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Abstract: Raffaelea (Ophiostomatales) is a genus of more than 20 ophiostomatoid fungi commonly occurring in
symbioses with wood-boring ambrosia beetles. We examined ambrosia beetles and plant hosts in the USA and
Taiwan for the presence of these mycosymbionts and found 22 isolates representing known and undescribed
lineages in Raffaelea. From 28S rDNA and B-tubulin sequences, we generated a molecular phylogeny of
Ophiostomatales and observed morphological features of seven cultures representing undescribed lineages
in Raffaelea s. lat. From these analyses, we describe five new species in Raffaelea s. lat.: R. aguacate, R.
campbellii, R. crossotarsa, R. cyclorhipidia, and R. xyleborina spp. nov. Our analyses also identified two plant-
pathogenic species of Raffaelea associated with previously undocumented beetle hosts: (1) R. quercivora, the
causative agent of Japanese oak wilt, from Cyclorhipidion ohnoi and Crossotarsus emancipatus in Taiwan, and
(2) R. lauricola, the pathogen responsible for laurel wilt, from Ambrosiodmus lecontei in Florida. The results of
this study show that Raffaelea and associated ophiostomatoid fungi have been poorly sampled and that future
investigations on ambrosia beetle mycosymbionts should reveal a substantially increased diversity.

Key words:
entomogenous fungi
insect-fungus interactions
Japanese oak wilt

laurel wilt

molecular phylogenetics
mycosymbioses

Article info: Submitted: 23 May 2016; Accepted: 7 October 2016; Published: 21 October 2016.

INTRODUCTION

single-celled conidiophores are arranged singly or
aggregated in sporodochia; conidiogenous cells are

Raffaelea (Arx & Hennebert 1965)is a genus of primarily asexual
fungi including more than 20 species in Ophiostomatales
(Harrington et al. 2010, de Beer et al. 2013, Musvuugwa et
al. 2015). These fungi commonly occur in symbioses with
wood-boring ambrosia beetles (Coleoptera: Curculionidae:
Scolytinae and Platypodinae). Ambrosia beetles propagate
these and other fungi, which obtain nutrients from plant tissues
and provide the beetles with a food source, throughout galleries
in their plant hosts. When female beetles leave the parental
gallery to establish a new generation, they transport inocula
of one or several mycosymbionts in specialized cavities in
various parts of their bodies, to be grown in the subsequently
developed galleries (Hubbard 1897, Beaver 1989).

The asexual morphological characteristics of Raffaelea
are rather simple: hyaline, rarely-branching, commonly

precurrently or sympodially proliferating, which may leave
denticles, annellations, or inconspicuous scarring; conidia
range from elliptical to globose, with some exceptions, and
may reproduce by yeast-like budding (Harrington et al.
2010, Musvuugwa et al. 2015). De Beer & Wingfield (2013)
recognized two sexually reproducing species of Ophiostoma,
O. seticolle and O. deltoideosporum, in Raffaelea s. str. based
on DNA sequence phylogenies, but they did not transfer
these species to Raffaelea. Subsequently, Musvuugwa et al.
(2015) described a Raffaelea species, R. vaginata, with an
observed sexual morph, similar to those of O. seticolle and O.
deltoideosporum. The latter authors consequently emended
the circumscription of the genus to include both asexual and
sexual morphs, and transferred the two Ophiostoma species
to Raffaelea as R. seticollis and R. deltiodeospora, consistent
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with the one fungus-one name rule (Hawksworth 2011).

Some molecular phylogenies of Raffaelea and additional
genera within Ophiostomatales have suggested that
Raffaelea is monophyletic (e.g. Harrington et al. 2010).
However, more recent and comprehensive analyses (de
Beer & Wingfield 2013, Dreaden et al. 2014, Musvuugwa et
al. 2015) have shown that Raffaelea species constitute three
clades in the order, Raffaelea s. str., the R. lauricola complex,
and the R. sulphurea complex. Of ecological interest, the
two clades exterior to Raffaelea s. str. each include plant
pathogens that have been spread in the last decade by their
respective insect vectors. Raffaelea lauricola, the causative
agent of laurel wilt in the southeastern USA, is associated
with the ambrosia beetle Xyleborus glabratus (Harrington
et al. 2008, Ploetz et al. 2013), among others (Carrillo et al.
2014). Raffaelea lauricola, the eponymous member of the R.
lauricola complex (de Beer & Wingfield 2013, Musvuugwa et
al. 2015), is sometimes placed as sister to Raffaelea s str. in
molecular phylogenies of individual rDNA loci (Musvuugwa et
al. 2015) and additional coding genes (Dreaden et al. 2014).
Raffaelea quercivora, which is responsible for Japanese oak
wilt and associated with Platypus quercivorus (Kubono & Ito
2002, Kusumoto et al. 2014), lies within the R. sulphurea
complex in Leptographium s. lat. (de Beer & Wingfield 2013,
Dreaden et al. 2014, Musvuugwa et al. 2015).

