of stress, in particular, it is central to examine the 

return-volume relationship to better understand market booms and crashes (Marsh and Wagner, 

2000).  

While the volume–return relationship has been extensively uncovered in equities 

(Karpoff, 1987; Li et al., 2016), bonds (Balduzzi et al., 2001), commodities (Chiarella et al., 2016), 

and interest rate and currency future (Puri and Philippatos, 2008), it remains unexplored in the 

Bitcoin market. The latter has recently attracted the attention of the media and scholars given the 

rising importance of Bitcoin not only as an electronic payment system but also as a financial and 

speculative asset (Kristoufek, 2014). 

In a speculative market such as that of Bitcoin, understanding the volume–return is 

essential to shed lights on market efficiency and its potential implications on trading strategies. 

Practically, if the transaction volume in the Bitcoin market has predictive power on return, this 

provides evidence of weak-form inefficiency and thereby practitioners will be able to construct 

volume-based strategies to increase their profits (Chen et al., 2001). This is particularly important 

given that several traders and practitioners have been relied on technical analysis as an alternative 

tool to study Bitcoin prices because no reliable fundamental valuation techniques are available 

for quantifying the intrinsic value of Bitcoin. The fact that market technicians employ models 
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and trading rules based the relation between return and volume further motivates a better 

understanding of the Bitcoin volume–return relationship.   

Since its inception in 2009, Bitcoin has been characterized by sharp upward and 

downward price movements associated with high transaction volumes. On November 19, 2013, 

the price of Bitcoin on Bitstamp, the largest European Bitcoin exchange, plunged 19.88% on the 

highest volume ever recorded (71,560 Bitcoins). Furthermore, on December 7, 2013, the Bitcoin 

price plunged 14.92% and recorded a new all-time high volume of 79,852 Bitcoins. Again, on 

December 18, 2013, Bitcoin price plunged 22.80% and hit new daily volume record high of 

137,070 Bitcoins1. These features suggest a strong relationship between the magnitude of price 

movements and transaction volumes.  However, no insightful work has been done so far to 

uncover this relationship in Bitcoin.  To address this literature gap, we use a novel nonparametric 

causality-in-quantiles test of Balcilar et al. (2016a, b) to examine the predictability of Bitcoin 

returns and volatility based on trading volume. For our purpose, we use daily data covering the 

period of 19th December, 2011 to 25th April, 2016. The nonparametric causality-in-quantiles 

test combines elements of the test for nonlinear causality of k-th order developed by Nishiyama 

et al. (2011) with the causality-in-quantiles test developed by Jeong et al. (2012) and, hence, can 

be considered to be a generalization of the former. The causality-in-quantile approach has the 

following three novelties: Firstly, it is robust to misspecification errors as it detects the 

underlying dependence structure between the examined time series, which could prove to be 

particularly important as it is well known that stock returns display nonlinear dynamics (see 

Bekiros et al. 2016, for a detailed discussion in this regard) - a fact we show to holds in our data. 

Secondly, via this methodology, we are able to test not only for causality-in-mean (1st moment), 

but also for causality that may exist in the tails of the joint distribution of the variables, which in 

turn, is important if the dependent variable has fat-tails – something we show below to exist for 

                                                             
 



4 

 

Bitcoin returns (and volume). Finally, we are also able to investigate causality-in-variance and, 

thus, study higher-order dependency. Such an investigation is important because, during some 

periods, causality in the conditional-mean may not exist while, at the same time, higher-order 

interdependencies may turn out to be significant.  

Note that we could have also used nonlinear causality tests (for example, Hiemstra and 

Jones, 1994, and Diks and Panchenko, 2005) and GARCH models to analyse the impact of 

volume on Bitcoin returns and/or volatility, as used recently by Bampinas and Panagiotidis 

(2015) while analyzing causality between gold and oil markets. As pointed out by Diks and 

Panchenko (2005), Himestra-Jones test is generally not compatible with the definition of 

Granger causality and over-rejects the null of no Granger causality. Diks and Panchenko (2005) 

rectify the over-rejection problem of the Himestra-Jones test by using the average of local 

dependence measures. However, these approaches rely on conditional-mean based estimation, 

and hence, fail to capture the entire conditional distribution of returns and volatility – something 

we can do with our nonparametric causality-in-quantile approach. Indeed, Bampinas and 

