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Abstract 
We compare inflation forecasts of a vector fractionally integrated autoregressive 

moving average (VARFIMA) model against standard forecasting models. U.S. 

inflation forecasts improve when controlling for persistence and economic policy 

uncertainty (EPU). Importantly, the VARFIMA model, comprising of inflation and 

EPU, outperforms commonly used inflation forecast models. 
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1 Introduction 
Inflation forecasts are important central bank outputs. The Federal Reserve of the United States 

(U.S.) produce regular inflation forecasts at various forecast horizons. From a theoretical 

perspective, Faust and Wright (2013) assert that the non-neutrality of monetary policy in the 

New-Keynesian framework has led to the importance of inflation forecasting from a policy 

perspective. 

Many methodologies have been applied in forecasting U.S. inflation. For an excellent summary 

of models see Stock and Watson (2009), which compares the forecasting performance of 

various Phillips curve specifications, and also Faust and Wright (2013) for the performance 

comparison of newer methods. These methodologies range from simple linear models to large 

data-driven econometric models and from structural models to nonlinear specifications.  

From an univariate perspective, there is widespread evidence that the US inflation rate can be 

best captured by a long-memory process (Barros and Gil-Alana, 2013; Caporin and Gupta, 

forthcoming). Interestingly however, the literature on U.S. inflation forecast comparisons either 

assume inflation to be I(1) or I(0) and then modeled as such (Lovcha and Perez-Laborda, 2013). 

Also inflation forecasting models that do not directly control for policy uncertainty are often 

misspecified, given the recent evidence that economic policy uncertainty affects in-sample 

behaviour of inflation (Colombo, 2013; Jones and Olson, 2013). 
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We address these shortcomings in a Bayesian vector autoregressive fractionally integrated 

(VARFIMA) model. A VARFIMA model captures the persistence of inflation. The forecasts are 

conditioned on an uncertainty variable by Baker et al. (2013) to model inflation. Conditioning 

inflation forecasts on policy uncertainty (EPU) would capture the inflation or deflation effects of 

uncertainty. We argue that there exists a link between economic uncertainty and inflation. 

Specifically, the data generating properties of inflation (persistence and volatility) is related to 

movements in economic policy uncertainty. If a Central Bank targets inflation using interest 

rates, high policy uncertainty can affect household and firm decisions. As an example, if there is 

uncertainty about a looming interest rate increase consumers might discount a future hike and 

cut back on spending and hence inflation moves before any policy decision has been made. For a 

theoretical overview see Mumtaz and Zanetti (2013) and Bloom (2009). In Bloom (2009) policy 

uncertainty leads to inaction by firms whereas in Mumtaz and Zanetti (2013) uncertainty affects 

expected consumption due to Jensen's inequality.     

The forecasts are recursive over an out-of-sample period, the starting point of which is 

determined by tests of structural breaks, and would thus account for time-varying correlation 

with policy uncertainty. Finally we use the Diebold Mariano (1995) test to compare forecasts 

from alternative forecasting models. 

2 Data and Methodology 
We use monthly U.S. consumer price inflation data, obtained from the FRED database of the St. 

Louis Federal Reserve, and the uncertainty index of Baker et al. (2013), obtained from 

www.policyuncertainty.com, with our period covering January 1985 to June 2014. This gives us 

a matrix of two time series with a total of 354 observations. In brief, the uncertainty index is 

derived from three data sources: (i) 10 news paper sources that discuss policy uncertainty, (ii) 

federal tax code provisions set to expire from the CBO and (iii) disagreement among forecasters 

from the Survey of Professional Forecasters. An index is then created from the three sources.  

To model the long and short range dependence of variables, as well the interdependency 

between inflation and uncertainty we propose the following VARFIMA(p,d,q) model: 

 ( ) ( )[ ̃   ̃]   ( )           (1) 

where  ̃  is a vector of Gaussian time series,   ( )             
  and  ( )        

     
  are matrix lag polynomials for the AR and MA coefficient matrices   , i=1,…,p, and   , 

i=1,…,q, respectively.  ̃ is the vector of the means of the time series and  ( ) is a diagonoal 

    matrix that contains the order of fractional integration of   time series:  ( )  

    [(   )     (   )  ].    is the degree of fractional integration of the ith variable and we 

define   ̃ as the vector containing    for          . We assume that the errors (  ) are i.i.d. 

with      (   ). It is assumed that the roots of  ( ) and  ( ) lie outside the unit circle. 