During domestic (Campbell et al. 2016) and international
studies to investigate the diversity of ambrosia beetles
and their fungal symbionts, raffaelea-like isolates from the
southeastern USA and Taiwan were collected; preliminary
molecular analyses indicated that some of these isolates
represent novel lineages within Raffaelea s. lat. In this study,
we use nine isolates to describe five new species in Raffaelea
from collections of plant hosts and ambrosia beetles. We
have also characterized 13 additional Raffaelea isolates
based on DNA sequence data.

MATERIALS AND METHODS

DNA extraction, PCR amplification and
sequencing

Twenty-two Raffaelea cultures and DNA extracts were
aggregated from the Forest Entomology laboratory at the
University of Florida (Gainesville, FL) and the University
of Florida’s Tropical Research and Education Center
(Homestead, FL). Cultures from ambrosia beetle hosts
were isolated by dilution plating of mycangial contents, as
described by Li et al. (2015). Cultures of newly described
species are deposited in the culture collection (CMW) of
the Forestry and Agricultural Biotechnology Institute (FABI),
University of Pretoria, South Africa (Table 1).

Fungal DNA was isolated with Extract-N-Amp PCR
kits (Sigma-Aldrich), as described by Li et al. (2015). Final
concentrations of PCR reagent solutions in 25 yL were: (1)
1x ClonTech-TaKaRa Ex Taq Buffer; (2) 5 % DMSO; (3) 0.2
mM each dNTP; (4) 0.5 uM each primer; (5) 0.625 U Ex Taq
polymerase; and (6) 0.01-0.1 ng extracted DNA. Primer
combinations used for amplifications were: (1) LROR/LR5
(Vilgalys & Hester 1990, Rehner & Samuels 1994) for nuclear
large subunit (28S) ribosomal DNA (rDNA); (2) T10 or Bt2a/

Bt2b (Glass & Donaldson 1995, O’Donnell & Cigelnik 1997)
for B-tubulin (BT); (3) NS1/NS4 for nuclear small subunit
(18S) rDNA; and (4) either ITS3/LR3 or ITS1F/ITS4 (White et
al. 1990, Gardes & Bruns 1993) for portions of the ITS1-5.8S-
ITS2 (ITS) rDNA locus. The PCR conditions for BT and ITS
rDNA were the same as those used by Yin et al. (2015) and
for 18S and 28S rDNA by Dreaden et al. (2014). Amplified
products were visualized and purified as described by Li et
al. (2015), and these were submitted to the University of
Florida Interdisciplinary Center for Biotechnology Research
for Sanger sequencing. Chromatograms were assembled
and inspected with Geneious v. 9.0.5.

Phylogenetic analyses

Sequences of 28S rDNA and BT (introns 3/4/5 removed) were
aligned and visually inspected in Geneious for phylogenetic
reconstruction. The alignment was divided into four partitions
for phylogenetic consideration: one partition for the 28S
rDNA alignment and for each of the three codon positions
in the protein encoding BT. The Akaike information criterion
in jModeltest 0.1.1 (Guindon & Gascuel 2003, Posada
2008) was used to select the nucleotide substitution model
for each partition. Maximum likelihood (ML) phylogenetic
analyses were conducted in GARLI 2.01 (Zwickl 2006) with
the recommended partition parameters to determine the best
tree topology (Fig. 1) and bootstrap support values from 500
search replicates, which were summarized in SumTrees
(Sukumaran & Holder 2010). Bayesian posterior probabilities
(BPP) were estimated with the same partition parameters
in an analysis conducted in MrBayes 3.1.2 (Ronquist &
Huelsenbeck 2003), in which two runs of four chains each
were executed simultaneously for 5 000 000 generations,
with sampling every 500 generations. SumTrees was used to
compute BPP from a summary of 7501 trees retained after a
burn-in of the first 2500 trees collected.

