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ABSTRACT 

Objective: This report presents data from four studies to examine standard bone-conduction 

reference equivalent threshold force levels (RETFL), especially at 4 kHz where anomalous air-

bone gaps are common. Design: Data were mined from studies that obtained air- and bone-

conduction thresholds from normal-hearing and sensorineural hearing loss (SNHL) participants, 

using commercial audiometers and standard audiometric transducers. Study sample: There were 

249 normal-hearing and 188 SNHL participants. Results: (1) Normal-hearing participants had 

small air-bone gaps at 0.5, 1.0, and 2.0 kHz (‐1.7 to 0.3 dB) and larger air-bone gaps at 4 kHz 

(10.6 dB). (2) SNHL participants had small air-bone gaps at 0.5, 1.0, and 2.0 kHz (‐0.7 to 1.7 

dB) and a larger air-bone gap at 4 kHz (14.1 dB). (3) The 4-kHz air-bone gap grew with air-

conduction threshold from 10.1 dB when the air-conduction threshold was 5–10 dB HL to 21.1 

dB when the air-conduction threshold was greater than 60 dB. (4) With the 4-kHz RETFL 

corrected by the average SNHL air-bone gap, the relationship between RETFL and frequency is 

linear with a slope of − 12 dB per octave. Conclusions: The 4-kHz air-bone gaps for listeners 

with SNHL could be avoided by adjusting the 4-kHz RETFL by − 14.1 dB. 

Key Words:: Audiometry, automated audiometry, hearing, hearing test, air conduction, bone 

conduction, threshold, air-bone gap, artificial mastoid 

Abbreviations 
AMTAS Automated method for testing auditory sensitivity 

ANSI American National Standards Institute 

HL Hearing level 

RETFL Reference equivalent threshold force level 

SNHL Sensorineural hearing loss 
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Although bone-conduction testing has been part of clinical hearing evaluation since the 1920s 

(Jones & Knudson, 1924), the first physical calibration standard for normal thresholds appeared 

in the 1972 American audiometer standard (ANSI S3.13–1972 ). In subsequent American and 

international standards, the reference equivalent threshold force levels (RETFLs) were modified 

slightly and values were added for additional frequencies, but the values in the 1972 standard are 

very close to those in the current standards (ANSI S3.6 – 2010; ISO 389.3 – 1994). 

A complicating factor in the specification of normal bone- conduction sensitivity is related to the 

calibration devices used to measure the output of the bone vibrator. These devices, called 

artificial mastoids, are based on the premise that the measuring device had to have mechanical 

impedance properties that are similar to those of the average adult human mastoid. There were 

two commercially-available artificial mastoids when much of the early normative work was 

done, the Beltone Model 5A and the Bruel & Kjaer Type 4930 (Wilber, 1972). Another device 

was developed at the National Physical Laboratory in the UK (Whittle, 1965) and was not 

commercially available. The Beltone device has been out of production for many years but it was 

the calibration device used in many of the early studies. The Bruel & Kjaer device is still 

available and is used widely. A device manufactured by Larson Davis (Model AMC493) mimics 

the transfer function of the Bruel & Kjaer device and provides another option. Margolis and 

Stiepan (2012) and Ginter and Margolis (in press) Ginter S.M. & Margolis R.H. In press. 

Acoustic method for calibration of audiometric bone vibrators. II. Harmonic distortion. JASA 

Express Letters. challenged the premise that the calibration device must mimic the properties of 

the head and offered in its place the requirement that the device must provide a stable, 

reproducible output that could be related to the normal threshold of audibility. They argued that 

it is not necessary for the device to have the properties of the head, only that the relationship 

between the values measured on the device and the stimulus levels delivered to the head be 

consistent. 

Soon after the appearance of the first standard RETFLs, clinicians began to notice air-bone gaps 

at 4 kHz in participants with normal middle-ear function. There was a concern that acoustic 

radiation from the bone vibrator could contaminate bone-conduction threshold measurements 

and studies were performed to explore that hypothesis (Whittle, 1965; Lightfoot, 1979; Bell et al, 

1980; Frank & Holmes, 1981.; Robinson & Shipton, 1982; Shipton et al, 1980; Frank & 

Crandell, 1986; Lightfoot & Hughes, 1993). Frank and Holmes (1981) found no difference 

between 4-kHz bone-conduction thresholds with the test ear plugged and unplugged, indicating 

that acoustic radiation did not affect the bone-conduction threshold. Bell et al (1980) reported an 

average difference of 3 dB between occluded and unoccluded bone-conduction thresholds at 4 

kHz with a Radioear B71 vibrator, suggesting a small effect of acoustic radiation at that 

frequency. Frank and Crandell (1986) reported levels of acoustic radiation from two Radioear 

