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A significant portion of the world's agricultural systems currently operate at the extreme end of 

the climate conditions that are considered to be suitable for crop and livestock production. Under 

these conditions, even moderate climate changes are anticipated to drive substantial 

transformational changes to agricultural systems. Transformations require new investments and 

infrastructure and can leave some assets stranded. These transformations can be partially or 

wholly irreversible and hysteresis effects can make switching difficult and mistakes costly to 

reverse. This paper demonstrates how a real options decision framework, ―Real Options for 

Adaptive Decisions‖ (ROADs), can be used to investigate how uncertainties about the climate 

affect the adaptation and transformation of agricultural systems. By building upon recent 

developments in the mathematics of stochastic optimization, we extend traditional economic 

analyses of agricultural investment decisions based on net present values to better represent 
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incomplete knowledge and uncertainty. We report results from a case study in South Australia 

that describes the transition pathways farmers might follow as their industries are transformed in 

response to climate change. 
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1. Introduction 

Agricultural systems are adaptations to the prevailing climate (Gornall et al. 2010). Over time, 

producers have improved their understanding of the specific characteristics of the climate that 

affect agricultural production and they have responded accordingly, by making decisions 

informed by historical experience. Climate change presents a challenge to decision-makers 

because decision-making in agricultural systems is calibrated to the parameters of the current 

climate. For example, Australian agricultural systems, such as broad-acre wheat production, have 

evolved to suit a highly variable climate but there is an expectation that this variability is 

bounded. Future decisions to switch between broad-acre cropping and alternative agricultural 

systems will be governed by interactions between changing levels of climate variability and 

other agro-ecological and economic factors.  

The location of the thresholds where farmers decide to switch between cropping and grazing has 

changed with technology and commodity values, but is sensitive to climatic factors (Ryan et al. 

2009; Nidumolu et al. 2012). The impacts of climate change will be most acute at the margin of 

the Australian wheat belt, where cropping already gives way to extensive grazing. Moving away 

from high rainfall cropping systems near the coast, there is a transition as average rainfall 

steadily decreases until the margin between wheat-dominant cropping and extensive grazing 

systems is reached further inland. The effect of climate uncertainty and variability on the 
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decision thresholds at this margin thereby provides useful case studies of the adaptation of 

agricultural systems to climate change. 

The decisions made by farmers in response to climate change are the central determinants of its 

impact on agricultural productivity. Although the majority of previous research has focused on 

the biological and agricultural science dimensions of climate change, understanding the 

consequences of uncertainty for decisions about agricultural production is vital for understanding 

the resilience of Australia‘s agricultural systems to climate change and to assess the options 

available for climate adaptation. Past research has provided some understanding of the range of 

possible climate scenarios, but without linking this research to an analysis of farmers‘ adaptation 

decisions we cannot understand the potential transformation of wheat-dominated agricultural 

production with climate change.  

The adaptation actions of farmers and rural communities can take various forms, such as (1) 

adjusting practices and technologies, (2) changing production systems, and (3) re-locating 

production (Howden et al. 2010; Rickards and Howden 2012). The second and third actions 

represent choices between alternative production regimes in the agricultural systems that will be 

affected by climate change. A switch from one regime to another can be irreversible or only 

partially reversible. Switching production regimes may require investments into production 

techniques (i.e. equipment or knowledge), as well as processing and infrastructure. Old 

technology may have a salvage value or problems with stranded assets. These complications 

throw up barriers to adaptation, with broader implications for rural communities and regional 

economies.  In this study, we model barriers to adaptation using real options. 

This article proceeds as follows. Section 2 outlines our approach to the real options analysis of 

agro-economic systems. We describe recent developments in stochastic optimization that help 

bridge the gap between understanding the biophysical impacts of climate change and 

understanding how these impacts might translate into decisions about agricultural production. 
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We further develop the real options framework presented by Hertzler (2007) that we call Real 

Options for Adaptive Decisions (ROADs). Section 3 applies this methodology as an illustration 

to a case study region in South Australia, using a spatial-temporal approach (Ford et al. 2010; 

Hayman et al. 2010; Nidumolu et al. 2012) to model transitions in farming regimes driven by 

climate changes. Section 4 presents the results, Section 5 discusses these results and the use of 

the method in application to agricultural climate change adaptation, and Section 6 concludes the 

article.  

