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Abstract

The conduct of inflation targeting is heavily dependent on accurate inflation forecasts. Non-linear

models have increasingly featured, along with linear counterparts, in the forecasting literature. In this

study, we focus on forecasting South African inflation by means of non-linear models and using a long

historical dataset of seasonally-adjusted monthly inflation rates spanning from 1921:02 to 2013:01. For

an emerging market economy such as South Africa, non-linearities can be a salient feature of such long

data, hence the relevance of evaluating non-linear models’ forecast performance. In the same vein,

given the fact that 1969:10 marks the beginning of a protracted rising trend in South African inflation

data, we estimate the models for an in-sample period of 1921:02-1966:09 and evaluate 24 step-ahead

forecasts over an out-of-sample period of 1966:10-2013:01. In addition, using a weighted loss function

specification, we evaluate the forecast performance of different non-linear models across various extreme

economic environments and forecast horizons. In general, we find that no competing model consistently

and significantly beats the LoLiMoT’s performance in forecasting South African inflation.
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1 Introduction

An inflation targeting framework requires a central bank’s policy actions to be informed by expected future

inflation in relation to a publicized inflation target (Green, 1996). Under such a framework, monetary policy

instruments are used to bring inflation forecasts close to the inflation target (Croce and Khan, 2000). In

February 2000, South Africa adopted an inflation target range of between 3 to 6 per cent. As Leiderman

and Svensson (1995) observe, good forecasting models as well as insights into the transmission mechanisms

of monetary policy are indispensable in an inflation targeting regime. Against this backdrop, the South

African Reserve Bank relies on a suite of models to forecast inflation so as to support the conduct of

monetary policy (van den Heever, 2001).
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Forecasting economic variables - including inflation - by means of non-linear models has recently gained

momentum in the literature (see for example Balcilar et al., 2012; Teräsvirta, 2006; Binner et al., 2005;

Clements et al., 2003; Ascari and Marrocu, 2003; Chauvet et al., 2002 and Stock and Watson, 1998). Most

studies have compared the forecasting performance of non-linear models to that of linear counterparts.

Ascari and Marrocu (2003) forecast US inflation using a linear (NAIRU Phillips curve) and non-linear

(threshold autoregressive) models. They find that, while the non-linear model performs better in capturing

the distribution of inflation, the Phillips curve’s forecast performance is superior in terms of mean-squared

forecast errors over the medium to long-term horizon. Stock and Watson (1998) compare the performance

of autoregressions, exponential smoothing, artificial neural networks and smooth transition autoregression

models in forecasting US macro variables. Their findings are that autoregression models with unit root

pretests perform better than other models. The authors also observe that the forecast performance can

improve when combined with other models’ forecasts. On the other hand, Chauvet et al. (2002) compare

the ability of linear and non-linear models in forecasting Brazilian GDP growth. They conclude that non-

linear models outperform linear counterparts. In addition, the authors observe that allowing for structural

breaks in the data provides a good representation of Brazil’s business cycle. In a study investigating the

performance of linear and non-linear models in forecasting Euro inflation, Binner et al. (2005) observe

that linear models are restricted in the event non-linearities are present in the data. The authors find that

the non-linear (neural networks) model generates better in- and out-of-sample forecasts of EU inflation

compared to linear (i.e. VAR and ARIMA) models. Balcilar et al. (2012) evaluate the out-of-sample per-

formance of linear and non-linear models in forecasting US and Census regions housing prices. The authors

conclude that the non-linear smooth-transition autoregressive model beats the linear autoregressive model

in point forecasts at longer horizons. On the other hand, the linear autoregressive model does better at

shorter horizons.

There exists a vast literature on comparing the performance of different models in forecasting inflation

in South Africa (see for example Balcilar et al., 2013; Gupta and Hartley, 2013; Gupta and Steinbach, 2013,

Kanyama and Thobejane, 2013; Aron and Muellbauer, 2012; Alpanda et al., 2011; Gupta and Kabundi,

2011a, 2011b, 2010; Liu et al., 2009; Woglom, 2005; and Pretorius and van Rensburg, 1996).1 Most of these

studies, except for Balcilar et al. (2013) and Kanyama and Thobejane (2013), rely on linear (or linearized)

methods to forecast South African inflation. On the whole, findings are that different model specifications

beat benchmark time-series models (e.g. ARIMA and Vector Autoregressive (VAR)) models in forecasting

South African inflation. To illustrate, Aron and Muellbauer (2012) observe that cointegrated equations

for South African relative prices outperform univariate benchmark models in forecasting inflation in South

Africa. In studies using large factor models to, among others, forecast South African inflation, Gupta and

Kabundi (2010, 2011a, 2011b) conclude that, given the blessings of dimensionality, factor models tend to

outperform an unrestricted VAR, Minnesota-prior-based Bayesian VARs (BVARs) and typical closed and

small open economy New Keynesian Dynamic Stochastic General Equilibrium (NKDSGE) models. However

more recently, Liu et al. (2009), Alpanda et al. (2011) and Gupta and Steinbach (2013) develop more

sophisticated (allowing for various real and nominal rigidities) closed and small open economy NKDSGE

models for South Africa and conclude that it outperforms the BVAR and VAR in forecasting inflation. An

early study by Pretorius and van Rensburg (1996) argue that the Phillips curve model outperforms the

1Note studies by Gupta and Sichei (2006) and Gupta (2006) depicted the dominance of Bayesian Vector autoregressive
(BVAR) and Bayesian Vector Error Correction (BVECM) models in predicting CPI in log-levels rather than inflation over
their classical counterparts.
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traditional monetarist, money demand as well as time-series (ARIMA) models in forecasting South African

inflation. However, in a study investigating the determinants of inflation in South Africa, Woglom (2005)

posits that inflation forecasts from a simple Phillips curve are not very accurate. Gupta and Hartley (2013)

highlights the role of asset prices in forecasting inflation, by pointing out that Autoregressive Distributed

Lag (ARDL) models that include information on asset prices outperforms simple autoregressive (AR)

models.