B71 vibrators that could produce air-bone gaps averaging about 4 dB. Lightfoot's (1979) results 

suggested that a 4-kHz air-bone gap of about 5 dB could result from acoustic radiation of the 

Radioear B71 vibrator. Shipton et al (1980) reported that the sound pressure at the entrance of 

the ear canal for a 4-kHz, 0-dB HL bone-conduction stimulus delivered to the mastoid is about 7 

dB SPL, close to the normal threshold of hearing. Because the level measured in the ear canal is 

typically less than required to affect the measured bone-conduction threshold (Bell et al, 1980), 

the levels observed by Shipton et al (1980) suggest that acoustic radiation has no significant 

effect on bone-conduction thresholds. Lightfoot and Hughes (1993) reported no significant 
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difference in 4-kHz bone conduction thresholds with the test ear occluded and unoccluded, 

suggesting no effect of acoustic radiation at that frequency. Significant effects were observed at 

higher frequencies. To summarize the results of measurements of acoustic radiation emanating 

from Radioear B71 bone vibrators at 4 kHz, there may be a small enhancement of the signal 

level that could lead to a small (0–5 dB) air-bone gap provided that the acoustic radiation is not 

incorporated into standard RETFLs (discussed below). 

It is important to note that a conductive hearing loss would effectively block the acoustic 

radiation so the air-bone gap would not be affected by acoustic radiation. Some of the early 

studies of normal sensitivity to bone-conducted signals attempted to block the acoustic radiation 

from entering the ear canal (Whittle, 1965; Shipton et al, 1980; Robinson & Shipton, 1982). In 

other studies (e.g. Wilber & Goodhill, 1967; Dirks & Kamm, 1975; Dirks et al, 1979), the test 

ear was unoccluded, so any effect of acoustic radiation would be incorporated into the threshold 

values that were considered in the determination of the RETFLs. The 4-kHz air-bone gaps 

reported by Margolis et al (2010) with forehead placement of the bone vibrator and a 

circumaural cushion over the test ear provide strong evidence that the large air-bone gaps that are 

frequently observed in clinical studies and in clinical practice for participants without conductive 

hearing loss cannot be attributed to acoustic radiation. 

It appears that the problem of inappropriate 4-kHz air-bone gaps has existed for at least four 

decades. 

Dirks et al (1979) reported the results of a multi-site study to obtain normative bone-conduction 

threshold data for the Radioear B71 bone vibrator calibrated on the Bruel & Kjaer Type 4930 

artificial mastoid. Their mean normal threshold for mastoid bone conduction at 4 kHz was 31.2 

dB re 1 μN, about 4 dB lower than the 35.0 dB value in the 1972 American standard (ANSI 

S3.13 – 1972). Perhaps as a result of that study, the RETFL was reduced to 31.0 dB in the 1981 

version of the standard. That helped to decrease the false air-bone gaps at 4 kHz. But in the 1996 

standard (ANSI S3.6–1996), the value was raised again, this time to 35.5 dB re 1 μN. 

To test the validity of their normative bone-conduction threshold values, Dirks et al (1979 ) 

tested a group of participants with sensorineural hearing loss (SNHL) with bone-conduction 

stimuli calibrated to the normative values obtained in the multi-site study of normal-hearing 

participants. The air-bone gaps for the SNHL participants were essentially zero at all test 

frequencies including 4 kHz. Their finding at 4 kHz is difficult to reconcile with the observations 

that will be presented in this article and with widespread informal reports of audiologists who 

find frequent occurrences of 4-kHz air-bone gaps. 

In a study designed to validate an automated pure-tone audiometry method (AMTAS), Margolis 

et al (2010) reported air-bone gaps from participants with SNHL that averaged 19.3 dB for 

AMTAS (with bone-conduction thresholds measured with forehead placement of the vibrator 

and both ears covered by circumaural earphones) and 13.2 dB for manual audiometry (with 

mastoid placement of the vibrator and the test ear unoccluded). In a follow-up study (Margolis & 

Moore, 2011) 4-kHz air-bone gaps for participants with SNHL averaged 10.8 dB for AMTAS 

and 13.4 dB for manual audiometry. 
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For this report we mined data from published and unpublished studies to obtain the best possible 

estimate of the 4-kHz air-bone gap for participants with normal hearing and SNHL, in order to 

provide a basis for estimating a more accurate value of the RETFL at 4 kHz and eliminating the 

anomalous air-bone gaps that occur in research studies and clinical practice. 