Panagiotidis (2015) find evidence that mean-based test cannot deal with the time dependent 

causality linkages due to structural breaks. In the process, our nonparametric causality-in-

quantiles test is a more general procedure of detecting causality in both returns and volatility 

simultaneously at each point of their respective conditional distributions. Hence, we are able to 

capture existence or non-existence of causality at various states of the Bitcoin market: bear 

(lower quantiles), normal (median), and bull (upper quantiles). As a more general test, our 

nonparametric causality-in-quantile approach is more likely to pick up causality when conditional 

mean-based tests might fail to do so. In addition, since we do not need to decide on the number 

of regimes as in a Markov-switching model, and can test for causality at each point of the 

conditional distribution characterising specific regimes, our test also does not suffer from any 

misspecification in terms of specifying and testing for the optimal number of regimes. An 
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important issue however, is that like standard causality tests, existence of causality would imply 

that it holds at all horizons. As discussed in Bampinas and Panagiotidis (2015), a more 

informative causality test would be to use the approach of Hill (2007), which allows us to detect 

causality in tri-variate system and at multiple horizons and in a time-varying fashion using 

recursive or rolling windows. While the advantages in terms of multiple-horizons are undeniable, 

the approach of Hill (2007) remains a conditional mean based approach restricted to only the 

first-moment. 

Indeed, there are studies like Chuang et al., (2009), Chiang and Li (2012), Gebka and 

Wohar (2013), Lin (2013) and Chen et al., (2016) that have used quantile based methodologies to 

study the relationship between returns and volatility with volume of traditional stock indices of 

Pacific Basin and Asian countries. However, to the best of our knowledge, this is the first paper 

that analyzes the predictability of returns and volatility of Bitcoin using trading volume based on 

a nonparametric method that covers the entire conditional distribution of returns and volatility, 

and also is free from misspecification due to nonlinearities and structural breaks..  

The rest of the paper is organized as follows: Section 2 reviews the related literature on 

the finance and economics of Bitcoin. Section 3 presents the methodology, while Section 4 

discusses the data and the results. Finally, Section 5 concludes.   

2. Literature Review 

Bitcoin is an open source software-based online payment system. Its popularity among 

practitioners and economic actors has soared in response to the perceived failures of 

governments and central banks during the global financial crisis of 2008 and the European 

sovereign debt crisis (ESDC) of 2010–2013. While central authorities and central banks 

guarantee or have control over conventional currencies, Bitcoin is fully decentralized and 

depends on a sophisticated protocol that uses only cryptography to control transactions, manage 
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its supply, and prevent harmful actions that may endanger the system. All transactions are stored 

digitally and recorded in a shared ledger data technology known as blockchain. While the algorithm 

behind Bitcoin represents a solid safeguard against counterfeiting, the system has proved to be 

vulnerable to illicit activities such as the massive theft of 350 million USD worth of Bitcoins 

from the Mt. Gox exchange in February 2014. The principles of Bitcoin are explained by Dwyer 

(2015) and at bitcoin.org. Bitcoin is the first cryptocurrency to come into existence. While other 

cryptocurrencies, such as Feathercoin and Peercoin, now exist, Bitcoin has managed to maintain 

its leading position in this particular market.2 At the end of June 2016, Bitcoin market 

capitalisation exceeded 10 billion USD (coinmarketcap.com), which represents more than 80% 

of the total market capitalisation of all cryptocurrencies on the market. 

In addition to the early, extensive literature on the technical and legal aspects of Bitcoin, 

the economics and finance debate on Bitcoin have recently intensified. Kristoufek (2014) argues 

that Bitcoin represents a unique asset, possessing properties of both a standard financial asset 

and a speculative one. On the other hand, Popper (2015) considers Bitcoin to be digital gold and 

Bouri et al., 2017a ;  Bouri et al., 2017b highlight some valuable characteristics of Bitcoin as an 

investment. Regardless of whether Bitcoin is a financial or a speculative asset, digital gold, or a 

commodity, some studies have been interested in the ‘moneyness’ of Bitcoin. Yermack (2013) 

argues that Bitcoin has no intrinsic value but behaves more like a speculative investment than a 

currency because its market capitalisation is high compared to the economic transactions it 

facilitates. The author also concludes that Bitcoin volatility adversely affects its usefulness as a 

currency. Glaser et al. (2014) find that most of the interest in Bitcoin is due to its ‘asset’ aspect 

and not its currency aspect. Hanley (2013) also indicates that Bitcoin has no fundamental value 

to support its pure market valuation against conventional currencies. In contrast, Woo et al. 