In a new strand of research, Balcilar et al. (2013) and Kanyama and Thobejane (2013) use linear and

non-linear frameworks to forecast inflation in South Africa. One one hand, Balcilar et al. (2013) apply

a non-linear NKDSGE model to South African macroeconomic data. They find that the performance of

the non-linear NKDSGE model in forecasting South African inflation beats that of the linear NKDSGE

model, as well as, a selection of VAR and BVAR models, both constant parameter and time-varying. This

highlights the importance of including non-linearities in a DSGE framework to take into account structural

changes, especially in an emerging market economy such as South Africa. Note that though, the “non-

linearity” of the approach only appears in the estimation technique but not assumed in the data generating

process. On the other hand, Kanyama and Thobejane (2013) compare parametric and non-parametric

models in forecasting inflation in South Africa and find that the Kernel regression non-parametric model’s

forecast performance outperforms that of the ARIMA models.

Against this backdrop, we contribute to the literature on forecasting inflation in South Africa in three

ways. First, we focus on evaluating the performance of a suite of non-linear models (namely, Locally

Linear Model Tree, Multi-Layered Perceptron, Non-linear Autoregressive, Genetic Algorithm) relative to

a linear benchmark model (Autoregressive), as well as, a simple forecast combination model (MEAN) in

forecasting South African inflation. Second, whereas the inflation forecasting literature for South Africa

primarily uses quarterly consumer prices as a measure of inflation with an out-of-sample forecasting period

covering the post inflation targeting period starting in 2000, our study relies on a much longer dataset at a

higher frequency, which is of paramount importance to a country targeting inflation. We use the seasonally-

adjusted month-on-month percentage change in consumer prices over the period 1921:02-2013:01 (the out-

of-sample forecasting period being 1966:10-2013:01). The fact that a model’s performance in forecasting

inflation can hinge on the sample period under consideration motivates our choice of a long historical dataset

tracing South African inflation as far back as 1921:02 - the earliest possible date for which month-on-month

inflation data is available for South Africa (given that the monthly consumer price index data starts in

1921:01). In addition, the beginning of an upward trend in the inflation data after 1966:09 determines

our choice for the out-of-sample forecasting period, which also covers all major monetary policy changes

in the South African economy. Third, contrary to the usual practice in the literature of evaluating model

forecasts - which relies on a standard loss function - we follow van Dijk and Franses (2003) who propose

a forecasting evaluation framework based on a weighted loss function. This method allows us to identify

models that, in addition to being a good choice on average, perform better in forecasting extreme events -

e.g. periods of high or low inflation. In this regard, we use the weighted root mean squared error statistic,

as well as, the weighted variant of the Diebold-Mariano (1995) test to compare the forecasting performance

of the different models.

In what follows, Section 2 discusses the methodology. Next, we present empirical results in Section 3.

Finally, Section 4 concludes the paper.
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2 Methodology

2.1 Forecasting models

Although complex in application, non-linear models have been shown to outperform regression models

in modelling both linear and non-linear relationships via logistic functions (Bishop, 1995). Given this

backdrop, we forecast inflation in South Africa using a suite of non-linear models: Multi-Layered Percep-

tron (MLP), Non-linear Autoregressive (NAR), Genetic Algorithm (GA) and Locally Linear Model Tree

(LoLiMoT). Essentially, the models are used to do a 24-step ahead out-of-sample forecast. Table 1 presents

the description of the models.

[Insert Table 1]

Stock and Watson (1999, 2003, 2004) show that blending different approaches works better in forecast-

ing inflation and output using a large number of competing predictors. In this regard, we compute the

combination forecasts (MEAN) from the four models.

To evaluate the performance of individual models as well as the forecast combination method in fore-

casting inflation in South Africa, we compute and rank forecast errors across different forecast horizons.

To add more substance to the comparison, we also include forecast errors from a benchmark autoregressive

model (AR) of order 5.2

2.2 Forecast evaluation using weighted loss functions

The common way in the forecast evaluation literature of assessing the forecast performance of a model is

to use the standard period-t loss function defined by the squared forecast error

Li,t = e2
i,t, (1)

where ei,t = yt− yfi,t represents model i’s forecast error, yt is the target variable’s realization, yfi,t is the

value forecast by model i.

To compare the average loss difference of two contending models - e.g. models 1 and 2 - one needs to

compute their respective mean squared forecast errors (MSFE) as follows

MSFEi =
1

P

T+P∑
t=T+1

e2
i,t, i = 1, 2, (2)

over the period T + 1 to T + P (i.e. the forecast period) and select the model yielding the smallest

MSFE.3

Nonetheless, to an applied forecaster or a consumer of forecasts (e.g. a company chief executive officer

or a politician), different situations may warrant diverse nuances in the specification of the loss function

2The order of the autoregressive model is chosen using the Akaike Information Criterion (AIC).
3RMSE =

√
MSFE
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(Carstensen et al., 2010). To illustrate, forecasting reasonably well an extreme event such as the 2008-2009

global recession could require more than merely seeking to minimize a model’s average squared error.

Against this backdrop, van Dijk and Franses (2003) propose a weighted squared forecast error specifi-

cation of the loss function to assign heavy weights on extreme events. The weighted loss function is given

by

Lw
i,t = wte

2
i,t, (3)

where the weight wt is defined as

1. wleft,t = 1− F̂ (yt), where F (.) represents the cumulative distribution of yt, to impose heavier weights

on the distribution’s left tail. Such a specification defines a “low inflation” loss function.