Furthermore the process is stationary if                      .  If any        the 

process is not covariance stationary, but still mean reverting - it takes a long time for mean 

reversion. Finally, the  ( ) operator is defined by a binomial series (for more details see 

Hassler, 1994). We estimate the model using Monte Carlo Markov Chains in a Bayesian setup 

following Ravishanker and Ray (2002) to avoid possible over-fitting. This allows us to 

incorporate prior information and derive a posterior distribution that can be summarized. We 

use a uniform prior for  ( ),  ( ) and  ̃, respectively and an improper prior for  ̃. We assume 

http://www.policyuncertainty.com/
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that       
  and        

   
 , where   (measuring contemporaneous correlation) is assumed 

to have a uniform prior on (-1,1). 

We compare the forecasting performance of the VARFIMA(p,d,q)  against a group of competing 

models using a weighted squared forecast error specification (see van Dijk and Franses, 2003). 

The weighted squared forecast error specification entails assigning heavy weights on extreme 

events in the forecast loss function. Essentially this test provides an additional comparison of 

multiple forecasting models over extreme events in addition to the standard MSFE evaluation. 

We use the Diebold and Mariano (1995) test modified by Harvey et al. (1997) to compare the 

statistical significance between the competing models.1 These alternative models include a 

random walk (RW), an ARIMA(2,0,0), VAR(2), and ARFIMA(2,d,0), with all models selected by 

the AIC.2  

It is worth noting, at least conceptually, the differences between the models and specifically 

what differentiates the VARFIMA from its competitors. In the case where long range 

dependence is not an issue, but only if the data generating properties of a variable is stationary 

or non-stationary, than the RW, ARIMA and VAR models are suited to fit the data. These models 

make explicit assumptions about the data generating properties. In particular, if standard tests 

suggest that a series is stationary, then any movement in that variable away from its 

unconditional mean will only be determined by the AR coefficients and the reversion tends to be 

quick. For some series the data is a near unit root process. Standard test might make a type 1 

error and reject the null of stationarity when the data is in fact simply a near unit root process - 

i.e. it takes a long time for the variable to revert back to its unconditional mean. The VARFIMA 

model controls for the possibility of a near unit root, but now its distribution is conditional on 

that of other variables - or in this paper's case policy uncertainty. In such cases, Bayesian 

framework of the long memory models offers three advantages: (1) it incorporates subjective 

information and stationarity or zero restrictions on parameters, through appropriate prior 

specifications. (2) it provides the exact finite sample distribution for the fractional differencing 

parameter, and (3) it controls for model uncertainty. Particularly for the prediction purposes, it 

allows us to average over the entire distribution of the fractional differencing parameter rather 

than using just one model. This is important since unit root models (a first-differenced VAR 

model) are usually favoured by the data. Unit root and long-memory models have rather 

different consequences for the persistence in the data and incorporating this model uncertainty 

is instrumental for prediction purposes. 

Our out-of-sample forecast starts from Sep 2005, given that the Bai and Perron (2003) tests of 

multiple structural breaks detected the first break on that date, based on the inflation equation 

in the VAR(2). We compare 1, 3, 6 and 12 quarters-ahead forecasts. Forecasts from the 

                                                           
1 Ashley (1998) uses an alternative technique that relies on post sampling techniques to select models. 
While this technique has many advantages and discusses the pitfalls of overtly relying on small MSE 
values to discriminate against models, it is computationally more costly and hence we rely on Van Dijk 
and Franses (2003). Other tests also exist - Makridakis and and Hibbon (2000) use a battery of tests on 
micro, macro and financial data to distinguish the forecasting accuracy of competing models - in general, 
complex methods do not necessarily outperform simpler methods.    
2 Multiple information criteria show that the results do not change. The results are available from the 
authors upon request. 
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VARFIMA are obtained using predictive densities. The point forecasts for comparison are taken 

from the medians.3  The weighted loss function is specified as: 

    
        

            (2) 

Weight (  ) is then defined as (see Van Dijk and Franses (2003) and Aye et al. (2015) for 

further details): 

            (  ).  (  ) is the cumulative distribution of    (i.e. inflation) that impose 

heavier weights the left tail of the distribution (i.e. low inflation periods).  