 

2. A practical approach to real options analysis 

Real Options is the name given to the modern analytical method for modelling the value of 

flexibility and the timing of action in decision-making under uncertainty (Dixit and Pindyck 

1994; Copeland and Antikarov 2001). Simulation and scenarios testing approaches generally 

seek to understand the effects of risk whereas the real options approach seeks to explicitly show 

how decision-makers can manage risk. It does this by examining the trade-offs between acting 

sooner versus retaining the option to act later, by taking into account the value of flexibility and 

the value of new information that can help to resolve uncertainty. This approach extends 

traditional economic analyses of agricultural investment decisions based on simple cost-benefit 

analysis and net present values (NPV) to better represent incomplete knowledge and uncertainty. 

Taking option values into account is especially important for climate adaptation because many 

adaptation decisions have consequences that are costly to reverse, or even irreversible.  

The ROADs approach to real options analysis allows us to understand the timing of adaptation 

decisions, modelled as changes from one production regime to another. For example, Figure 1 

represents a farmer currently in an agricultural production regime which is primarily concerned 

with wheat cropping.  
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Figure 1: One of many possible sequences of regime transition with climate change 

 

As the climate changes, wheat production may decline and the farmer could switch to a regime 

with wheat grown in some years and pasture in others. With more adverse climate changes, this 

farmer might even switch to a regime of extensive grazing. Within each of these broader regimes 

there is the possibility to adapt by making smaller changes to farming practices, such as adopting 

improved techniques or adopting new crop varieties. Adaptations at any scale, however, can be 

both costly and risky, and farmers may be hesitant to adapt immediately especially when there 

are costs associated with switching to a new regime, or reversing a previous switch.  

The timing of switches depends on the risks and uncertainties associated with the alternative 

regimes. A producer might choose to switch immediately, or never, depending on how the 

climate is expected to change and the variability associated with that change. The ROADs 

framework allows us to model the timing of decisions by calculating the values associated with 

various aspects of climate adaptation decision problems. These include option values, the costs 

of switching back after a mistaken decision to switch, and the time remaining before growers can 

be expected to switch from one regime to another. Examining these costs and benefits provides 

one approach to understanding the resilience of alternative agricultural production regimes to 

climate changes.  
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2.1 Implementing a real options analysis for adaptation to climate change 

The first step in understanding the implications of climate change for a given system is to 

understand that system. In this paper we are interested in understanding the implications of 

climate change on wheat dominant agricultural systems and the thresholds for transformations to 

other agricultural systems. This means that we need to be able to characterize both the wheat 

dominant agricultural system and alternative agricultural systems. For each alternative, a time 

series of seasonal profits or gross margins is used to estimate stochastic differential equations. In 

their most basic form, differential equations relate the variations in the state variable dx against 

the current position of the state variable x. An important characteristic of any system is the extent 

to which x can change year to year and whether or not there exists a tendency for dx to tend 

towards a value of zero, that is, for the system to approach some kind of equilibrium.  

There are two common stochastic differential equations for which transition probabilities are 

known, these being Geometric Brownian Motion and the Ornstein-Uhlenbeck process. In real 

options analyses, Geometric Brownian Motion is frequently employed due to the existence of the 

well-known Black-Scholes analytical solution for the option prices. Even though an equivalent 

analytical solution is not available for the Ornstein-Uhlenbeck process it is possible to calculate 

solutions using finite-difference algorithms (Miranda and Fackler 2002). The two stochastic 

processes, however, have very different properties and their application to a particular context 

needs to be carefully considered. If we defined an Ornstein-Uhlenbeck process over some 

variable of interest, say gross margins   , the corresponding stochastic differential equation 

would be 

( )           *    +        

The presence of the known transition probability makes it possible to estimate this process from 

time series data using Maximum Likelihood Estimation (Tang and Chen 2009) for the unknown 
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parameters b,   and  , where b is the rate of reversion to the long-term mean  , and   is the 

variability. The Ornstein-Uhlenbeck process displays the important property of linear reversion 

(Doob 1942). Geometric Brownian Motion, unlike an Ornstein-Uhlenbeck process, has no 

tendency to revert to a mean and is undefined for negative values of x. Most agronomic systems 

may be approximately described by an Ornstein-Uhlenbeck process as those systems tend 

towards some mean over a sufficiently long period of time.  