Methods 

Studies were selected that measured air- and bone-conduction thresholds for participants with 

normal hearing and with SNHL using manual and automated audiometry (AMTAS). A series of 

validation studies has demonstrated good agreement between AMTAS and manual audiometry 

performed by highly-experienced audiologists (Margolis et al, 2007, 2010, 2011; Margolis & 

Moore, 2011; Eikelboom et al, 2013). Each study used a clinical audiometer calibrated to 

American (ANSI S3.6 – 2010) or international (ISO 389.3–1994) standards
1
 with standard 

transducers (TDH-type supra-aural earphones or Sennheiser HDA 200 circumaural earphones, 

and Radioear B71 bone vibrators). For Studies 2 and 3, calibration was performed at the 

University of Minnesota Audiology Research Laboratory using standard audiometer calibration 

equipment and a recently calibrated Bruel and Kjaer Type 4930 Artificial Mastoid. For Studies 1 

and 4, calibration was performed by the audiometer manufacturer (GN Otometrics). 

During bone-conduction testing, masking was applied to the non-test ear and the test ear was 

unoccluded for manual audiometry but not for AMTAS. Normal hearing was defined as air-

conduction thresholds at 0.5, 1.0, 2.0, and 4.0 kHz less than or equal to 20 dB HL. In order to 

measure the 4-kHz air-bone gap without limitation by a ‘floor effect’, if the 4-kHz air conduction 

threshold was < 5 dB HL, that participant was eliminated from the analysis. SNHL was defined 

as four-frequency, air-conduction, pure-tone averages greater than 20 dB with air-bone gaps at 

0.5, 1.0, and 2.0 kHz less than or equal to 5 dB. A brief description of each study follows. 

Study 1 (Margolis et al, 2010) 

Participants with SNHL were recruited and tested at the University of Cambridge. Most 

participants had participated in previous auditory research studies. Each participant was tested 

using manual audiometry by an experienced audiologist and using AMTAS. Sennheiser HDA 

200 earphones were used for manual testing and for AMTAS. 

Study 2 (Margolis & Moore, 2011) 

Participants were tested at the Audiology Research Laboratory of the University of Minnesota 

Hospital. Normal-hearing participants were volunteers recruited from the staff and student 

population of the university. SNHL participants were recruited from the Audiology Clinic. Each 

participant was tested using manual audiometry by an experienced audiologist and using 

AMTAS. Telephonics TDH-50 earphones were used for manual audiometry. Sennheiser HDA 

200 earphones were used for AMTAS testing. 
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Study 3 (Margolis, Johnson, & Ginter, unpublished) 

Participants were tested at the Audiology Research Laboratory of the University of Minnesota 

Hospital. (Procedures were identical to those of Margolis & Moore, 2011 Margolis R.H. & 

Moore B.C.J. 2011. Automated method for testing auditory sensitivity: III. Sensorineural hearing 

loss and air-bone gaps. Int J Audiol, 50, 440–447.[Taylor & Francis Online], except for the anti-

bias method described below). Normal-hearing participants were volunteers recruited from the 

staff and student population of the university. SNHL participants were recruited from the 

Audiology Clinic. Each participant was tested using manual audiometry by an experienced 

audiologist and using AMTAS. Telephonics TDH-50 earphones were used for manual 

audiometry. Sennheiser HDA 200 earphones were used for AMTAS testing. To avoid bias 

during manual bone-conduction testing, offsets ranging from − 10 to 10 dB were introduced into 

the bone-conduction calibration constants stored by the audiometer. These offsets were removed 

before final analysis. 

Study 4 (Eikelboom & Swanepoel, unpublished) 

Participants were from the Busselton Healthy Ageing Study (BHAS), a detailed survey of the 

health of up to 4000 residents in the Shire of Busselton, Western Australia (See Swanapoel et al, 

in press, for a description of the project). All non-institutionalized participants (born between 

1946 and 1964) listed on the electoral roll (n = 6690) and resident in the Shire are eligible to 

participate. Enrolment into the study is randomized, with 10% of the available sample drawn and 

recruited at a time. Data used in this analysis were from the first 1004 participants (collected 

between May 2010 and July 2011); participants were therefore aged 45 to 65 years at the time of 

examination. Each participant was tested using AMTAS with Sennheiser HDA 200 earphones. 

Results 

Normal-hearing participants 

Mean air-bone gaps, sample sizes, and weighted means for normal-hearing participants from two 

studies are presented in Table 1. Manual testing was performed with both mastoid and forehead 

vibrator placement in one study (Study 3). Automated testing with forehead vibrator placement 

was performed in another study (Study 4). Small air-bone gaps were evident at 0.5, 1.0, and 2.0 

kHz (− 1.7 to 0.3 dB). At 4.0 kHz the weighted mean air-bone gap was 10.6 dB. 
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Table 1. Mean air-bone gaps (air-conduction threshold minus bone-conduction threshold) for normal-hearing 

participants. The number of ears is indicated by n. 