           (  ). Imposes heavier weights the right tail of the distribution (i.e. high 

inflation periods).  

            (  )     ( (  )) . Impose heavier weights on both tails of the 

distribution.  

 If     , then the loss function reduces to the standard loss function. 

The weighted MSFE is specified as: 

      
 

 
∑       

    
              (3) 

where T+1 is the start of the forecast and T+P is then end of the forecast. The forecasting 

performance of model i versus the baseline model 0 is established by calculating the difference 

between the various loss functions averaged out over the forecast horizon: 

 

 
∑     
   
      

 

 
∑       

    
      

 

 
∑       

    
            (4) 

Figure 1 provides a motivating factor for using the weighted squared forecast error evaluation. 

The distribution of inflation is asymmetric with large weights on the tails.  

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
3 See Ravishanker and Ray (2002) for more details. 
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Figure 1: Inflation density plot and weights for DM test 

 

 

3 Results 
The differencing parameter for inflation and EPU over the forecast period is presented in Figure 

2. It is worth noting that both inflation and EPU are characterized as stationary variables and 

that the degree of integration for EPU and inflation has been stable. The differencing parameter 

for inflation, however, is smaller since the financial crisis in 2008/09 - suggesting that 

persistence in inflation becomes less of a concern during tepid economic growth.  
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Figure 2: Estimates of the fractional integration order over the forecasting period 2005:8 – 2014:6 

 

Note: Shaded regions mark the 95% confidence interval for the estimates of 

the fractional integration order d. 

 

Table 1 compares the root mean squared errors (RMSE) for 12 forecast horizons. The VARFIMA 

model has the lowest RMSE in the majority of the forecast horizons and performs well for short 

and longer forecast periods. It never did worse than second place in instances where it had a 

slightly higher RMSE than an alternative model. 
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Table 1: RMSE's 

h RW ARMA VAR ARFIMA VARFIMA BEST MODEL 

1 4.5384 3.9007 3.7744 3.9266 3.8247 VAR 

2 6.0297 4.2906 4.1611 4.1004 4.0601 VARFIMA 

3 6.3003 4.2925 4.2847 4.0846 4.1031 ARFIMA 

4 6.0488 4.2222 4.2008 4.0324 4.0292 VARFIMA 

5 6.5500 4.2188 4.2063 4.0330 4.0314 VARFIMA 

6 6.5417 4.2052 4.1981 3.9977 3.9993 ARFIMA 

7 6.2752 4.2127 4.2103 4.0020 4.0030 ARFIMA 

8 6.3384 4.2306 4.2259 4.0180 4.0178 VARFIMA 

9 6.3523 4.2408 4.2183 4.0250 4.0231 VARFIMA 

10 6.1880 4.2613 4.2349 4.0449 4.0424 VARFIMA 

11 6.1585 4.2832 4.2630 4.0654 4.0628 VARFIMA 

12 6.8185 4.2926 4.2821 4.0729 4.0710 VARFIMA 

       

Average 6.1783 4.2209 4.1883 4.0336 4.0223 VARFIMA 

 

Tables 2 - 5 summarize the modified DM test for h=1, 3, 6, 9, 12 for uniform, boom, bust and tail 

weights. The tables report standard errors in parenthesis. We include scores to emphasize 

which row models outperform column models significantly. Positive values indicate that the 

row model outperforms the column model, while negative values indicate the converse.  

None of the models significantly outperform each other for h=1 apart from beating the RW 

model. The RW model is significantly outperformed by the VAR and ARFIMA models. In fact, the 

RW model is outperformed by all other model specifications using the DM test for h>1. The 

various models seem to perform equally well using the DM test, except for h=3 where the 

VARFIMA model statistically outperforms the ARIMA and VAR models. Note that none of the 

models significantly outperformed the VARFIMA model - Table 6 supports these results. 