2. wright,t = F̂ (yt), to attach heavier weights on the distribution’s right tail. Such a specification defines

a “high inflation” loss function.

3. wtail,t = 1 − F̂ (yt)/max(F̂ (yt)), where F (.) represents the density of yt. Such specification places

heavier weights on both tails of the distribution. In this regard, we have a low and high inflation loss

function.

In the event wt = 1, then the weighted loss function (3) reduces to the standard “uniform” loss function.

Evaluating a forecast model i over a forecast horizon T + 1 to T + P , requires computing the weighted

mean squared forecast error

MSFEi =
1

P

T+P∑
t=T+1

wte
2
i,t. (4)

To establish the forecasting performance of model i relative to that of a benchmark model 0 requires

calculating the weighted loss difference

di,t = Lw
0,t − Lw

i,t = wte
2
0,t − wte

2
i,t (5)

and averaging over the forecast horizon

d̄i =
1

P

T+P∑
t=T+1

di,t =
1

P

T+P∑
t=T+1

wte
2
0,t −

1

P

T+P∑
t=T+1

wte
2
i,t (6)

We use van Dijk and Franses (2003)’s weighted loss function framework to investigate the performance

of five non-linear models in forecasting inflation in South Africa.

Furthermore, to ascertain whether empirical loss differences between two contending models are statis-

tically significant, we use a modified version of Diebold and Mariano (1995)’s pairwise test, developed by

Harvey et al. (1997) to correct for small sample bias. The modified Diebold-Mariano (1995) - henceforth

MDM - test compares the forecast accuracy of two models at a time. Essentially, the MDM test assesses

whether the average loss differences between a pair of models is significantly different from zero. Given
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a benchmark model 0 and an alternative model i, the null hypothesis of the MDM test is that of equal

forecast performance,

E[di,t] = E[Lw
0,t − Lw

i,t] = 0 (7)

Harvey et al. (1997) define the MDM test statistic as

MDM =

(
P + 1− 2h+ P−1h(h− 1)

P

)1/2

V̂ (d̄i)
−1/2d̄i, (8)

where h represents the forecast horizon and V̂ (d̄i) is the variance of di,t. The MDM test statistic is

compared to a critical value obtained from the student’s t-distribution with P − 1 degrees of freedom.

2.3 Data description

We measure inflation rates as the seasonally-adjusted4 month-on-month growth rates of Consumer Price

Index (CPI) data for South Africa, obtainable from the Global Financial Database. Essentially, our sample

covers the period 1921:02-2013:01, i.e. a total of 1104 observations. Data availability at the timing of

writing the paper determines the start and end dates of the sample. Given the break in inflation data

around 1966:09, after which inflation starts rising (see Figure 1), we estimate the models using an in-

sample period of 1921:02-1966:09 (i.e. 548 observations), while, the out-of-sample forecasting period is

1966:10-2013:01 (i.e. 556 observations). This in-sample and out-of-sample splits also gives us nearly equal

number of observations, which is enough to estimate the models, especially the data-intensive non-linear

ones, with high degree of precision.

[Insert Figure 1]

Figure 1 shows the historical evolution of South African monthly inflation rates (seasonally-adjusted)

from 1921:02 to 2013:01. Figure 2(a) shows the inflation rates from 1966:10 to 2013:01 - our out-of-sample

period. As can be seen from the figure, a rising trend in inflation starts around 1966:10 which delimits

the in- and out-of-sample periods. Figure 2(b) plots the density function of inflation over the same period.

And, Figures 2(c), (d) and (e) plot the weights under the high inflation periods, low inflation periods and

high and low inflation periods, respectively. We note that the distribution of the inflation variable is not

symmetrical. It is skewed to the right. This supports the use of different weights to penalise forecast errors

under extreme periods of high or low inflation or both. It can also be seen from Figures 2(a) and (d) that

low inflation weights are associated with periods where inflation falls considerably.

[Insert Figure 2]

4Seasonal adjustment is performed with Census X-12 method.
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3 Empirical results

Based on different weighing schemes (i.e. uniform, high inflation period, low inflation period as well as

high and low inflation periods) for the loss function, Table 2 reports the RMSE for each model [including

the benchmark AR(5) model] over forecast horizons h (h ∈ {1, 4, 12, 24}) as well as the associated ranking.

[Insert Table 2]

Using a uniform weights scheme, the LoLiMoT model outperforms all other models across all forecast

horizons as it consistently ranks first - which means it generates the smallest RMSE - in all cases. The

benchmark AR model comes second when considering the very short-term forecast horizon (h = 1) while

the MEAN model ranks second for forecasts beyond 1 month (h = 4, h = 12, and h = 24).

Results based on a high inflation weights scheme show that the AR model has the best forecast perfor-

mance overall (except for the forecast at horizon h = 12 where it is outclassed by the MEAN model). The

LoLiMoT model’s performance under this weighting scheme is average as it consistently ranks third out of

six possible places across all forecast horizons.

When considering the low inflation weights, the MLP model’s forecast performance outdoes that of the

other models over the very short-term horizon (h = 1) as well as over the long-term horizon (h = 24). The

MEAN and LoLiMoT models rank first over the short-term (h = 4) and medium-term (h = 12) respectively.

Nonetheless, given that the LoLiMoT consistently ranks among the first two best performing models across

all forecast horizons and also the fact that the MLP model shows an average performance at h = 4, we can

conclude that, on the whole, the forecasting performance of the LoLiMoT is somewhat comparable to that

of the MLP model when using a recession weights scheme.