Growth trials and morphological
characterization

To determine optimal growth rates of each new species of
Raffaelea, discs of agar (7 mm diam) covered with mycelium
were aseptically removed from 1-wk-old cultures growing
on BD Difco™ MEA and used to inoculate plates incubated
at 10-35 °C, in 5 °C intervals. After 9 d, colony growth was
calculated as by Musvuugwa et al. (2015). Morphological
features were examined by inoculating sterile slide mounts
of BD Difco™ MEA with propagules collected by running a
sterile needle along the surface of cultures growing on BD
Difco™ MEA. Once reproductive structures were observed
using a dissecting microscope (24-48 h), slides were
examined on an Olympus BX53 equipped with a Canon
EOS Rebel T3i using EOS Utility 2 software. For each new
species, measurements of conidiophores (n=5) and conidia
(n=10) were made to the nearest 0.5 ym, and means (
standard deviation) were calculated to the nearest 0.1 ym.

RESULTS

All isolates we examined resided in Raffaelea s. str., the
R. lauricola complex, or the R. sulphurea complex in the
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Fig. 2. Raffaelea aguacate (PL1004) morphological features in pure culture on MEA. A. Colony growth after 9 d at 25 °C. B. Hyphae bearing
long, tapering conidiogenous cells with conidia at apex, and occasional sessile lateral conidia (black arrowhead); elongated conidia may bud
yeast-like daughter cell (black arrow). C. Hyphae with long and slightly irregular conidiogenous cells, with conidia truncated at base (white
arrowhead). Bar in B applies also to C.

phylogenetic analyses of the 28S rDNA and BT data matrices
(Fig. 1). The R. lauricola complex was sister to the Raffaeclea
s. str. clade with 81 % ML bootstrap and 100 % BPP support,
and the well-supported R. sulphurea clade resolved within
Leptographium s. lat. The ITS and 18S rDNA sequences
were not included in the phylogenetic analyses, but these
sequences were used for molecular identification (Table 1).
The data matrix for the 28S rDNA and BT regions has been
deposited in TreeBASE as submission 19323.

The new species in Raffaelea s. str. and the R. lauricola
complex (Table 1) possessed all BT introns (3/4/5). Isolates
Hulcr7167 and Hulcr7176 possessed two introns (3/4/-). These
patterns of intron presence were the expected conditions for
the majority of species in each clade (de Beer & Wingfield
2013). Although they were not isolated from Platypus
quercivorus, isolates Hulcr7167 and Hulcr7176 resolved in
the R. sulphurea complex with R. quercivora, and were 99 %
(396/400 bp) and 98 % (392/400 bp) similar, respectively, to
the BT sequence (including introns) of R. quercivora. The
28S rDNA sequences for isolates Hulcr7167 and Hulcr7176
were 98 % (492-493/499 bp) similar to R. quercivora, but the
representative R. quercivora sequence (GenBank accession
AB496454) had six ambiguous bases that increased the level
of dissimilarity with our isolates.

TAXONOMY

Raffaelea aguacate D.R. Simmons, Dreaden & Ploetz,
Sp. nov.
MycoBank MB817170

(Fig. 2)

Etymology: The epithet “aguacate” refers to the Spanish for
avocado (Persea americana), from which this isolate was
cultured.

Diagnosis: Conidiogenous cells 13 (+2) x 2.7 (+0.3) um, hyaline,
sometimes irregular; conidia at conidiogenous cell apex or
sessile and lateral; conidia 7.2 (+0.6) x 2.6 (+0.5) um, elongate,
truncated at base, hyaline, rarely with yeast-like budding.

Type: USA: Florida: Miami-Dade Co., Homestead, from
bioassay of Persea americana, 2009, C. L. Harmon (BPI
910154 — holotype; 272 = PL1004 = CMW38067 — ex-type
cultures).

Description: Colonies initially cream, turning light green to
olivaceous, aging to dark green on MEA; reverse subhyaline.
Optimal colony diameter after 9 d at 25 °C in the dark was
70.2 (£3.9) mm; 46.0 (+2.6) mm at 10 °C; no growth at 35 °C.
Conidiogenous cells hyaline, sometimes irregular, tapering at
ends, 13 (+¥2) x 2.7 (£0.3) pm. Conidia forming from apex
of conidiogenous cells, hyaline, occasionally sessile and
lateral. Conidia produced singly, aseptate, elongate, and
occasionally truncated at the base, 7.2 (+0.6) x 2.6 (+0.5)
pm. Conidia rarely budding. Sexual morph unknown.