(2013) argue that Bitcoin has some fair value due to its money-like properties. Garcia et al. (2014) 
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and Hayes (2016) show that the cost of producing a Bitcoin via mining adds some fundamental 

value to Bitcoins. 

Other studies have examined the price formation in the Bitcoin market. Kristoufek (2013) 

reports a strong bidirectional causality between the prices of Bitcoin and the search queries for 

Bitcoin on Google Trends and Wikipedia. Bouoiyour and Selmi (2015) illustrate the significant 

role of a lagged Google search for the word ‘Bitcoin’ in explaining the Bitcoin price, whereas the 

velocity of Bitcoin, measured by data transactions, fails to explain the Bitcoin price. Similar 

results regarding the roles of the two above-mentioned variables (the volume of daily searches 

for Bitcoin on the Internet and the number of Bitcoin transactions) in explaining the Bitcoin 

price are reported by Polasik et al. (2015). Within the same research subject, Kristoufek (2014) 

finds that the trade-exchange ratio plays an essential role in driving Bitcoin price fluctuations in 

the long run. Bouoiyour et al. (2015) examine the relations between Bitcoin price and 

transactions proxied by the exchange-trade ratio. The authors find that Bitcoin price Granger 

causes an exchange-trade ratio in the short- and medium-terms. Like Kristoufek (2014), they find 

that the increasing use of Bitcoin in the exchange-trade ratio expands Bitcoin's price in the long 

term. They also show a significant link that runs from the exchange-trade ratio to the Bitcoin 

price. An interesting paper by Ciaian et al. (2016) focuses on the determinants of Bitcoin price 

fluctuations. It shows that the total number of unique Bitcoin transactions per day – a demand 

side variable – has more impact on the Bitcoin price than the number of Bitcoins – a supply side 

variable. 

We argue that the above literature presents an incomplete picture of the role of trading volume 

in predicting the Bitcoin returns because the Bitcoin volume–return relationship at the tails may 

be different from that near the mean of the return distribution. Furthermore, prior studies have 

overlooked the dependency between the second moment of Bitcoin returns and trading volume. 
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These issues suggest the appropriateness of using the nonparametric causality-in-quantiles test of 

Balcilar et al. (2016a) to investigate this further. 

 

3. Methodology 

In this section, we present a novel methodology for the detection on nonlinear causality 

via a hybrid approach developed by Balcilar et al. (2016), which in turn, is based on the 

frameworks of Nishiyama et al. (2011) and Jeong et al. (2012). This approach is robust to extreme 

values in the data and captures general nonlinear dynamic dependencies. 

We start by denoting Bitcoin returns  by yt and the predictor variable (in our case the 

traded volume) as xt.  

Let ),...,( 11 pttt yyY   , ),...,( 11 pttt xxX   , ),( ttt YXZ   and ),( 1| 1  ttZy ZyF
tt  

and 

),( 1| 1  ttYy YyF
tt

 denote the conditional distribution functions of ty  given 1tZ  and 1tY , 

respectively. If we denote )|()( 11   ttt ZyQZQ   
and )|()( 11   ttt YyQYQ  , we have 

 
}|)({ 11| 1 ttZy ZZQF

tt
 with probability one. Consequently, the (non)causality in the q -th 

quantile hypotheses to be tested are: 

                                H0 : P{Fyt |Zt-1
{Qq (Yt-1) | Zt-1} =q}=1,    (1) 

                                H1 : P{Fyt |Zt-1
{Qq (Yt-1) | Zt-1} =q}<1.   (2) 

Jeong et al. (2012) employ the distance measure )}()|({ 11  tzttt ZfZEJ  , where t  is 

the regression error term and )( 1tz Zf  is the marginal density function of 1tZ . The regression 

error t  emerges based on the null hypothesis in (1), which can only be true if and only if 

   }]|)({1[ 11 ttt ZYQyE  or, equivalently, ttt YQy    )}({1 1 , where 1{×}  is an 

indicator function. Jeong et al. (2012) show that the feasible kernel-based sample analogue of J  

has the following form: 
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where )(K  is the kernel function with bandwidth h ,  is the sample size,  is the lag order, and 

ê
t
is the estimate of the unknown regression error, which is estimated as follows: 

                                                êt =1{yt £Qq (Yt-1)}-q .   (4) 
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)(ˆ
1tYQ  is an estimate of the  th

 conditional quantile of ty  given 1tY , and we estimate  

)(ˆ
1tYQ  using the nonparametric kernel method as 
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 is the Nadarya-Watson kernel estimator given by 
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with )(L  denoting the kernel function and h  the bandwidth.  