Findings based on the tail weights scheme mirror those observed under the uniform weights scheme.

The LoLiMoT model outclasses all other models as it consistently yields the smallest forecasting errors

across all forecast horizons. The MEAN model comes second over horizons h = 4, h = 12 and h = 24. Over

the very short-term (h = 1), the AR model ranks second to the LoLiMoT model.

All in all, results show that the LoLiMoT model’s performance in forecasting South African inflation

is superior to that of other models under the uniform and tail weights schemes. Based on a low inflation

weights scheme, the LoLiMoT model’s forecast accuracy competes with that of the MLP model. However,

under a high inflation weights scheme, the LoLiMoT model performs moderately in forecasting inflation in

South Africa. The AR model beats all other models in forecasting South African inflation under a high

inflation weights scheme, followed by the MEAN model. In contrast, the NAR and GA models have the

worst forecasting performance record both across the weighting scheme used as well as the forecast horizon

considered. Given this backdrop, we conclude the performance of non-linear models (as used in this study)

in forecasting South African inflation appears to be largely (but not wholly) dependent on the prevailing

inflationary environment. Be that as it may, unlike the other models, the LoLiMoT model consistently

ranks among the top three models yielding small forecast error under different inflationary environments

as well as over different forecast horizons.
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Tables 3, 4, 5 and 6 report results from the MDM test which assesses the statistical significance5 of

the empirical findings on the performance of non-linear model in forecasting South Africa under different

weighting schemes and across different forecast horizons.

Under a uniform weights scheme as reported in Table 3, the MDM test results show that the LoLiMoT

and AR models significantly have smaller forecast errors compared to (and therefore outclass) the MLP,

NAR, GA and MEAN models at h = 1. Although the LoLiMoT model has a smaller forecast error in

comparison with that of the AR model, this, however, is shown not to be statistically significant. At h = 4

and h = 12, with the exception of the MLP and AR models - in which cases findings that the LoLiMoT

models yields the smallest forecast error is not statistically significant - results show that the performance

of the LoLiMoT model in forecasting South African inflation significantly outclasses that of other models

(i.e. NAR, GA and MEAN). Similarly, at h = 24, we find that the LoLiMoT model is, on balance, the

best performer. It significantly has a smaller forecast error relative to that of the AR, NAR and GA

models. Furthermore, no model significantly beats the performance of the LoLiMoT model in forecasting

longer-term South African inflation using a uniform weights scheme.

[Insert Table 3]

Table 4 reports MDM test findings based on a “high inflation” weights scheme. At h = 1, results show

that no model outperforms the LoLiMoT and AR models in forecasting South African inflation. In addition,

while the LoLiMoT model while the LoLiMoT model significantly beats the forecasting capability of three

out of five models (i.e. MLP, NAR and GA), the performance of the AR benchmark significantly outdoes

that of four out of five models (i.e. MLP, NAR, GA and MEAN). In this regard, the AR model perform

marginally better than the LoLiMoT model. The outcome at h = 1 is comparable to that at h = 4 and

h = 12. when considering both forecast horizons (h = 4 and h = 12), neither the LoLiMoT model nor the

AR benchmark is outperformed by any other model. However, in each case, the AR model beats three out

of five models (i.e. NAR, GA and MEAN) in forecasting South African inflation; whereas the LoLiMoT

model only significantly outperforms two out of five models (i.e. NAR, and GA). At h = 24, each of the

LoLiMoT, AR and MEAN models is not outperformed by any other other model but outclasses the GA

and NAR models. The MLP model neither outperforms nor is outperformed by any model.

[Insert Table 4]

As shown in Table 5 - which reports results of the MDM test under a “low inflation” weights scheme,

LoLiMoT and MLP are the only models that are not consistently and significantly outperformed by any

other model across different forecast horizons. Results at h = 1 and h = 4 point to a tie between the

LoLiMoT and MLP models - both significantly outperform a set of three models (i.e. NAR, GA and

MEAN). Beyond that, the forecast performance of the two models decouples. At h = 12 the MLP model

significantly beats four out of five competing models (i.e. AR, MLP, NAR and GA) while the LoLiMoT only

significantly outperforms two out of five contending models (i.e. NAR and GA). At h = 24 the LoLiMoT

5We use a 10 per cent level of significance throughout.
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model significantly outdoes two out of five competing models (i.e. AR and GA) whereas the MLP model

significantly outperforms none of the models.

[Insert Table 5]

Table 6 presents the MDM test findings based on a tail weights scheme. The LoLiMoT model is

consistently and significantly not outperformed by any of the other competing models across all forecast

horizons. The LoLiMoT model’s performance in forecasting South African inflation beats significantly that

of four out of five contending models at horizons h = 1 (i.e. MLP, NAR, GA and MEAN) , h = 12 (i.e.

AR, NAR, GA and MEAN) and h = 24 (i.e. AR, MLP, NAR and GA). Even better, the LoLiMoT model

significantly outperforms all other competing models at h = 4.

[Insert Table 6]

4 Conclusion

This paper evaluates the performance of a suite of non-linear models in forecasting South African inflation.

Using different weighting schemes to establish the forecasting performance of the models under different eco-

nomic conditions related to inflation levels, we find that, no competing model beats the LoLiMoT model’s

performance in forecasting South African inflation. This is irrespective of weighing schemes as well as

forecast horizons under consideration. On the whole, we observe that the LoLiMoT model performs consis-

tently and significantly better than other models in forecasting South African inflation. The performance

of other models is mixed across different schemes and forecast horizons. However, we find the NAR model

to be the worst performer as it does not significantly outperform any of the other competing model.