After estimating the parameters which characterise the dynamics of the alternative systems, the 

option values, location of regime thresholds and the expected times of transition between 

regimes may be calculated. These are estimated using standard option pricing equations (Hertzler 

1991; Dixit and Pindyck 1994): 

( )       
  

  
    

  

  
 *   +  

 

 

   

   
     

( )        (   ( ))   ( ( )) 

In equation (2), w is the option price, x is the gross margin, r is the interest rate and parameters b, 

   and   are from the Ornstein-Uhlenbeck process in equation (1). The first term in equation (2) 

is the shadow price of time. The second term is the opportunity cost of retaining the option 

instead of selling it and putting the money in the bank. The third term is the value of an expected 

change in the gross margin. In this term, a shadow price multiplies the expected change to give a 

negative cost or a positive benefit. The fourth term is the risk premium. In this term, a shadow 

price for risk multiplies the variance. Together, the last two terms are the risk-adjusted capital 

gains from retaining the option. If the capital gains exceed the opportunity cost, the option price 

will increase. Otherwise it will decrease. 

In equation (3), V is the payoff function. Unlike financial options, the options to exit and enter 

are perpetual options and can be held indefinitely or exercised at any time. The exercise time 

chosen by the farmer is T. If the option price exceeds the payoff function, the farmer will retain 
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the option. If the payoff function exceeds the option price, the farmer should have already 

exercised the option. The optimal exercise time is when the option price falls to just equal the 

payoff function. The payoff function is highly nonlinear with a kink. It is specified as 

( )         {
 , ( )   -  , ( )   -   

  , ( )   -   
  

In equation (4),   is equal to +1 for the option to enter and -1 for the option to exit. The 

parameter k is either the annual cost of plant and equipment or the annual salvage value per 

hectare. 

Of course, the entry and exit decisions are even more complicated than this. When our 

representative farmer enters a regime, the option to enter is destroyed but a new option is 

created—the option to exit. The farmer anticipates this will happen before deciding to enter. In 

other words, the payoff function for the option to enter also includes the value of the option to 

exit. To go further, upon exiting, the option to exit is destroyed and the option to enter another 

regime is created. The option value of the next regime must be included in the option value to 

exit from this regime, and so on in a sequence of regimes. 

To solve all this, we have to assume there is a last regime and a complete exit from farming with 

the money put in the bank. We solve for the exit from this last regime using the payoff function 

in equation (4). For the entry into earlier regimes, we use a different payoff function: 

( )           .  (  )/  {
 , ( )   -  , ( )   -   

  , ( )   -   
  

In equation (5), wf is used to denote the value of future options, which is added to the terminal 

value for the current regime. In this way, a sequence of regimes is modelled. 

The farmer may switch between regimes at any time T. In other words, we must find the optimal 

stopping time. Unfortunately, the option prices are poorly behaved. The discount rate fights to 

reduce the option prices. Uncertainty and the nonlinear payoffs fight to increase the option 
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prices. At the optimal time, the fight is most intense, creating waves in the option prices. There 

are many local maximums and minimums and the usual method of differentiating with respect to 

T will not work. Instead, finding the optimal stopping time requires a global search algorithm. 

There are no analytical solutions for the sequence of entry and exit options as farmers switch 

from one regime to another. Instead, the search algorithm employed in ROADs (Hertzler 2012a) 

has four steps: 

Step 1: For each decision problem (e.g. decision to enter wheat), create a table with one 

dimension for all the possible gross margins (e.g. -$1000 to $2000/ha) and the other 

dimension for all the possible times (0 to 50 years). Then, solve the option pricing 

equation (2) for all possible times and gross margins, in other words, for all cells in the 

table. This creates a table of option values for each gross margin at each time.  

Step 2: For a particular gross margin, search the table in the time direction for the largest 

option value. Record this option value and the corresponding time, which is the expected 

time until the regime transition. 

Step 3: Repeat Step 2 for all possible gross margins and create a table with three 

columns:  one for gross margins, one for the largest option values and one for expected 

times.  

Step 4: Plot the largest option values (y-axis) against the range of gross margins (x-axis) 

and compare with the associated terminal values from equation (4) or (5). Identify the 

gross margin where the largest option price is equal to the terminal value. At this gross 

margin, the decision-maker will choose to exit the current regime and enter another.  
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2.2 Estimating probabilities of regime change 

The use of an Ornstein-Uhlenbeck or Geometric Brown Motion process also allows for direct 

estimation of the probabilities of crossing regime thresholds. In this case, the Ornstein-

Uhlenbeck process in equation (1) has the transition density function 

( )        (       )  {
    

     (      (   ))   
}  

  {
[(   ) (   )   (   )]

 

  (      (   ))
}

 

In this equation, f is the probability density function, s is the present time, x is the present gross 

margin, t is some time in the future, and y is a random gross margin which can occur at time t.  