  

  

  

  

Frequency (kHz) 

  Method BC location 

  

0.5 1 2 4 

Study 3 

  

  

  

Manual 

  

Mastoid 

  

Mean 0.0 3.4 − 1.3 5.6 

n 16 16 16 16 

Manual 

  

Forehead 

  

Mean − 1.8 6.1 − 4.6 6.8 

n 14 14 14 14 

Study 4 

  

AMTAS 

  

Forehead 

  

Mean 0.4 − 0.3 − 1.5 11.1 

n 235 235 235 235 

All 

  

  

  

  

  

  

  

  

  

  

  

Both 

  

Weighted mean 0.3 0.2 − 1.7 10.6 

n 265 265 265 265 

Mastoid 

  

Weighted mean 0.0 3.4 − 1.3 5.6 

n 16 16 16 16 

Forehead 

  

Weighted mean 0.3 0.0 − 1.7 10.9 

n 249 249 249 249 

The weighted mean air-bone gap for forehead placement was 5.3 dB larger than for mastoid 

placement. However, in the study in which both mastoid and forehead placement was used, the 

difference was much smaller, 1.2 dB. The larger difference between weighted means for the two 

bone-vibrator locations was probably related to a difference in study location and participant 

population rather than to the difference in bone-conductor placement. 

Sensorineural hearing loss participants 

Mean air-bone gaps, sample sizes, and weighted means for SNHL participants from four studies 

are presented in Table 2. In three studies (Studies 1, 2, and 3) manual testing was performed with 

mastoid placement and AMTAS was performed with forehead placement. In Study 4 AMTAS 

only was performed with forehead placement. Small air-bone gaps were evident at 0.5, 1.0, and 

2.0 kHz (− 0.7 to 1.7 dB). At 4.0 kHz the weighted mean air-bone gap was 14.1 dB. The larger 

air-bone gap at 4 kHz for the SNHL participants than for the normal-hearing participants is an 

unexpected result and is discussed below. 
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Table 2. Mean air-bone gaps (air-conduction threshold minus bone-conduction threshold) for participants with 

sensorineural hearing loss. The number of ears is indicated by n. 

  

  

  

  

Frequency (kHz) 

  Method BC location 

  

0.5 1 2 4 

Study 1 

  

  

  

Manual 

  

Mastoid 

  

Mean 1.3 1.0 − 0.5 12.5 

n 20 20 20 20 

AMTAS 

  

Forehead 

  

Mean 4.6 1.7 2.5 20.0 

n 15 15 116 19 

Study 2 

  

  

  

AMTAS 

  

Forehead 

  

Mean − 8.4 2.8 − 6.6 10.8 

n 17 18 19 20 

Manual 

  

Mastoid 

  

Mean − 5.0 − 2.2 − 6.8 13.4 

n 16 19 20 20 

Study 3 

  

  

  

AMTAS 

  

Forehead 

  

Mean 6.5 5.2 9.3 17.4 

n 23 24 20 16 

Manual 

  

Mastoid 

  

Mean 5.3 3.9 1.4 12.2 

n 27 29 25 16 

Study 4 

  

AMTAS 

  

Forehead Mean 0.8 0.6 − 1.9 13.7 

  n 63 63 63 63 

All 

  

  

  

  

  

  

  

  

  

  

  

Both 

  

Weighted 

mean 

1.2 1.7 − 0.7 14.1 

n 181 188 183 172 

Mastoid 

  

Weighted 

mean 

1.4 1.3 − 1.7 12.7 

n 63 68 65 56 

Forehead 

  

Weighted 

mean 

1.1 2.0 − 0.2 14.7 

n 118 120 118 116 

The weighted mean air-bone gap was 2.0 dB larger for forehead placement than for mastoid 

placement. This difference is comparable to the 1.2 dB difference for normal participants in 

Study 3 but smaller than the 5.3 dB difference for normal participants when Study 4 was 

included. 

Discussion 

The difference between 4-kHz air-bone gaps for the normal-hearing and SNHL groups suggests 

that, in the absence of middle-ear dysfunction, bone-conduction threshold and air-conduction 

threshold are not affected equally by SNHL at that frequency. This finding contradicts a 

commonly held principle that the air-bone gap should be zero for listeners with normal hearing 
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and various degrees of SNHL. The large sample size tested in Study 4 offers an opportunity to 

examine the relationship between the air-bone gap and the magnitude of the hearing loss. Figure 

1 shows the mean 1-kHz air-bone gap for groups stratified by the 1-kHz air-conduction 

threshold. The small correlation coefficient between air-bone gap and air- conduction threshold 

(r = 0.13) and the overlapping 95% confidence intervals suggest that air-bone gaps are unrelated 

to the magnitude of the SNHL, as expected. 