Raffaelea campbellii D.R. Simmons, A. Campbell &
Ploetz, sp. nov.

MycoBank MB817171

(Fig. 3)

Etymology: The epithet “campbellii”’ is in honor of Donald and
Princesa Campbell, parents of Alina S. Campbell, collector of
the specimen, for their guidance and support.

Diagnosis: Conidiogenous cells 13.7 (£1.6) x 3.7 (£0.3) ym,
hyaline, flask-shaped; conidia at conidiogenous cell apex;
conidia 6.7 (+1.2) x 3.6 (+0.5) um, ovoid to elliptical, truncated
at base, hyaline.

Type: USA: Florida: Miami-Dade Co., cultured from Xyleborus
glabratus that infected Persea palustris, Jun. 2013, A. S.
Campbell (BPI 910156 — holotype; 103p2 = CMW44800 —
ex-type culture).

Additional specimen examined: Loc. cit (110p2 = CMW44801).

Description: Colonies initially cream, turning olivaceous
to blackish on MEA, surface tough and wrinkled; reverse
subhyaline. Optimal colony diameter after 9 d at 25 °C
in the dark 25.7 (£1.3) mm; no growth at 10 °C or 35 °C.
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Fig. 3. Raffaelea campbellii (103p2) morphological features in pure culture on MEA. A. Colony growth after 9 d at 25 °C. B-D. Hyphae bearing
flask-shaped conidiogenous cells with ovoid to elliptical conidia, often truncated at the base (white arrowheads). Bar in D applies also to B-C.

Fig. 4. Raffaelea crossotarsa (Hulcr7182) morphological features in pure culture on MEA. A. Colony growth after 9 d at 25 °C. B—C. Hyphae
bearing long, tapering conidiogenous cells with conidia. D-E. Globose to ovoid conidia budding yeast-like daughter cells (black arrows), which
protrude from prominent isthmuses (white arrows). Bar in B applies also to C-E.

Conidiogenous cells hyaline, flask-shaped, tapering towards
the apex, 13.7 (+1.6) x 3.7 (+0.3) ym. Conidia forming from
apex of conidiogenous cells, hyaline. Conidia produced
singly, accumulating at tip of conidiogenous cells, aseptate,
ovoid to elliptical, sometimes fusiform, and often truncate at
the base, 6.7 (+1.2) x 3.6 (+0.5) ym. Sexual morph unknown.

Raffaelea crossotarsa D.R. Simmons & Y.T. Huang,
Sp. nov.

MycoBank MB817172

(Fig. 4)

Etymology: The epithet “crossotarsa” refers to the genus of
the host beetle (Crossotarsus emancipatus), the mycangium
of which yielded this fungus.

Diagnosis: Conidiogenous cells 15.2 (+2.1) x 3 (£0.3) ym,
hyaline, slender; conidia at conidiogenous cell apex; conidia
6 (£0.4) x 4.9 (£0.3) um, globose to ovoid, hyaline, yeast-like
budding from prominent isthmus.

Type: Taiwan: Fushan, cultured from Crossotarsus
emancipatus collected from Lithocarpus sp., Mar. 2015, J.
Hulcr, A. Black & D. R. Simmons (BPI 910157 — holotype;
Hulcr7182 = CMW44793 — ex-type culture).

Description: Colonies initially cream, aging from golden
olivaceous to dark green or dark ruddy brown on MEA, surface
tough; reverse subhyaline. Optimal colony diameter after 9 d
at 25 °C in the dark was 39.2 (+1.2) mm; 9.0 (£0.5) mm at 10
°C; no growth at 35 °C. Conidiogenous cells hyaline, slender,
tapering at ends, 15.2 (+2.1) x 3 (+0.3) um. Conidia forming
from apex of conidiogenous cells, hyaline. Conidia produced
singly, aseptate, globose to ovoid, 6 (+0.4) x 4.9 (£0.3) ym.
Conidia producing budding cells from prominent isthmus, 1-2
pm long. Sexual morph unknown.

Raffaelea cyclorhipidia D.R. Simmons & Y.T. Huang,
Sp. Nov.