The DM test with boom weights also shows that the VARFIMA model has a lower forecast error 

compared to the other models. This is followed by the ARMA model that is also not bettered by 

any of the other models. The RW model again performs the worst, preceded by the VAR and 

then ARFIMA models. 

The VARFIMA model beats most of the models also in the DM test adjusted for recession 

weights. Interestingly the VAR model is a close second at forecasting compared to a poor 

forecasting performance with boom weights. The VAR model is followed by the ARFIMA, ARMA 

and RW model. 

The ARFIMA and VARFIMA do equally well in the DM test adjusted for tail weights. The RW 

model is significantly outperformed by other models at each forecast horizon. 

The advantage of using a VARFIMA model compared to other forecasting models stems from its 

ability to produce better forecasts. This is most likely the result of controlling for the 

persistence in inflation and exploiting the additional information provided by the policy 

uncertainty variable. One might ask what the marginal benefit of a VARFIMA model over the  
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Table 2: Diebold-Mariano Tests with Uniform Weighted Forecast Errors 

 RW ARMA VAR ARFIMA VARFIMA plus minus 

   h=1     

RW  -1.59 
(0.11) 

-2.14 
(0.03) 

-1.84 
(0.07) 

-1.39 
(0.17) 

0 2 

ARMA 1.59 
(0.11) 

 -0.34 
(0.74) 

-0.37 
(0.71) 

0.78 
(0.43) 

0 0 

VAR 2.14 
(0.03) 

0.34 
(0.74) 

 -0.07 
(0.94) 

0.43 
(0.66) 

1 0 

ARFIMA 1.84 
(0.07) 

0.37 
(0.71) 

0.07 
(0.94) 

 0.47 
(0.64) 

1 0 

VARFIMA 1.39 
(0.17) 

-0.78 
(0.43) 

-0.43 
(0.66) 

-0.47 
(0.64) 

 0 0 

           h=3     

RW  -2.28 
(0.02) 

-2.22 
(0.03) 

-2.32 
(0.02) 

-2.34 
(0.02) 

0 4 

ARMA 2.28 
(0.02) 

 0.33 
(0.74) 

-1.53 
(0.13) 

-1.70 
(0.09) 

1 1 

VAR 2.22 
(0.03) 

-0.33 
(0.74) 

 -2.44 
(0.01) 

-2.59 
(0.01) 

1 2 

ARFIMA 2.32 
(0.02) 

1.53 
(0.13) 

2.44 
(0.01) 

 -1.42 
(0.16) 

2 0 

VARFIMA 2.34 
(0.02) 

1.70 
(0.09) 

2.59 
(0.01) 

1.42 
(0.16) 

 3 0 

           h=6     

RW  -1.94 
(0.05) 

-1.94 
(0.05) 

-2.00 
(0.05) 

-2.00 
(0.05) 

0 4 

ARMA 1.94 
(0.05) 

 -0.21 
(0.83) 

-1.32 
(0.19) 

-1.33 
(0.18) 

1 0 

VAR 1.94 
(0.05) 

0.21 
(0.83) 

 -1.27 
(0.21) 

-1.27 
(0.20) 

1 0 

ARFIMA 2.00 
(0.05) 

1.32 
(0.19) 

1.27 
(0.21) 

 -0.97 
(0.33) 

1 0 

VARFIMA 2.00 
(0.05) 

1.33 
(0.18) 

1.27 
(0.20) 

0.97 
(0.33) 

 1 0 

           h=9     

RW  -1.94 
(0.05) 

-1.97 
(0.05) 

-2.13 
(0.03) 

-2.13 
(0.03) 

0 4 

ARMA 1.94 
(0.05) 

 -1.44 
(0.15) 

-1.32 
(0.19) 

-1.32 
(0.19) 

1 0 

VAR 1.97 
(0.05) 

1.44 
(0.15) 

 -1.20 
(0.23) 