Figure 1. Average 1-kHz air-bone gaps for participant groups stratified by the 1-kHz air-conduction threshold. Data 

from Eikelboom & Swanepoel, unpublished. Data labels are average air-bone gap and sample size. Vertical lines are 

5% confidence intervals. 

 
 

At 4 kHz the picture is quite different (Figure 2). The stronger correlation coefficient (r = 0.36) 

and the non-overlapping confidence intervals between the mildest and most severe hearing losses 

indicate a dependence of the air-bone gap on the magnitude of the SNHL at that frequency. The 

air-bone gap increases monotonically with increasing 4-kHz air-conduction threshold, from 10.1 

dB for participants with 4-kHz air-conduction thresholds of 5 or 10 dB HL to 20.1 dB for 

participants with 4-kHz air-conduction thresholds above 60 dB HL. This surprising result 

suggests a dependence of the air-bone gap on cochlear sensitivity for participants with normal 

middle-ear function. 
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Figure 2. Average 4-kHz air-bone gaps for participant groups stratified by the 4-kHz air-conduction threshold. Data 

from Eikelboom & Swanepoel, unpublished. Data labels are average air-bone gap and sample size. Vertical lines are 

5% confidence intervals. 

 
  

Early studies of bone-conduction sensitivity indicated greater sensitivity (lower threshold) at 4 

kHz than at 2 kHz. Lybarger (1966) assembled normal bone-conduction sensitivity data from 

nine studies and offered interim values for calibration of audiometers. Based on measurements 

made on the Beltone 5A artificial mastoid, normal thresholds at 4 kHz were 8 dB lower than at 2 

kHz. Wilber and Goodhill (1967) reported a normal bone-conduction threshold at 4 kHz that was 

14.3 dB lower than the threshold at 2 kHz. Whittle (1965), using different bone vibrators and a 

different artificial mastoid, reported bone-conduction thresholds expressed as displacement 

levels that decreased monotonically with increasing frequency from 0.125 Hz to 5 kHz. When 

expressed in acceleration units (the second derivative of displacement), the thresholds were 

constant over that range, indicating a slope in the displacement values of − 12 dB/octave, 

virtually identical to the slope in Figure 3. These studies used the Beltone 5A artificial mastoid or 

the artificial mastoid developed at the National Physical Laboratory (Whittle, 1965). 
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Figure 3. Bone conduction Reference Equivalent Threshold Force Levels from audiometer standards (ANSI S3.6–

2010; ISO 389.3–1994). Black-filled diamonds show RETFLs from the standards. The gray-filled diamond is the 

standard RETFL corrected by − 14.1 dB. The solid line is the best-fit linear regression line fit to the data from 0.25 

to 2.0 kHz and extrapolated to 4.0 kHz. The variable × in the regression equation is equal to the number of octaves 

above 0.25 kHz. 

 
 

The studies that used the Bruel and Kjaer 4930 artificial mastoid show a different relationship 

between normal bone-conduction threshold and frequency. Dirks and Kamm (1975), Dirks et al 

(1979), and Robinson and Shipton (1982) showed normal bone-conduction thresholds that were 

0–4.5 dB higher at 4 kHz than at 2 kHz. Dirks and Kamm (1975 performed measurements with 

the same bone vibrator on both the Beltone 5A and the Bruel and Kjaer 4930 artificial mastoids 

and found large differences for frequencies in the 2–4 kHz region. Threshold levels measured on 

the Beltone 5A artificial mastoid were 5.7 dB lower at 4 kHz than at 2 kHz, while threshold 

levels measured on the Bruel and Kjaer 4930 artificial mastoid were 3.3 dB higher. The current 

standard RETFL is 4.5 dB higher at 4 kHz than at 2 kHz. 

Dirks and Kamm (1975) suggested that measurements using the Bruel and Kjaer artificial 

mastoid may be affected by the mechanical coupling between the bone vibrator and the surface 

of the device. If there have been changes in the device or its coupling arrangement in the thirty 

years since those early studies were done, such that the output at 4 kHz has changed, it could 

result in higher stimulus levels at 4-kHz and false air-bone gaps. This could explain the lack of 

air-bone gap for the participants with SNHL tested by Dirks et al (1979), which is in stark 

contrast to the results in Figure 2 of this article. 
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Figure 3 shows the current standard RETFLs and an adjusted RETFL at 4 kHz. The shaded 

diamond shows the standard 4-kHz RETFL corrected by the weighted mean 4-kHz air-bone gap 

for SNHL participants from Table 2 (14.1 dB). The standard RETFLs and the corrected 4-kHz 

value are described well by a regression line that has a slope of about − 12 dB per octave, very 

similar to the slope that fits the data of Whittle (1965) and Wilber and Goodhill (1967). 