In an extension of Jeong et al. (2012)'s framework, we develop a test for the second moment. In 

particular, we want to test the volatility causality running from the traded volume to Bitcoin 

returns. Adopting the approach in Nishiyama et al. (2011), higher order quantile causality can be 

specified as: 

  H0 : P{F
yt
k |Zt-1

{Qq (Yt-1) | Zt-1} =q} =1       for Kk ,...,2,1             (7) 

  H1 : P{F
yt
k |Zt-1

{Qq (Yt-1) | Zt-1} =q} <1       for Kk ,...,2,1             (8) 

Integrating the entire framework, we define that tx  Granger causes ty  in quantile   up to the 

kth moment using Eq. (7) to construct the test statistic of Eq. (6) for each k . The causality-in-

variance test can be calculated by replacing yt in Eqs. (3) and (4) with yt
2 . However, it can be 

shown that it is not easy to combine the different statistics for each Kk ,...,2,1  into one 

statistic for the joint null in Eq. (11), because the statistics are mutually correlated (Nishiyama et 

al., 2011).To efficiently address this issue, we include a sequential-testing method as described 

Nishiyama et al. (2011). First, we test for the nonparametric Granger causality in the first moment 

)1 ..( kei . Nevertheless, failure to reject the null for 1k  does not automatically leads to no-

causality in the second moment. Thus, we can still construct the tests for 2k .  

The empirical implementation of causality testing via quantiles entails specifying three 

important choices: the bandwidth h , the lag order p , and the kernel type for )(K  and 

)(L respectively. In this study, we make use of lag order of 7 based on the Schwarz Information 

Criterion (SIC) under a VAR involving Bitcoin returns and traded volume. Moreover, when it 

comes to choosing lags, the SIC is considered being parsimonious compared to other lag-length 

selection criteria. The SIC helps overcome the issue of overparametrization usually arising with 
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nonparametric frameworks.2 The bandwidth value is chosen by employing the least squares 

cross-validation techniques.3 Finally, for  and  Gaussian-type kernels was employed. 

 

4. Data and Empirical Findings 

4.1 Data 

In this study, we use two variables, namely, the Bitcoin index and the trading volume as a 

measure the level of trading activity. The Bitcoin price index is denominated in USD, the 

currency against which Bitcoin is the most traded on Bitstamp – the largest European Bitcoin 

exchange (Brandvold et al., 2015). Daily price and volume data for Bitcoin traded on Bitstamp 

are sourced from: www.bitcoincharts.com. 

Both the Bitcoin index and volume are non-stationary in log-levels as indicated by 

standard unit root tests.5 Since our methodology requires stationary data, we work with Bitcoin 

returns, obtained as the first-differences of the natural logarithmic values of the index expressed 

in percentage. The squared values of returns measure the volatility of the Bitcoin returns. 

Previous studies have shown the existence of deterministic time trends, both linear and 

nonlinear, in the volume data (Gallant et al., 1992; Chen et al., 2001 ;  Gebka, 2012). To control 

for these trends, and following Gebka and Wohar (2013), we use a detrended measure of 

volume. Specifically, we consider the natural log of the volume series and remove its trend by 

regressing it on a constant, (t/T) and (t/T)2, where T is the total sample size. Our period of 

analysis covers the daily period of 19 December 2011 to 25 April 2016 (i.e. 1587 observations). 6 

Interestingly, the sample period covers the Bitcoin crash of December 2013 (Cheah and Fry, 

2015) and the recovery that started in the fourth quarter of 2014. Thus, as a result, it allows us to 

examine how the return-volume relationship in the Bitcoin market was affected. 
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Table 1 presents the descriptive statistics for the Bitcoin returns and traded volume. We 

observe that volume is more volatile than returns in the Bitcoin market. More importantly, for 

our context of causality-in-quantiles, both the variables are skewed to the left, with excess 

kurtosis, resulting in non-normal distributions (see also the results from the Jarque-Bera test). 