-1.20 
(0.23) 

1 0 

ARFIMA 2.13 
(0.03) 

1.32 
(0.19) 

1.20 
(0.23) 

 0.95 
(0.34) 

1 0 

VARFIMA 2.13 
(0.03) 

1.32 
(0.19) 

1.20 
(0.23) 

-0.95 
(0.34) 

 1 0 

Notes: Numbers in brackets represent the two-sided p-value for the modified DM test. A 

positive sign indicates that the forecast error of the row model is smaller than the column 

model. The last two columns indicate the number of times the row model significantly 

outperforms the column model (+), or is outperformed (-1).   
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Table 3: Diebold-Mariano Tests with Boom Weighted Forecast Errors 

 RW ARMA VAR ARFIMA VARFIMA plus minus 

   h=1     

RW  -2.15 
(0.03) 

-1.66 
(0.10) 

-1.75 
(0.08) 

-1.99 
(0.05) 

0 4 

ARMA 2.15 
(0.03) 

 1.98 
(0.05) 

1.48 
(0.14) 

1.61 
(0.11) 

2 0 

VAR 1.66 
(0.10) 

-1.98 
(0.05) 

 -1.11 
(0.27) 

-1.48 
(0.14) 

1 1 

ARFIMA 1.75 
(0.08) 

-1.48 
(0.14) 

1.11 
(0.27) 

 -0.72 
(0.47) 

1 0 

VARFIMA 1.99 
(0.05) 

-1.61 
(0.11) 

1.48 
(0.14) 

0.72 
(0.47) 

 1 0 

                
   h=3     

RW  -2.00 
(0.05) 

-1.86 
(0.06) 

-2.01 
(0.04) 

-2.03 
(0.04) 

0 4 

ARMA 2.00 
(0.05) 

 2.57 
(0.01) 

-0.20 
(0.84) 

-0.63 
(0.53) 

2 0 

VAR 1.86 
(0.06) 

-2.57 
(0.01) 

 -2.96 
(<0.01) 

-3.09 
(<0.01) 

1 3 

ARFIMA 2.01 
(0.04) 

0.20 
(0.84) 

2.96 
(<0.01) 

 -1.51 
(0.13) 

2 0 

VARFIMA 2.03 
(0.04) 

0.63 
(0.53) 

3.09 
(<0.01) 

1.51 
(0.13) 

 2 0 

        
   h=6     

RW  -1.55 
(0.12) 

-1.53 
(0.13) 

-1.59 
(0.11) 

-1.59 
(0.11) 

0 0 

ARMA 1.55 
(0.12) 

 1.59 
(0.11) 

0.10 
(0.92) 

-0.00 
(1.00) 

0 0 

VAR 1.53 
(0.13) 

-1.59 
(0.11) 

 -0.72 
(0.47) 

-0.80 
(0.42) 

0 0 

ARFIMA 1.59 
(0.11) 

-0.10 
(0.92) 

0.72 
(0.47) 

 -2.15 
(0.03) 

0 1 

VARFIMA 1.59 
(0.11) 

0.00 
(1.00) 

0.80 
(0.42) 

2.15 
(0.03) 

 1 0 

        
   h=9     

RW  -1.58 
(0.11) 

-1.58 
(0.11) 

-1.61 
(0.11) 

-1.62 
(0.11) 

0 0 

ARMA 1.58 
(0.11) 

 1.05 
(0.29) 

-0.02 
(0.99) 

-0.07 
(0.95) 

0 0 

VAR 1.58 
(0.11) 

-1.05 
(0.29) 

 -0.23 
(0.82) 

-0.28 
(0.78) 

0 0 

ARFIMA 1.61 
(0.11) 

0.02 
(0.99) 

0.23 
(0.82) 

 -2.87 
(<0.01) 

0 1 

VARFIMA 1.62 
(0.11) 

0.07 
(0.95) 

0.28 
(0.78) 

2.87 
(<0.01) 

 1 0 
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Table 4: Diebold-Mariano Tests with Recession Weighted Forecast Errors 

 RW ARMA VAR ARFIMA VARFIMA plus minus 

   h=1     

RW  -0.65 
(0.51) 