Our findings, coupled with the increasing interest in using non-linear models in empirical economics as

well as the fact that non-linearities can be present in macroeconomic series, show that non-linear methods

should also feature prominently in the suite of forecasting models used by an inflation targeting central bank

such as the South African Reserve Bank. Also, we show that, unlike the common practice of evaluating

forecast evaluation using a standard loss function, different weights can be assigned to forecasts errors

depending on the type of extreme economic environment on which policy-makers would like to get insights.
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Appendix

Table 1: Model description and specification

Code Description and specification

MLP The multi-layered perceptron (MLP) is a feed-forward network with hyperbolic-tangent (tansig)

activation function for the hidden layers and a linear activation function for the output layer. The

MLP can be represented as ŷt = f(xt) = w2g(w2xt + wb) = w2g(zt), where ŷt is the forecast

of the inflation rate at time t, xt = [yt−1, yt−2, . . . , yt−p]′ is the vector of p lags of the inflation,

zt = w2xt + wb; and w1, w2, wb are the weight matrices of the hidden layer, output layer and the

weight vector that connects the bias and the hidden layer. The nonlinear operator (g) represents

the hidden layer with p sigmoid neurons, with input vector zt (activation) and output vector (vt):

vt = g(zt) = [g(zt−1), g(zt−2), . . . , g(zt−p)]′. We use the approach in Taskaya-Temizel and Casey

(2005) and set the number of delays (nodes) to 5 for the input layer. In the MLP design, we use

1 hidden layer with 10 sigmoid neurons and 1 output layer. The Levenberg-Marquardt method is

used for training function.

LoLiMoT The locally linear tree model (LoLiMoT) uses five lags models of the inflation series in input-

output relation. Given the input vector xt = [yt−1, yt−2, . . . , yt−p]′, the overall prediction equation

for LoLiMoT (includes linear and nonlinear part) is given by ŷi,t = ωi0 + ωi1yt−1 + . . .+ ωipyt−p;

ŷt =
∑M

i=1 ŷi,tφi(xt), where ωij denotes the weights of the ith neuron. The smoothing factor that

we used is equal to 1/3. The membership function φi is Gaussian and maximum neuron is M = 10.

NAR A non-linear autoregressive (NAR) model of order p is given by the following input-output relation

ŷt = f [ŷt−1, . . . , ŷt−p, dt−1, . . . , dt−p], where d are the targets for inflation and ŷ the predicted

values by the model, p is the output order. f represents a nonlinear function. Given the network’s

output at time t, the forecast is ŷt. Since we have the targets dt, we can compute the error et as

the difference between dt and yt. We use 5 lags as feedback delays. We also use 1 hidden layer

with 10 neurons. Data is introduced recursively in the loop to estimate 24 steps ahead forecasts.

GA Genetic Algorithm (GA) is defined as a feature of human brain and used in forecasting processes.

Our implementation approximates a general function by minimizing the mean square error between

the target inflation rate and lagged inflation rates as inputs. The GA design uses H chromosomes

gh,t ∈ H, that are binary strings divided into N genes gnh,t with each of them encoding a candidate

parameter θnh,t for the argument θn when a chromosome h ∈ {1, . . . ,H} is at time t ∈ {1, . . . , T}.
It can be determined as gh,t = {g1

h,t, . . . , g
N
h,t}. As a result, each gene n ∈ {1, . . . , N} has its length

equal to an integer Ln and is a string of binary entries: gnh,t = {gn,lh,t, . . . , g
n,Ln
h,t , gn,lh,t ∈ {0, 1}∀j ∈

{1, . . . , Ln}. We use 5 lags and set the maximum number of iterations to 100. We also use the

“Roulette-wheel” for procreation of parents.
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Figure 1: Monthly inflation rates (seasonally-adjusted), South Africa, 1921:02-2013:01
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Figure 2: Inflation series, density of inflation and weights
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Table 2: Root Mean Squared Errors, Ranks and Weights

Uniform weights Boom weights Recession weights Tail weights

RMSE Rank RMSE Rank RMSE Rank RMSE Rank

h=1

LoLiMoT 0.44 1 0.21 3 0.20 2 0.33 1

AR 0.44 2 0.20 1 0.20 3 0.34 2

MLP 0.49 4 0.26 4 0.19 1 0.34 3

NAR 1.02 6 0.72 6 0.25 6 0.53 6

GA 0.57 5 0.30 5 0.23 5 0.40 5

MEAN 0.47 3 0.21 2 0.21 4 0.36 4

h=4

LoLiMoT 0.47 1 0.22 3 0.20 2 0.35 1

AR 0.49 3 0.21 1 0.21 4 0.38 4

MLP 0.63 4 0.38 5 0.21 3 0.38 3

NAR 0.91 6 0.52 6 0.45 6 0.62 6

GA 0.65 5 0.34 4 0.23 5 0.44 5

MEAN 0.48 2 0.22 2 0.17 1 0.36 2

h=12

LoLiMoT 0.53 1 0.27 3 0.20 1 0.38 1

AR 0.58 3 0.26 2 0.23 4 0.44 3

MLP 0.69 4 0.37 4 0.21 2 0.47 4

NAR 0.97 6 0.52 6 0.23 5 0.68 6

GA 0.82 5 0.43 5 0.24 6 0.54 5

MEAN 0.56 2 0.25 1 0.22 3 0.42 2

h=24

LoLiMoT 0.54 1 0.28 3 0.21 2 0.39 1

AR 0.59 3 0.26 1 0.23 5 0.44 4

MLP 0.71 4 0.42 4 0.21 1 0.42 3

NAR 1.01 6 0.73 6 0.24 6 0.51 6

GA 0.88 5 0.59 5 0.23 4 0.51 5

MEAN 0.56 2 0.27 2 0.22 3 0.42 2

Note: This table reports the root mean squared errors (RMSE) as well as the corresponding ranking associated with each
forecasting horizon and weighting scheme.
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Table 3: Modified Diebold-Mariano test for uniform weights

h=1 LoLiMoT AR MLP NAR GA MEAN + −
LoLiMoT 0.21

(0.84)