However, the standard 4-kHz RETFL falls well above the regression line. 

The studies that are included in this analysis did not obtain enough data at 3 kHz to provide a 

useful analysis. Figure 3 suggests that, because the 3-kHz RETFL falls above the − 12 dB/octave 

regression line, the RETFL at that frequency may also be too high. Data are needed at this 

frequency to determine if a change in the RETFL should be made. 

The linear behavior (on logarithmic coordinates) of bone- conduction threshold force levels with 

the 4-kHz correction is striking. It indicates that the force delivered to the soft tissue of the head 

required to reach the detection threshold decreases at a rate of 12 dB per octave. This orderly 

relationship results from complex transformations that occur as the bone-conducted stimulus is 

transmitted from the surface of the head to the cochlear detection system. It is somewhat 

surprising that the complex transmission pathway would produce a function with a constant 

slope. 

The dependence of the 4-kHz air-bone gap on hearing-loss magnitude that is evident in Figure 2 

is troubling because it challenges a widely-held assumption that air- and bone-conduction 

sensitivity are equally affected by SNHL when middle-ear function is normal. One possibility is 

that the participants we classified as having SNHL actually had a conductive component at 4 

kHz. A source of the conductive component could be an age-related change in middle-ear 

transmission that affects the 4-kHz air-conduction threshold but not the bone-conduction 

threshold. Results from Nixon et al (1962) support this hypothesis. They studied patients with 

age-related hearing loss who were carefully screened for other sources of SNHL, such as noise 

exposure and otologic disease. Their results indicate a greater effect of age on air-conduction 

threshold than on bone-conduction threshold at 4 kHz, but not for lower frequencies. Additional 

evidence of an age-related change in middle-ear function was provided by Feeney and Sanford 

(2004), who reported a difference in middle-ear acoustic reflectance at 4-kHz between older and 

younger participants. 

We looked for evidence of an age-related component of the 4-kHz air-bone gaps in the results of 

Study 4. We hypothesized that if there is an age-related difference in middle-ear transmission at 

4 kHz, the older group would have a greater air-bone gap than the younger group. A split-half 

analysis based on age indicated no effect of age on the 4-kHz air-bone gap (Figure 4, A). To 

explore the possibility that an age effect is evident only for participants with greater hearing 

losses, we narrowed the group to those with 4-kHz air- conduction thresholds above 35 dB. 

Again, no age effect was evident (Figure 4, B). 
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Figure 4. 4-kHz air-bone gaps from younger and older groups of participants. A. Participants with air-bone gaps at 

0.5, 1.0, and 2.0 kHz ≤ 5 dB and 4-kHz air conduction thresholds greater than 0 dB HL. B. Participants with air-

bone gaps at 0.5, 1.0, and 2.0 kHz < 5 dB and 4-kHz air conduction thresholds greater than 35 dB HL. Data labels 

are mean air-bone gaps, sample sizes, and age ranges (years). Error bars are ± 1 standard error of the mean. 

 

In an additional analysis, we examined the correlation between age and the air-bone gap at 4 

kHz. The correlation was small (r = 0.09), and not statistically significant (p > 0.05). When the 

effect of the air-conduction threshold at 4 kHz was partialed out, the correlation became even 

smaller (r = 0.025). The correlation between the air-bone gap and the air-conduction threshold at 

4 kHz was significant (r = 0.355, p < 0.01), and the correlation remained significant (r = 0.344, p 

< 0.01) when the effect of age was partialed out. Thus, independent of age, greater hearing loss 

at 4 kHz seems to be associated with a greater air-bone gap. 

These analyses do not support the hypothesis that there is an age-related conductive component 

at 4 kHz, although it is possible that an effect would have emerged if the groups had spanned a 

wider age range. 

The results confirm previous studies and clinical observations that indicate consistent air-bone 

gaps at 4 kHz for normal-hearing participants and participants with SNHL when audiometers are 
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calibrated to current standards. These air-bone gaps occur for both mastoid placement and 

forehead placement of the bone vibrator, using the standard RETFLs for the two locations. 

Adjusting the 4-kHz RETFL by the average air-bone gap for participants with 4-kHz air-

conduction thresholds above 20 dB HL would, on average, eliminate the air-bone gap. Using the 

same correction for listeners with 4-kHz air conduction thresholds below 20 dB HL would result 

in a small, clinically-insignificant negative air-bone gap. 

Summary and Conclusions 

Data were mined from four studies that had obtained air- and bone-conduction thresholds from 

normal-hearing participants and participants with SNHL. The following observations were made 

based on weighted means from the various studies. 