The heavy-tails in the distributions of both the returns and the volume further confirm our 

choice of employing a causality-in-quantiles test. Furthermore, results from the Augmented 

Dickey-Fuller (ADF) test show that the two series are stationary. 

 

Table 1. Summary Statistics 

 
Variable 

Statistic Returns 
(Detrended) 

Volume 

Mean 0.0031 0.0013 

Median 0.0020 0.0554 

Maximum 0.3375 2.7966 

Minimum -0.6639 -6.6199 

Std. Dev. 0.0516 0.9022 

Skewness -1.6387 -0.7632 

Kurtosis 28.8730 6.7148 

Jarque-
Bera 44975.1100 1066.5960 

Probability 0.0000 0.0000 

Note: Std. Dev. stands for standard deviation. For Jarque-Bera test, the null hypothesis is of normality. For 

Augmented Dickey fuller (ADF) test, the null hypothesis is that the series has a unit root. 

 

The natural logarithm of the data for the Bitcoin index and traded volume, and their 

respective transformations to returns and detrended volume, are presented in Figure 1.  We 

clearly notice the long bull market that lasted almost three years before it ended in December 

2013 - the month during which we captured a major structural break in Bitcoin prices (see the 

next sub-section for more details), with such an observation also made by Bouri et al., (2016).  
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Fig. 1. a). Natural logarithm of closing price of Bitcoin. b). Natural logarithm of volume traded. c). Bitcoin returns. 
d). Detrended volume. 

 

 

Fig. 2 provides a scatterplot of Bitcoin returns against the detrended volume. In Fig. 2, 

we also present the fit from a local polynomial regression (LOESS) with polynomial degree 2 

(solid line). The shaded region in Fig. 2 denotes the 95% confidence band for the LOESS fit. 

The LOESS fit in Fig. 2 is indicative of no relationship between the detrended volume and 

Bitcoin returns. However, the relationship of the return dispersion with the detrended volume 

level in Fig. 2 indicates a positive relationship between the return volatility and the level of the 

detrended volume. 
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Fig. 2. Scatterplot of Bitcoin returns against detrended volume. Note: The fit from a local polynomial 
regression (LOESS) with polynomial degree 2 is denoted with the solid line. Shaded region denotes the 95% 
confidence band for the LOESS fit. Grey vertical dashed lines are drawn at the 0.18 (at value −0.78) and 0.80 (at 
value 0.85) quantiles of the detrended volume. 

 

 

 

4.2 Empirical Findings 

Before conducting the causality-in-quantiles tests running from volume to the Bitcoin returns 

and their volatility, we first present the results from the standard linear Granger causality test 

based on a VAR(7) model. The resulting χ2(7) statistic for the null that volume does not Granger 

cause returns is 9.4305 with a p-value of 0.2232. In other words, volume cannot be used to 

predict Bitcoin returns based on the linear causality test even at the 10% level of significance..7  

Next, we examine whether the relationship between the Bitcoin returns and volume is 

non-linear in order to further confirm our reliance on the nonparametric quantile-in-causality 

approach. To this end, we apply the Brock et al. (1996, BDS) test on the residuals of an AR(7) 

model for returns, and the returns equation in the VAR(7) model involving traded volume. As 

can be seen from Table 2, based on 10,000 bootstrap replications, we find strong evidence, at the 

highest level of significance, for the rejection of the null of i.i.d. residuals at various embedded 

dimensions (m). 8 These results suggest the presence of nonlinearity in the returns as well as in 
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the relationship between the returns and volume. Accordingly, the equation for testing the null 

of no-Granger causality in the linear model is misspecified and the results of the standard linear 

causality test are spurious. 9 

Table 2. BDS Test Statistic 

Model of Returns 
Equation 

m 
2 3 4 5 6 

AR(7) 12.9500*** 15.5327*** 17.4181*** 19.1123*** 20.9129*** 

VAR(7) 13.0976*** 15.6403*** 17.5329*** 19.2779*** 21.1136*** 

Note: m stands for the number of (embedded) dimension which embed the time series into m-dimensional vectors, 

by taking each m successive points in the series. Values in the cells represent BDS z-statistic; *** indicates rejection of 

the null of i.i.d. residuals at 1 percent level of significance. 