2.46
(0.01)

2.60
(0.01)

6.43
(<0.01)

3.05
(<0.01)

4 0

AR -0.21
(0.84)

2.42
(0.02)

2.61
(0.01)

7.19
(<0.01)

3.71
(<0.01)

4 0

MLP -2.46
(0.01)

-2.42
(0.02)

2.44
(0.01)

3.68
(<0.01)

-1.37
(0.17)

2 2

NAR -2.60
(0.01)

-2.61
(0.01)

-2.44
(0.01)

-2.18
(0.03)

-2.56
(0.01)

0 5

GA -6.43
(<0.01)

-7.19
(<0.01)

-3.68
(<0.01)

2.18
(0.03)

-6.18
(<0.01)

1 4

MEAN -3.05
(<0.01)

-3.71
(<0.01)

1.37
(0.17)

2.56
(0.01)

6.18
(<0.01)

2 2

h=4 LoLiMoT AR MLP NAR GA MEAN + −
LoLiMoT 0.39

(0.70)

1.48
(0.14)

2.52
(0.01)

5.93
(<0.01)

2.78
(0.01)

3 0

AR -0.39
(0.70)

1.44
(0.15)

2.52
(0.01)

6.53
(<0.01)

2.97
(<0.01)

3 0

MLP -1.48
(0.14)

-1.44
(0.15)

1.87
(0.06)

-0.46
(0.65)

-1.33
(0.19)

1 0

NAR -2.52
(0.01)

-2.52
(0.01)

-1.87
(0.06)

-2.06
(0.04)

-2.48
(0.01)

0 5

GA -5.93
(<0.01)

-6.53
(<0.01)

0.46
(0.65)

2.06
(0.04)

-5.87
(<0.01)

1 3

MEAN -2.78
(0.01)

-2.97
(<0.01)

1.33
(0.19)

2.48
(0.01)

5.87
(<0.01)

2 2

h=12 LoLiMoT AR MLP NAR GA MEAN + −
LoLiMoT 0.77

(0.44)

1.15
(0.25)

2.23
(0.03)

5.98
(<0.01)

2.38
(0.02)

3 0

AR -0.77
(0.44)

1.11
(0.27)

2.22
(0.03)

6.44
(<0.01)

2.41
(0.02)

3 0

MLP -1.15
(0.25)

-1.11
(0.27)

1.61
(0.11)

0.27
(0.79)

-0.99
(0.32)

0 0

NAR -2.23
(0.03)

-2.22
(0.03)

-1.61
(0.11)

-1.67
(0.10)

-2.19
(0.03)

0 4

GA -5.98
(<0.01)

-6.44
(<0.01)

-0.27
(0.79)

1.67
(0.10)

-6.08
(<0.01)

1 3

MEAN -2.38
(0.02)

-2.41
(0.02)

0.99
(0.32)

2.19
(0.03)

6.08
(<0.01)

2 2

h=24 LoLiMoT AR MLP NAR GA MEAN + −
LoLiMoT 2.26

(0.02)

1.57
(0.12)

3.46
(<0.01)

6.33
(<0.01)

0.50
(0.62)

3 0

AR -2.26
(0.02)

1.38
(0.17)

3.37
(<0.01)

6.71
(<0.01)

-0.73
(0.47)

2 1

MLP -1.57
(0.12)

-1.38
(0.17)

2.00
(0.05)

0.16
(0.87)

-1.50
(0.13)

1 0

NAR -3.46
(<0.01)

-3.37
(<0.01)

-2.00
(0.05)

-2.34
(0.02)

-3.16
(<0.01)

0 5

GA -6.33
(<0.01)

-6.71
(<0.01)

-0.16
(0.87)

2.34
(0.02)

-5.99
(<0.01)

1 3

MEAN -0.50
(0.62)

0.73
(0.47)

1.50
(0.13)

3.16
(<0.01)

5.99
(<0.01)

2 0

Notes: This table reports the modifield Diebold-Mariano test statistic for each given pair of models. Numbers ( ) represent the
corresponding two-sided p-value. A positive sign indicates that the forecast error of row model is smaller than that of the column
model and vice versa. The last two columns count the number of times the row model significantly outperforms its competitors
(column “+”) and is outperformed by its competitors (column “−”).
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Table 4: Modified Diebold-Mariano test for boom weights

h=1 LoLiMoT AR MLP NAR GA MEAN + −
LoLiMoT -1.49

(0.14)

2.75
(0.01)

2.11
(0.04)

5.94
(<0.01)

0.87
(0.39)

3 0

AR 1.49
(0.14)

3.19
(<0.01)

2.12
(0.03)

6.56
(<0.01)

2.03
(0.04)

4 0

MLP -2.75
(0.01)

-3.19
(<0.01)

1.98
(0.05)

2.31
(0.02)

-2.58
(0.01)

2 3

NAR -2.11
(0.04)

-2.12
(0.03)

-1.98
(0.05)

-1.87
(0.06)

-2.12
(0.03)

0 5

GA -5.94
(<0.01)

-6.56
(<0.01)

-2.31
(0.02)

1.87
(0.06)

-5.43
(<0.01)

1 4

MEAN -0.87
(0.39)