MycoBank MB817173

(Fig. 5)

Etymology: The epithet “cyclorhipidia” refers to the genus
of the host beetle (Cyclorhipidion ohnoi), the mycangium of
which yielded this fungus.

Diagnosis: Conidiogenous cells 12 (£1.7) x 3.6 (£0.3) um,
hyaline, flask-shaped; conidia at conidiogenous cell apex
or sessile and lateral; conidia 7.3 (+1.0) x 3.5 (0.7) pm,
elliptical to elongate, hyaline, yeast-like budding.

Type: Taiwan: Fushan, cultured from Cyclorhipidion ohnoi
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Fig. 5. Raffaelea cyclorhipidia (Hulcr7168) morphological features in pure culture on MEA. A. Colony growth after 9 d at 25 °C. B-C. Hyphae
bearing typical flask-shaped conidiogenous cells with conidia at apex, and occasional lateral sessile conidia (black arrowheads). D. Elliptical to
elongate conidia budding yeast-like daughter cells (black arrows). Bar in B applies also to C-D.

Fig. 6. Raffaelea xyleborina (Hulcr6099) morphological features in pure culture on MEA. A. Colony growth after 9 d at 25 °C. B. Micronematous
conidiogenous cells with ovoid conidia truncated at base (white arrowhead). C. Micronematous conidiophore with short conidiogenous cell
sessile at side (black arrowhead) and at apex. D. Globose to ovoid conidia truncated at the base (white arrowhead) and budding yeast-like

daughter cells (black arrows). Bar in C applies also to B-D.

collected infesting Lithocarpus sp., Mar. 2015, J. Hulcr, A.
Black & D. R. Simmons (BP1 910158 — holotype; Hulcr7168 =
CMW44790 — ex-type culture).

Description: Colonies initially cream, aging from olivaceous
to golden brown or blackish on MEA, surface tough and
wrinkled; reverse subhyaline. Optimal colony diameter after
9d at 25 °C in the dark was 47.5 (+1.9) mm; 20.6 (£1.8) mm
at 10 °C; no growth at 35 °C. Conidiogenous cells hyaline,
flask-shaped, tapering towards the apex, 12 (£1.7) x 3.6
(£0.3) ym. Conidia forming at apex of conidiogenous cells,
occasionally sessile and lateral, hyaline. Conidia produced
singly, aseptate, elliptical to elongate, occasionally truncate
at base, 7.3 (£1.0) x 3.5 (+0.7) ym. Conidia produce budding
cells. Sexual morph unknown.

Raffaelea xyleborina D.R. Simmons & C. Bateman,
Sp. nov.
MycoBank MB817174

(Fig. 6)

Etymology: The epithet “xyleborina” refers to the genus of
the host beetle (Xyleborinus andrewesii), the mycangium of
which yielded this fungus.

Diagnosis: Conidiophores micronematous, hyaline; conidia
at conidiogenous cell apex or lateral and sessile; conidia 6.5
(20.7) x 4.9 (+0.8) ym, globose to ovoid, truncated at base,
hyaline, yeast-like budding.

Type: USA: Florida: Highlands Co., Venus, cultured from
Xyleborinus andrewesii collected from bait trap, 3 Jan. 2013,
C. Bateman, C. Gibbard & L. L. Stelinski (BPl 910159 —
holotype; Hulcr6099 = CMW45859 — ex-type culture;

Additional specimens examined: Loc. cit (Hulcr6100, Hulcr6406,
Hulcr6408).

Description: Colonies initially cream, varying with age from
cream to dark green to blackish on MEA, surface tough and
spiral in appearance; reverse subhyaline. Optimal colony
diameter after 9 d at 35 °C in the dark was 26.8 (+3.0) mm;
14.9 (£1.3) mm at 25 °C; no growth at 10 °C. Conidiogenous
cells hyaline, micronematous, with conidia forming at apex,
occasionally sessile and lateral. Conidia produced singly,
aseptate, hyaline, globose to ovoid, sometimes elongate, and
often truncated at base, 6.5 (+0.7) x 4.9 (+0.8) ym. Conidia
produce budding cells. Sexual morph unknown.
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DISCUSSION