 

Now, we turn to the powerful UDmax and WDmax tests of Bai and Perron (2003). These 

determine 1 to M (multiple) globally determined breaks with the error distributions differing 

across the breaks, applied again to the AR(7) model for Bitcoin returns, and the returns equation 

in the VAR(7) model involving the volume. There is only one break (19 December 2013) in the 

AR(7) model of returns that corresponds to the Bitcoin price crash of December 2013, identified 

in Cheah and Fry (2015). Two breaks (18 April 2013 and 18 December 2013) are detected for 

the returns equation in the VAR(7) model involving volume10: the first corresponds to the 

Bitcoin bubble of April 2013 following the technical glitch in the Bitcoin software (Fry and 

Cheah, 2016); the second break of December 2013 as mentioned above, identified in the return 

series. The results from the BDS test show that the standard linear Granger causality test is 

misspecified. Furthermore, evidence of nonlinearity and regime changes in the relationship 

between returns and volume leads us to employ the causality-in-quantiles test. The latter, being a 

nonparametric (i.e. data-driven) approach, is robust to linear misspecification. 

In Figure 3, we present the results obtained from the quantile causality test for Bitcoin 

returns and squared returns (i.e., volatility) due to the traded volume over the quantile-range of 
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0.01 to 0.99.4 As can be seen, the null that volume does not Granger cause returns is rejected, in 

general, at the five percent level of significance (critical value of 1.96) over the quantile range () 

of 0.24 to 0.66 of the conditional distribution of returns. The causality is rejected consistently 

over 0.24 to 0.51, i.e., from below the median till just above it. Predictability is then observed 

intermittently till the quantile 0.66. However, we fail to reject the null of volume does not Granger 

cause volatility over the entire conditional distribution.5 In other words, volume can predict 

returns, but not volatility, with the evidence of causality for returns holding over the entire 

conditional distribution barring the two ends. Specifically speaking, volume has no predictive 

content for Bitcoin returns when the market is in bearish (lower quantiles) and bullish (upper 

quantiles) phases. But, when the market is functioning around the normal (median) mode, 

volume can indeed predict returns.   

 

Figure 3. Causality-in-Quantiles: Volume does not Granger cause Bitcoin Returns and Volatility 

 
Note: Vertical axis presents the test statistics corresponding to the null the volume does not Granger cause returns, 
and volume does not Granger cause volatility; Horizontal axis measures the quantiles; 5 percent critical value is 1.96. 
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The findings from the causality-in-quantiles tests can be intuitively seen from Fig. 2. The  

LOESS fit in Fig. 2 indicates no association between the Bitcoin returns and volume except at  

the very high end of the volume quantiles. The negative relationship at high values of detrended  

volume does not indicate significant test statistics as there are only a few observations at these  

high quantile ranges, leading to imprecise estimates. Fig. 2 also shows an increasing dispersion of  

Bitcoin returns with the level of the volume, particularly in the mid-ranges of the volume values.  

The insignificant test statistics at the 10% significance level for quantile causality in volatility in  

Fig. 3 corresponds to the quantile ranges below 0.18 (value of detrended volume equal to −0.78)  

and above 0.80 (value of detrended volume equal to 0.85), which are marked with dashed vertical  

lines in Fig. 2. We see from Fig. 2 that the relationship between the Bitcoin return dispersion and  

the level of the volume is weak in the quantile ranges below 0.18 and above 0.80. Additionally,  

fewer observations fall into these quantile ranges. These two features lead to insignificant tests  

statistics presented in Fig. 3 for the causality in volatility. 

Furthermore, we estimated a GARCH(1,1) model for Bitcoin returns and extracted the  

resulting GARCH variance series. We then conducted the causality-in-quantiles test  

using this GARCH-based estimate of volatility. As can be seen in Fig. A1 in the Appendix A, we   

find that barring the extreme lower (0.01–0.09) and upper quantile ranges (0.97–0.99), volume  

predicts volatility over its entire conditional distribution, with the strongest predictability  

observed at quantile 0.72. These results completely differ from those obtained using squared  

returns. However, we believe that since squared returns – as a measure of volatility – follow  

directly from the k-th order test, and are independent of a model-based estimate of volatility  

(which could vary depending on what model of volatility we choose), the use of squared returns  

is more appropriate in our context in capturing the risk involved in the Bitcoin market. Balcilar 
et al. (2016b) have also posited a similar line of reasoning. In light of this, we have presented the 

 GARCH-based result of volatility in the Appendix A, and considered the model-free estimate of 
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 volatility using squared returns as a more robust estimate of Bitcoin market volatility. Naturally,  

the result based on squared returns is also more reliable; this is more so because we show that  

returns evolve in a nonlinear fashion, which the GARCH model does not take into account  

while capturing the volatility. 