1. Normal-hearing participants have small air-bone gaps at 0.5, 1.0, and 2.0 kHz (− 1.7 to 

0.3 dB) and a larger air-bone gap at 4 kHz (10.6 dB). See Table 1. 

2. SNHL participants have small air-bone gaps at 0.5, 1.0, and 2.0 kHz (− 0.7 to 1.7 dB) and 

a larger air-bone gap at 4 kHz (14.1 dB). See Table 2. 

3. For groups stratified by the air-conduction threshold, the 1-kHz air-bone gap is small (< 2 

dB) and does not vary with hearing loss magnitude (Figure 1). The 4-kHz air-bone gap 

grows monotonically from 10.1 dB when the pure-tone threshold is 5–10 dB HL to 20.1 

dB for participants with pure-tone thresholds greater than 60 dB HL (Figure 2). 

4. There is no apparent effect of age on the 4-kHz air-bone gap. 

5. If the standard 4-kHz RETFL is corrected by the average air-bone gap for participants 

with SNHL (14.1 dB), the relationship between RETFL and frequency is a linear function 

(on logarithmic coordinates) with a slope of − 12 dB per octave. 

The results suggest that the 4-kHz air-bone gaps that occur regularly with participants with 

SNHL are due to an inappropriate RETFL at that frequency. An adjustment of − 14.1 dB would 

reduce these air-bone gaps to an average of 0 dB for participants with 4-kHz air-conduction 

thresholds above 20 dB HL. In view of the strong predictive accuracy of the − 12 dB per octave 

slope, a set of RETFLs that conform to that slope may be appropriate and helpful for defining 

RETFLs at other frequencies where there are less definitive data (such as 3 and 6 kHz). Because 

of the relationship shown in Figure 1, a correction of this magnitude may slightly elevate bone-

conduction thresholds for participants with normal hearing. This is not a significant concern 

because: (1) it is common to omit testing bone-conduction when the air-conduction threshold is 

normal; and (2) a slight elevation in bone-conduction threshold for a normal-hearing participant 

will not result in a diagnostic error. 

Acknowledgements 

We are grateful to Chris Bauch, Don Dirks, Douglas Keefe, Wayne Olsen, Sunil Puria, Bill 

Rabinowitz, John Rosowski, and Jozef Zwislocki for helpful discussions concerning the 

interpretation of the data. We thank Brian Glasberg at the University of Cambridge for his 

assistance with statistical analysis, and Michael Hunter and his team on the Busselton Healthy 

Ageing Study for managing the data collection and collation of Study 4. Guy Lightfoot and one 

anonymous reviewer provided helpful comments that improved the article. 



14 

 

Declaration of interest: The first author is president of Audiology Incorporated (AI) which owns 

intellectual property that was used in some of the studies reported in this article. That intellectual 

property may be incorporated into commercial products. AI has developed and plans to 

commercialize a bone-conduction calibration coupler (described in Margolis and Stiepan, 2012). 

The other authors report no conflicts of interest. The authors alone are responsible for the content 

and writing of the paper. 

Portions of this work were supported by grants R41DC05110 and RC3DC010986 from the 

National Institutes of Deafness and Other Communication Disorders. 

 

REFERENCES 

 

ANSI 3.13–1972. 1972. American national standard for an artificial headbone for the calibration 

of audiometric bone vibrators. New York: American National Standards Institute. 

ANSI S3.6–1996. 1996. Specification for audiometers. New York: American National Standards 

Institute. 

ANSI S3.6–2010. 2010. Specification for audiometers. New York: American National Standards 

Institute. 

Bell I., Goodsell S. & Thornton A.R.D. 1980. A brief communication on bone conduction 

artefacts. British J Audiol, 14, 73–75.  

Dirks D.D. & Kamm C. 1975. Bone-vibrator measurements: Physical characteristics and 

behavioral thresholds. J Speech Hearing Res18, 242–260. 

Dirks D.D., Lybarger S.F., Olsen W.O. & Billings B.L. 1979. Bone conduction calibration: 

Current status. J Speech Hearing Dis, 44, 143–155. 

Eikelboom R.H., Swanepoel D.W., Motakef S. & Upson G. 2013. Clinical validation of the 

AMTAS automated audiometer. Int J Audiol. 52, 342–349.  

Feeney M.P. & Sanford C.A. 2004. Age effects in the human middle ear: Wideband acoustical 

measures. J Acoust Soc Am, 116, 3546–3558. 

Frank T. & Crandell C.C. 1986. Acoustic radiation produced by the B-71, B-72, and KH 70 

Bone Vibrators. Ear Hear, 7, 344–347. 