-2.03
(0.04)

2.58
(0.01)

2.12
(0.03)

5.43
(<0.01)

3 1

h=4 LoLiMoT AR MLP NAR GA MEAN + −
LoLiMoT -1.59

(0.11)

1.36
(0.18)

1.96
(0.05)

6.76
(<0.01)

0.79
(0.43)

2 0

AR 1.59
(0.11)

1.38
(0.17)

1.98
(0.05)

7.66
(<0.01)

2.01
(0.04)

3 0

MLP -1.36
(0.18)

-1.38
(0.17)

1.27
(0.20)

-0.83
(0.41)

-1.34
(0.18)

0 0

NAR -1.96
(0.05)

-1.98
(0.05)

-1.27
(0.20)

-1.70
(0.09)

-1.97
(0.05)

0 4

GA -6.76
(<0.01)

-7.66
(<0.01)

0.83
(0.41)

1.70
(0.09)

-6.74
(<0.01)

1 3

MEAN -0.79
(0.43)

-2.01
(0.04)

1.34
(0.18)

1.97
(0.05)

6.74
(<0.01)

2 1

h=12 LoLiMoT AR MLP NAR GA MEAN + −
LoLiMoT -1.02

(0.31)

1.17
(0.24)

1.80
(0.07)

7.15
(<0.01)

1.09
(0.27)

2 0

AR 1.02
(0.31)

1.21
(0.22)

1.81
(0.07)

7.78
(<0.01)

1.91
(0.06)

3 0

MLP -1.17
(0.24)

-1.21
(0.22)

1.24
(0.21)

-0.44
(0.66)

-1.15
(0.25)

0 0

NAR -1.80
(0.07)

-1.81
(0.07)

-1.24
(0.21)

-1.51
(0.13)

-1.79
(0.07)

0 3

GA -7.15
(<0.01)

-7.78
(<0.01)

0.44
(0.66)

1.51
(0.13)

-6.23
(<0.01)

0 3

MEAN -1.09
(0.27)

-1.91
(0.06)

1.15
(0.25)

1.79
(0.07)

6.23
(<0.01)

2 1

h=24 LoLiMoT AR MLP NAR GA MEAN + −
LoLiMoT -0.06

(0.95)

1.51
(0.13)

5.69
(<0.01)

6.98
(<0.01)

0.68
(0.50)

2 0

AR 0.06
(0.95)

1.51
(0.13)

5.69
(<0.01)

7.63
(<0.01)

1.02
(0.31)

2 0

MLP -1.51
(0.13)

-1.51
(0.13)

1.37
(0.17)

-0.40
(0.69)

-1.50
(0.13)

0 0

NAR -5.69
(<0.01)

-5.69
(<0.01)

-1.37
(0.17)

-3.53
(<0.01)

-5.79
(<0.01)

0 4

GA -6.98
(<0.01)

-7.63
(<0.01)

0.40
(0.69)

3.53
(<0.01)

-8.01
(<0.01)

1 3

MEAN -0.68
(0.50)

-1.02
(0.31)

1.50
(0.13)

5.79
(<0.01)

8.01
(<0.01)

2 0

Note: see notes to Table 2.
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Table 5: Modified Diebold-Mariano test for recession weights

h=1 LoLiMoT AR MLP NAR GA MEAN + −
LoLiMoT 0.52

(0.61)

-0.78
(0.43)

3.04
(<0.01)

2.56
(0.01)

2.44
(0.01)

3 0

AR -0.52
(0.61)

-1.38
(0.17)

2.76
(0.01)

2.08
(0.04)

1.21
(0.23)

2 0

MLP 0.78
(0.43)

1.38
(0.17)

2.77
(0.01)

2.29
(0.02)

1.99
(0.05)

3 0

NAR -3.04
(<0.01)

-2.76
(0.01)

-2.77
(0.01)

-2.94
(<0.01)

-2.99
(<0.01)

0 5

GA -2.56
(0.01)

-2.08
(0.04)

-2.29
(0.02)

2.94
(<0.01)

-2.39
(0.02)

1 4

MEAN -2.44
(0.01)

-1.21
(0.23)

-1.99
(0.05)

2.99
(<0.01)

2.39
(0.02)

2 2

h=4 LoLiMoT AR MLP NAR GA MEAN + −
LoLiMoT 1.27

(0.21)

1.54
(0.12)

1.58
(0.11)

2.46
(0.01)

1.58
(0.11)

1 0

AR -1.27
(0.21)

0.60
(0.55)

1.53
(0.13)

2.41
(0.02)

1.05
(0.29)

1 0

MLP -1.54
(0.12)

-0.60
(0.55)

1.22
(0.22)

1.91
(0.06)

-0.28
(0.78)

1 0

NAR -1.58
(0.11)

-1.53
(0.13)

-1.22
(0.22)

-0.67
(0.50)

-1.48
(0.14)

0 0

GA -2.46
(0.01)

-2.41
(0.02)

-1.91
(0.06)

0.67
(0.50)

-2.49
(0.01)

0 4

MEAN -1.58
(0.11)

-1.05
(0.29)

0.28
(0.78)

1.48
(0.14)

2.49
(0.01)

1 0

h=12 LoLiMoT AR MLP NAR GA MEAN + −
LoLiMoT 0.90

(0.37)

-1.32
(0.19)

2.71
(0.01)

1.98
(0.05)

1.51
(0.13)

2 0

AR -0.90
(0.37)

-1.69
(0.09)

2.75
(0.01)

2.19
(0.03)

1.74
(0.08)

3 1

MLP 1.32
(0.19)

1.69
(0.09)

2.57
(0.01)

2.09
(0.04)