To summarize, evidence that volume predicts Bitcoin returns is non-existent in the linear  

model. However, this evidence is not robust to the presence of nonlinearity and structural  

breaks. We therefore employ the nonparametric causality-in-quantiles test, which is more  

appropriate and robust to misspecifications, and reveal that volume can predict returns around  

the median of the conditional distribution, but not volatility. 

This result seems to suggest that investors in the Bitcoin market can obtain valuable  

predictive information for returns from traded volume, when the market is in normal mode.  

However, in bear and bull regimes, volume plays no role in predicting returns, with past (seven)  

lags of returns providing relatively more valuable information for future returns than volume.  

This finding partially implies that in stress periods, unlike in the case of equities, trading volume  

is not associated with extremely high/low returns in the Bitcoin market. 

These findings on return predictability based on volume add to information documented  

in prior studies trying to define the underlying factors that determine the price of Bitcoin  

(Bouoiyour and Selmi, 2014; Bouoiyour et al., 2014; Polasik et al., 2014; Kristoufek, 2014; Ciaian 
et al., 2016). In fact, our findings provide a broader picture of the dependence between volume  

and returns in the Bitcoin market and uncover the insignificant role of trading volume in  

predicting Bitcoin price volatility. In terms of the finding of return predictability around the  

median, our result is different from what is observed in equity markets, where the predictability  

of returns from volume holds mostly at the tails (Chuang et al., 2009 ;  Gebka and Wohar, 2013). 

 This could possibly be due to the short-selling constraint in the Bitcoin market in the lower-end  

of the market. However, when the market is booming, there is more herding into the market and  
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less interest in searching out relevant information (in this case on volume) on behalf of market  

agents. The lack of predictability of volatility from traded volume provides support to the so- 

called mixture of distribution hypothesis (MDH) developed by Clark (1973). MDH assumes that  

the volume-volatility relation is dependent on the rate of information flow into the market. The  

basic intuition is that because all traders simultaneously receive new information, there is no  

intermediate equilibrium. Since the variables contemporaneously change in response to new  

information, it is impossible to use past volume data to predict volatility. The possibility of  

MDH holding in the Bitcoin market rather than the sequential information arrival hypothesis  

(SIAH; Copeland, 1976) is likely to be higher due to possible easy dissemination of information  

across traders, given that Bitcoin involves an open source, software-based online payment  

system. 

 

5. Conclusion 

Although a large amount of literature has focused on the role of traded volume in predicting 

movement in stock returns and volatility (see Gebka and Wohar, 2013, for a detailed literature 

review), the predictability of traded volume for the returns and volatility in the Bitcoin market 

remains unexplored. To address this literature gap, we examine daily data covering the period of 

19t December 2011 to 25 April 2016, which interestingly show that the Bitcoin returns and 

volume are non-normally distributed. Methodologically, we employ a novel nonparametric 

causality-in-quantiles test proposed by Balcilar et al. (2016a). It combines elements of the test for 

nonlinear causality of k-th order developed by Nishiyama et al. (2011) with the causality-in-

quantiles test proposed by Jeong et al. (2012). 

Our results are summarized as follows: First, the standard linear Granger causality test, 

which was conducted for comparison purposes, fails to detect any evidence of volume causing 
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returns. Second, the nonlinearity test indicates that returns and their relationship with volume 

evolve in a nonlinear manner. Additionally, tests of multiple structural breaks show evidence of 

regime changes in returns and in the equation relating them to volume. Evidence of nonlinearity 

and structural breaks suggests that the linear Granger causality is misspecified, thus, leading to 

unreliable results. Third, the causality-in-quantiles approach, which emerges as a suitable choice 

given evidence of non-linearity, structural breaks, and fat tails, reveals that the null that volume 

does not Granger cause returns is rejected at the conventional levels of significance over the 

quantile range of 0.25 to 0.75 of the conditional distribution of returns. However, we fail to 

reject the null that volume does not Granger cause volatility over the entire conditional 

distribution. These results show that volume can predict returns, but not volatility, with causality 

for returns non-existent in bearish (lower quantiles) and bullish (upper quantiles) phases. 