Frank T. & Holmes A. 1981. Acoustic radiation from bone vibrators. Ear Hear, 2, 59–63. 



15 

 

Ginter S.M. & Margolis R.H. In press. Acoustic method for calibration of audiometric bone 

vibrators. II. Harmonic distortion. JASA Express Letters. 

ISO 389.1. 1998. Acoustics – Reference zero for the calibration of audiometric equipment – Part 

1: Reference equivalent threshold sound pressure levels for pure tones and supra-aural 

earphones. Geneva: International Organization for Standardization. 

ISO 389.3. 1994. Acoustics – Reference zero for the calibration of audiometric equipment – Part 

3: Reference equivalent threshold force levels for pure tones and bone vibrators. Geneva: 

International Organization for Standardization. 

Jones I.H. & Knudsen V.O. 1924. Functional tests of hearing. Laryngoscope, 34, 673–686.  

Lightfoot G.R 1979. Air-borne radiation from bone conduction transducers. Br J Audiol, 13, 53–

56.  

Lightfoot G.R. & Hughes J.B. 1993. Bone conduction errors at high frequencies: Implications for 

clinical and medico-legal practice. J Laryngol Otol, 107, 305–308. Lybarger S.F. 1966. Interim 

bone conduction thresholds for audiometry. J Speech Hear Res9, 483–487.Margolis R.H. 2008. 

The vanishing air-bone gap: Audiology's dirty little secret. Audiology Online 

(www.audiologyonline.com/articles), October 20, 2008. 

Margolis R.H., Glasberg B.R., Creeke S. & Moore B.C.J. 2010. AMTAS
®
: Automated method 

for testing auditory sensitivity: Validation studies. Int J Audiol, 49, 185–194.  

Margolis R.H., Frisina R. & Walton J.P. 2011. AMTAS
®
: Automated method for testing 

auditory sensitivity: II. Air conduction audiograms in children and adults. Int J Audiol, 50, 434–

439.  

Margolis R.H. & Moore B.C.J. 2011. Automated method for testing auditory sensitivity: III. 

Sensorineural hearing loss and air-bone gaps. Int J Audiol, 50, 440–447. 

Margolis R.H., Saly G.L, Le C. & Laurence J. 2007. Qualind™: A method for assessing the 

accuracy of automated tests. J Amer Acad Aud, 18, 78–89. Margolis R.H. & Stiepan S.M. 2012. 

Acoustic method for calibration of audiometric bone vibrators. J Acoust Soc Am, 131, 1221–

1225. 

Nixon J.C., Glorig A. & High W.S. 1962. Changes in air- and bone- conduction thresholds as a 

function of age. J Laryngol Otol, 76, 288–298. 

Robinson D.W. & Shipton M.S. 1982. A standard determination of paired air- and bone-

conduction thresholds under different masking conditions. Audiology, 21, 61–82. Shipton M.S., 

John A.J. & Robinson D.W. 1980. Air-radiated sound from bone vibration transducers and its 

implications for bone conduction audiometry. Br J Audiol, 14, 86–99.  



16 

 

Stenfelt S. & Reinfeldt S. 2007. A model of the occlusion effect with bone-conducted 

stimulation. Int J Audiol, 46, 595–608. 

Swanepoel D., Eikelboom R.H., Friedland P.L., Atlas M.D. & Hunter M. In press. Self-reported 

hearing loss in baby boomers from the Busselton Health Study: Audiometric correspondence and 

predictive value. J Amer Acad Audiol. 

Whittle L.S. 1965. A determination of normal threshold of hearing by bone conduction. J Sound 

Vib, 2, 227–248. 

Wilber L.A. 1972. Comparability of two commercially available artificial mastoids. J Acoust Soc 

Amer, 52, 1265–1266. 

Wilber L.A. & Goodhill V. 1967. Real ear versus artificial mastoid methods of calibration of 

bone-conduction vibrators. J Speech Hearing Res, 10, 405–416. 


	False air-bone gaps at 4 kHz in listeners with normal hearing and sensorineural hearing loss
	Abbreviations
	Methods
	Study 1 (Margolis et al, 2010)
	Study 2 (Margolis & Moore, 2011)
	Study 3 (Margolis, Johnson, & Ginter, unpublished)
	Study 4 (Eikelboom & Swanepoel, unpublished)

	Results
	Normal-hearing participants
	Table 1. Mean air-bone gaps (air-conduction threshold minus bone-conduction threshold) for normal-hearing participants. The number of ears is indicated by n.

	Sensorineural hearing loss participants
	Table 2. Mean air-bone gaps (air-conduction threshold minus bone-conduction threshold) for participants with sensorineural hearing loss. The number of ears is indicated by n.


	Discussion
	Summary and Conclusions