-1.50 
(0.13) 

-0.56 
(0.58) 

-1.88 
(0.06) 

0 1 

ARMA 0.65 
(0.51) 

 -0.71 
(0.48) 

0.18 
(0.85) 

-0.99 
(0.32) 

0 0 

VAR 1.50 
(0.13) 

0.71 
(0.48) 

 0.63 
(0.53) 

-0.86 
(0.39) 

0 0 

ARFIMA 0.56 
(0.58) 

-0.18 
(0.85) 

-0.63 
(0.53) 

 -0.87 
(0.38) 

0 0 

VARFIMA 1.88 
(0.06) 

0.99 
(0.32) 

0.86 
(0.39) 

0.87 
(0.38) 

 1 0 

        
   h=3     

RW  -2.25 
(0.02) 

-2.54 
(0.01) 

-2.55 
(0.01) 

-2.53 
(0.01) 

0 4 

ARMA 2.25 
(0.02) 

 -1.54 
(0.12) 

-1.58 
(0.11) 

-1.35 
(0.18) 

1 0 

VAR 2.54 
(0.01) 

1.54 
(0.12) 

 -0.85 
(0.40) 

1.14 
(0.25) 

1 0 

ARFIMA 2.55 
(0.01) 

1.58 
(0.11) 

0.85 
(0.40) 

 1.22 
(0.22) 

1 0 

VARFIMA 2.53 
(0.01) 

1.35 
(0.18) 

-1.14 
(0.25) 

-1.22 
(0.22) 

 1 0 

                
   h=6     

RW  -1.84 
(0.07) 

-1.81 
(0.07) 

-1.81 
(0.07) 

-1.89 
(0.06) 

0 4 

ARMA 1.84 
(0.07) 

 -1.31 
(0.19) 

-1.29 
(0.20) 

-1.98 
(0.05) 

1 1 

VAR 1.81 
(0.07) 

1.31 
(0.19) 

 1.65 
(0.10) 

1.06 
(0.29) 

2 0 

ARFIMA 1.81 
(0.07) 

1.29 
(0.20) 

-1.65 
(0.10) 

 1.05 
(0.30) 

1 1 

VARFIMA 1.89 
(0.06) 

1.98 
(0.05) 

-1.06 
(0.29) 

-1.05 
(0.30) 

 2 0 

        
   h=9     

RW  -2.23 
(0.03) 

-2.39 
(0.02) 

-2.38 
(0.02) 

-2.30 
(0.02) 

0 4 

ARMA 2.23 
(0.03) 

 -1.28 
(0.20) 

-1.27 
(0.21) 

-2.42 
(0.02) 

1 1 

VAR 2.39 
(0.02) 

1.28 
(0.20) 

 2.42 
(0.02) 

1.11 
(0.27) 

2 0 

ARFIMA 2.38 
(0.02) 

1.27 
(0.21) 

-2.42 
(0.02) 

 1.10 
(0.27) 

1 1 

VARFIMA 2.30 
(0.02) 

2.42 
(0.02) 

-1.11 
(0.27) 

-1.10 
(0.27) 

 2 0 
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Table 5: Diebold-Mariano Tests with Tail Weighted Forecast Errors 

 RW ARMA VAR ARFIMA VARFIMA plus minus 

   h=1     

RW  0.10 
(0.92) 

-0.83 
(0.41) 

-0.68 
(0.49) 

0.20 
(0.84) 

0 0 

ARMA -0.10 
(0.92) 

 -0.77 
(0.44) 

-0.85 
(0.39) 

0.92 
(0.36) 

0 0 

VAR 0.83 
(0.41) 

0.77 
(0.44) 

 0.15 
(0.88) 

0.81 
(0.42) 

0 0 

ARFIMA 0.68 
(0.49) 

0.85 
(0.39) 

-0.15 
(0.88) 

 0.89 
(0.38) 

0 0 

VARFIMA -0.20 
(0.84) 

-0.92 
(0.36) 

-0.81 
(0.42) 

-0.89 
(0.38) 