1.87
(0.06)

4 0

NAR -2.71
(0.01)

-2.75
(0.01)

-2.57
(0.01)

0.26
(0.80)

-2.89
(<0.01)

0 4

GA -1.98
(0.05)

-2.19
(0.03)

-2.09
(0.04)

-0.26
(0.80)

-2.11
(0.04)

0 4

MEAN -1.51
(0.13)

-1.74
(0.08)

-1.87
(0.06)

2.89
(<0.01)

2.11
(0.04)

2 2

h=24 LoLiMoT AR MLP NAR GA MEAN + −
LoLiMoT 2.13

(0.03)

1.11
(0.27)

1.04
(0.30)

2.15
(0.03)

-0.77
(0.44)

2 0

AR -2.13
(0.03)

-0.33
(0.74)

1.02
(0.31)

1.72
(0.09)

-1.03
(0.30)

1 1

MLP -1.11
(0.27)

0.33
(0.74)

1.03
(0.30)

1.58
(0.11)

-0.89
(0.37)

0 0

NAR -1.04
(0.30)

-1.02
(0.31)

-1.03
(0.30)

-0.96
(0.34)

-1.02
(0.31)

0 0

GA -2.15
(0.03)

-1.72
(0.09)

-1.58
(0.11)

0.96
(0.34)

-1.42
(0.16)

0 2

MEAN 0.77
(0.44)

1.03
(0.30)

0.89
(0.37)

1.02
(0.31)

1.42
(0.16)

0 0

Note: see notes to Table 2.
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Table 6: Modified Diebold-Mariano test for tail weights

h=1 LoLiMoT AR MLP NAR GA MEAN + −
LoLiMoT 1.24

(0.21)

1.72
(0.09)

4.50
(<0.01)

4.98
(<0.01)

4.29
(<0.01)

4 0

AR -1.24
(0.21)

1.09
(0.28)

4.50
(<0.01)

5.04
(<0.01)

3.59
(<0.01)

3 0

MLP -1.72
(0.09)

-1.09
(0.28)

4.25
(<0.01)

3.56
(<0.01)

0.65
(0.52)

2 1

NAR -4.50
(<0.01)

-4.50
(<0.01)

-4.25
(<0.01)

-3.42
(<0.01)

-4.33
(<0.01)

0 5

GA -4.98
(<0.01)

-5.04
(<0.01)

-3.56
(<0.01)

3.42
(<0.01)

-4.73
(<0.01)

1 4

MEAN -4.29
(<0.01)

-3.59
(<0.01)

-0.65
(0.52)

4.33
(<0.01)

4.73
(<0.01)

2 2

h= 4 LoLiMoT AR MLP NAR GA MEAN + −
LoLiMoT 1.92

(0.05)

2.73
(0.01)

3.50
(<0.01)

4.29

(<0.01)

3.53

(<0.01)

5 0

AR -1.92
(0.05)

1.58
(0.11)

3.44
(<0.01)

4.27
(<0.01)

2.64
(0.01)

3 1

MLP -2.73
(0.01)

-1.58
(0.11)

3.18
(<0.01)

2.41
(0.02)

-0.59
(0.55)

2 1

NAR -3.50
(<0.01)

-3.44
(<0.01)

-3.18
(<0.01)

-2.57
(0.01)

-3.41
(<0.01)

0 5

GA -4.29
(<0.01)

-4.27
(<0.01)

-2.41
(0.02)

2.57
(0.01)

-3.88
(<0.01)

1 4

MEAN -3.53
(<0.01)

-2.64
(0.01)

0.59
(0.55)

3.41
(<0.01)

3.88
(<0.01)

2 2

h=12 LoLiMoT AR MLP NAR GA MEAN + −
LoLiMoT 1.89

(0.06)

0.97
(0.33)

5.71
(<0.01)

4.34
(<0.01)

3.18
(<0.01)

4 0

AR -1.89
(0.06)

0.26
(0.80)

5.73
(<0.01)

4.49
(<0.01)

2.22
(0.03)

3 1

MLP -0.97
(0.33)

-0.26
(0.80)

4.50
(<0.01)

2.99
(<0.01)

0.16
(0.87)

2 0

NAR -5.71
(<0.01)

-5.73
(<0.01)

-4.50
(<0.01)

-2.36
(0.02)

-5.77
(<0.01)

0 5

GA -4.34
(<0.01)

-4.49
(<0.01)

-2.99
(<0.01)

2.36
(0.02)

-4.34
(<0.01)

1 4

MEAN -3.18
(<0.01)

-2.22
(0.03)

-0.16
(0.87)

5.77
(<0.01)

4.34
(<0.01)

2 2

h=24 LoLiMoT AR MLP NAR GA MEAN + −
LoLiMoT 3.19

(<0.01)

1.67
(0.10)

1.97
(0.05)

4.64
(<0.01)

0.36
(0.72)

4 0

AR -3.19
(<0.01)

0.89
(0.37)

1.86
(0.06)

4.37
(<0.01)

-0.95
(0.34)

2 1

MLP -1.67
(0.10)

-0.89
(0.37)

1.68
(0.09)

1.50
(0.13)

-1.27
(0.20)

1 1

NAR -1.97
(0.05)

-1.86
(0.06)

-1.68
(0.09)

-1.41
(0.16)

-1.78
(0.07)

0 4

GA -4.64
(<0.01)

-4.37
(<0.01)

-1.50
(0.13)

1.41
(0.16)

-3.60
(<0.01)

0 3

MEAN -0.36
(0.72)

0.95
(0.34)

1.27
(0.20)

1.78
(0.07)

3.60
(<0.01)

2 0

Note: see notes to Table 2.
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