Therefore, when the market is functioning around the normal (median) mode, volume can 

indeed predict returns, thus providing investors in the Bitcoin market with valuable predictive 

information. However, when the market is performing well or poorly, all that matters for 

predicting future returns is past values, and thus information about volume is irrelevant. 

Generally, our results, via the volume-returns causality in the Bitcoin market, highlight the 

importance of detecting and modelling nonlinearity when analysing predictability via causal 

relationships. In the Bitcoin speculative market, our findings involve potential implications for 

trading strategies. Practically, under normal market conditions, practitioners and traders in the 

Bitcoin market will benefit from constructing volume-return based strategies to increase their 

profits. This evidence adds to prior studies that only associate Bitcoin price and transaction 

measures as well as search queries of Bitcoin on Google Trends and Wikipedia ( Kristoufek, 

2013; Bouoiyour and Selmi, 2015 ;  Ciaian et al., 2016). However, in the bear and bull phases of 

the Bitcoin market, practitioners and traders can still rely on technical analysis. 
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Given our reliance on the Bitstamp exchange as the sole source of our data for analysing the 

predictability of Bitcoin returns and volatility based on traded volume, future research may assess 

whether our results hold in the context of data originating from other leading Bitcoin exchanges. 

With our approach being a bivariate approach, it would be interesting to check the robustness of 

our results for both in- and out-of-sample in a multivariate approach that includes other possible 

predictors such as the volume of daily searches for Bitcoin on the Internet and the mining cost 

of Bitcoin. 
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Notes 

1 For a detailed explanation on the negative and positive bubbles in the Bitcoin market, please refer to Fry and 
Cheah (2016). 

2 By the end of June 2016, there were more than 700 cryptocurrencies traded in the market. 

3 Hurvich and Tsai (1989) examine the Akaike Information Criterion (AIC) and show that it is biased towards 

selecting an over-parameterised model, while the SIC is asymptotically consistent. 

4 For each quantile, we determine the bandwidth hh using the leave-one-out least-squares cross validation method 

of Racine and Li (2004) and Li and Racine (2004). 

5 Complete details of the unit root tests are available upon request from the authors. 

6 While Bitcoin prices from Bitstamp are available as of 13 September 2011, the associated volume data for the 

period from 13 September 2011 to 19 December 2011 were not usable because they contained many errors, (i.e. 

values equal to ‘infinity’). This led us to start our sample period as of 19 December 2011. 

7 The χ2(7) statistic for the null that returns do not Granger cause volume is 9.9290 with a p-value of 0.1926, that is, 

returns do not cause volume based on the linear causality test at conventional levels of significance. 

8 Similar results were obtained for the AR(7) model of volume, and for the volume equation in the VAR(7) model 

involving the returns series. Hence, not only is volume nonlinear but it also has a nonlinear relationship with returns, 

implying non-reliability of the linear test of causality running from returns to volume. Complete details of these 

results are available upon request from the authors. 

9 Based on the suggestion of an anonymous referee, we also conducted the RESET test, and found that both the 

AR(7) model of returns and the returns equation in the VAR(7) model are misspecified irrespective of the order of 

polynomial specified, that is, based on the highest possible allowed without the test running into singularity issues. 

Complete details of these results are available upon request from the authors. 

10 The AR(7) model for volume, as well as the volume equation in the VAR(7) model with Bitcoin returns, was 

found to have a regime change at 22 October 2013. Complete details of these results are available upon request 

from the authors. Thus, based on the BDS and the structural break tests, we can conclude that traded volume 

evolves in a nonlinear fashion and is also related nonlinearly to returns. 

11 The quantile causality test was been conducted using the open-source software R based on the codes written by 

the authors. The codes are available upon request. 

12 We also conducted the causality-in-quantiles test with detrended volume and its squared value as dependent 

variables. However, we could not detect any evidence of causality for either volume or squared volume resulting 

from returns at any point of the respective conditional distributions of the dependent variables. Complete details of 

these results are available upon request from the authors. 
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APPENDIX 
 

 
 
Figure A1. Causality-in-Quantiles: Volume does not Granger cause Bitcoin GARCH-

Based Volatility 

 
Note: Vertical axis presents the test statistic corresponding to the null the volume does not Granger cause volatility 
derived from a GARCH(1,1) model; Horizontal axis measures the quantiles; 5 percent critical value is 1.96. 
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