 0 0 

        
   h=3     

RW  -2.03 
(0.04) 

-2.21 
(0.03) 

-2.42 
(0.02) 

-2.44 
(0.01) 

0 4 

ARMA 2.03 
(0.04) 

 -0.28 
(0.78) 

-1.33 
(0.18) 

-1.42 
(0.16) 

1 0 

VAR 2.21 
(0.03) 

0.28 
(0.78) 

 -1.94 
(0.05) 

-2.08 
(0.04) 

1 2 

ARFIMA 2.42 
(0.02) 

1.33 
(0.18) 

1.94 
(0.05) 

 -1.35 
(0.18) 

2 0 

VARFIMA 2.44 
(0.01) 

1.42 
(0.16) 

2.08 
(0.04) 

1.35 
(0.18) 

 2 0 

        
   h=6     

RW  -1.65 
(0.10) 

-1.66 
(0.10) 

-1.63 
(0.10) 

-1.64 
(0.10) 

0 2 

ARMA 1.65 
(0.10) 

 -0.11 
(0.91) 

-1.15 
(0.25) 

-1.17 
(0.24) 

1 0 

VAR 1.66 
(0.10) 

0.11 
(0.91) 

 -1.13 
(0.26) 

-1.14 
(0.25) 

1 0 

ARFIMA 1.63 
(0.10) 

1.15 
(0.25) 

1.13 
(0.26) 

 -1.41 
(0.16) 

0 0 

VARFIMA 1.64 
(0.10) 

1.17 
(0.24) 

1.14 
(0.25) 

1.41 
(0.16) 

 0 0 

        
   h=9     

RW  -1.98 
(0.05) 

-2.05 
(0.04) 

-2.08 
(0.04) 

-2.08 
(0.04) 

0 4 

ARMA 1.98 
(0.05) 

 -1.35 
(0.18) 

-1.14 
(0.26) 

-1.14 
(0.26) 

1 0 

VAR 2.05 
(0.04) 

1.35 
(0.18) 

 -1.07 
(0.29) 

-1.07 
(0.29) 

1 0 

ARFIMA 2.08 
(0.04) 

1.14 
(0.26) 

1.07 
(0.29) 

 0.92 
(0.36) 

1 0 

VARFIMA 2.08 
(0.04) 

1.14 
(0.26) 

1.07 
(0.29) 

-0.92 
(0.36) 

 1 0 
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Table 6: Model performance over all periods - counts of statistical significance 

 Total + Total - Score 

 Uniform   

RW 0 46 -46 

ARMA 11 4 7 

VAR 14 2 12 

ARFIMA 13 0 13 

VARFIMA 14 0 14 
    
    
 Boom   

RW 0 27 -27 

ARMA 13 0 13 

VAR 6 10 -4 

ARFIMA 9 7 2 

VARFIMA 16 0 16 

    
 Recession   

RW 0 41 -41 

ARMA 9 9 0 

VAR 17 0 17 

ARFIMA 11 7 4 

VARFIMA 20 0 20 
        
 Tail   

RW 0 20 -20 

ARMA 5 2 3 

VAR 7 2 5 

ARFIMA 6 0 6 

VARFIMA 6 0 6 

Notes: Scores are summed over 12 forecast horizons 

 

competing models are from a policy perspective? Since inflation is likely to have real economic 

effects, knowing what moves inflation, how persistent is inflation and what inflation is likely to 

be in the near future is of great importance to Central Banks that have inflation as a main target. 

A better forecasting model may help Central Bankers to improve the timing of their policy 

decisions as well as the extent of the policy decisions. 

4 Conclusion 
We compare the forecasting performance of a VARFIMA model against a number of traditional 

inflation forecasting models. Augmenting U.S. inflation data with a policy uncertainty variable 

improves the forecasting performance over simple univariate and multivariate specifications. 

Exploiting the information that inflation is a near unit root in a fractionally integrated 

framework further improves inflation forecasting. Our results show that the VARFIMA model 

has the lowest RMSE and is not statistically outperformed by other inflation forecasts 
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specifications - these results are supported when penalizing forecast evaluation during booms 

and recessions. 
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