Considering the damage that ambrosia fungi and their
vectors cause (Ploetz et al. 2013), there is an urgent need
to determine not only the diversity of these fungi globally but
also to gain an enhanced knowledge of the host vector range
for these potentially devastating species. Comparison of
fungal isolates in this study with known species of Raffaelea
revealed that two isolates from Taiwan, Hulcr7167 and
Hulcr7176, grouped with R. quercivora. Raffaelea quercivora
has been isolated from Platypus quercivorus in Japan, where
it is responsible for ongoing epidemics of Japanese oak wilt
(Kubono & Ito 2002), as well as in Taiwan (Kusumoto et al.
2014). Our isolates of R. quercivora were not isolated from
the mycangia or fungal galleries of P. quercivorus, however,
but rather from the mycangia of Cyclorhipidion ohnoi and the
fungal galleries of Crossotarsus emancipatus from Taiwan.
Though the latter two beetle species have not been implicated
in oak wilt, these symbioses suggest that other vectors of
R. quercivora exist. These isolates were collected from the
same beetle host populations in Taiwan from which two of
the species newly described in this study, R. cyclorhipidia
and R. crossotarsa, were recovered. Therefore, these beetle-
associated species display a degree of promiscuity with fungi
within and exterior to Raffaelea s. str.

Raffaelea lauricola, the causative agent of laurel wilt,
was found in Taiwan, from the documented host Xyleborus
glabratus, and in Florida, from the previously unrecorded host
Ambrosiodmus lecontei. Carrillo et al. (2014) reported that
R. lauricola was laterally transferred to additional ambrosia
beetle hosts, other than X. glabratus, when these species co-
inhabit trees infected with this fungal pathogen. This finding
demonstrates that the pathogen is a relatively promiscuous
symbiont of ambrosia beetles, raising its importance from
the biosecurity perspective. Despite Carrillo et al. (2014)
having examined 41 adult A. lecontei females emerging from
laurel wilt-affected swamp bay bolts, they failed to isolate
R. lauricola from this host species. However, we recovered
R. lauricola from A. lecontei infesting Persea borbonia
near Lake Kissimmee (FL). The presence of Raffaelea with
Ambrosiodmus may be phoretic or facultative, because
Ambrosiodmus species examined to date carry a highly
specific ambrosial basidiomycetous species (Li et al. 2015).

Besides information on known ambrosia fungi, results of
this study suggest that under-explored regions of the world
contain a large diversity of undescribed ambrosia fungi.
Phylogenetic analyses of DNA sequence data for 22 isolates
of Raffaelea-like fungi led to the discovery of the five new
species described here. Some additional isolates resolved
in lineages that would generally support their description
as novel taxa (i.e. Hulcr5951; Hulcr7355; Huler7507 and
PL1001), but these cultures could not be revived for
morphological characterization after cryopreservation. Four
of the new species described in this study were isolated
from mycangia of ambrosia beetle hosts. Although sampling
efforts that provided the foundation for this study included
many different parts of the world, three of the novel taxa were
from the eastern US. Whether this is a true reflection of an
unexamined area of Raffaelea species diversity, or due to
sampling bias, is unknown but deserves future consideration.

Results from this study indicate that Raffaelea s. str. and
the R. lauricola complex are monophyletic (Fig. 1; Raffaelea
S. lat.). This is consistent with previous analyses using
rDNA and BT sequences (Dreaden et al. 2014). Analyses of
28S rDNA across Ophiostomatales have shown the same
association with some support (Musvuugwa et al. 2015) or
that these clades are disparate (de Beer & Wingfield 2013).
Until a more accurate determination of their relationship is
conducted with additional genetic loci, we conclude that
these two clades are distinct.

Fungal symbioses with ambrosia beetles have become
especially fertile topics for research, and further study
will likely identify an increasingly large diversity of fungal
associates. Indeed, Bateman et al. (2016) described a new
genus in Ophiostomatales from Premnobius cavipennis
(Scolytinae; Ipini), an independently evolved ambrosia
beetle lineage largely confined to Africa. Furthermore,
ambrosia beetles’ mycosymbionts are not limited to the
ascomycetous Ophiostomatales. Li et al. (2015) found
a new basidiomycetous Polyporales fungus, Flavodon
ambrosius (Simmons et al. 2016), in symbiosis with
Ambrosiodmus species, and Kasson et al. (2016) found
the same mycosymbiont associated with another genus,
Ambrosiophilus, which is sister to Ambrosiodmus (Hulcr &
Cognato 2010). Thus, as investigations into these insects
increase in number, additional fungal genera in unexpected
lineages may be found in symbioses with ambrosia beetles.
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