As time t gets large, the transition density converges to the invariant density 

( )        ( )  {
    

     
}  

  {
(   ) 

  
}
 

If parameter b was set to 0.5, this would be the more familiar normal density. The transition 

probability distribution is the integral of the density, 

( )        (       )  ∫  (       )  

 

  

 

If y in equation (8) is set equal to the threshold for switching, then F is the probability of being 

below the threshold and 1-F is the probability of being above the threshold. As time t gets large, 

the transition probability distribution also converges to an invariant probability distribution, 

( )       ( )  ∫  ( )  

 

  

 

Similarly, as time t gets large, F is the equilibrium probability of being below the threshold and 

1-F is the equilibrium probability of being above the threshold. A companion package for 

ROADs called TRIPs (Hertzler 2012b) has been developed to manage the calculation of these 
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transition probabilities. The following section illustrates an application to model the implications 

of climate change in the Australian wheat belt.  

 

3. An application to climate adaptation in the Australian wheat belt 

To demonstrate the application of this real options method, a spatial transect was used as an 

analogue for possible temporal changes (Ford et al. 2010; Hayman et al. 2010; Nidumolu et al. 

2012; Ramírez-Villegas et al. 2011). This allows us to model the adaptation and transformational 

processes that might occur in the future at one site by examining the nature of optimal decisions 

at another site where possible future conditions are currently observed. It is important to note 

that although spatial transects can be used to represent possible future conditions, one site will 

never become exactly the same as another site. In particular, there are temporal changes 

associated with climate change that are not captured by spatial transects, including higher CO2 

concentrations and their interaction with higher temperatures. Even so, the spatial-temporal 

analogues approach reflects the fact that the location of a farm can be a good predictor of the 

prevailing farming activity. Figure 2 maps the selected transect across the South Australian 

wheat belt. 

 

Figure 2: Case study transect 
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This transect has been deliberately selected to straddle Goyder‘s line, a line drawn through 

south-eastern South Australia in the 1860s by George Goyder, the Surveyor-General of South 

Australia, which demarcates the land suitable for extensive grazing to the north from the land 

suitable for cropping in the south. This transect ranges from intensive cropping with a high 

proportion of relatively high risk and high return crops at Clare, through to an increasing 

proportion of cereals with lower inputs around Orroroo, and then finally to grazing enterprises 

with opportunistic cropping around Hawker (Hayman et al. 2010). Moving from Clare towards 

Hawker, production conditions become hotter and drier, which reflects the general pattern of 

climate changes anticipated for the region (CSIRO and BoM 2007). Through the time period for 

which simulation data were available, 1900-2007, the annual average rainfall at Clare, Orroroo 

and Hawker was 623, 338 and 310mm, respectively. Average growing season rainfall for Clare, 

Orroroo and Hawker was 486, 225 and 201mm, respectively.  

Since we are interested in the thresholds for transformations to other agricultural regimes, we 

must seek to understand both the wheat-dominant agricultural system and alternative systems 

such as extensive grazing. Reducing this illustration to two regimes is not unreasonable given 

that mixed crop-livestock farming systems have been a major and long standing feature of 

agricultural land use in Australia (Bell and Moore 2012). For our purposes we can think of 

wheat-cropping and livestock-grazing, in this case sheep (merino) production, as two alternative 

production regimes available to a farmer. Accordingly, the decision problems modelled for 

South Australia consist of switching into and out of wheat cropping and sheep grazing.  

Accessing appropriate data is always a challenge, but for present purposes a combination of 

climate data, farm-level data, and simulation results from APSIM (McCown et al. 1996) was 

used to model the production regimes. Table 1 provides an overview of the data sources and 

simulations used for each location. APSIM simulations were used to translate historical weather 

observations into time series of wheat yields and sheep stocking rates. In these simulations, 
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variability in production is driven exclusively by the timing and magnitude of weather events, 

primarily rainfall, since all other inputs and technologies were held constant by APSIM. Sheep 

stocking rates were estimated based on the relationship between annual rainfall and biomass 

growth (Assang et al. 2012). These time series of yields and stocking rates were converted into 

time series of gross margins using data on representative costs and returns from wheat and sheep 

production (Rural Solutions South Australia 2012).  

Table 1: Data overview 

Regime Data Type Period Regime Costs 
Transition 

Costs 

Wheat 

cropping 

APSIM 

simulation  

1900-2007 Revenue Wheat $300/t 

  

Entry Cost  

$309/ha 

Exit Salvage  

$278/ha 

Variable 

Costs 

Clare ($/ha): $417 

Orroroo, Hawker ($/ha): $85.14 (0-

0.2t/ha), 87.42 (0.2-0.6t/ha), $91.84 

(0.6-1.2t/ha), $105.26 (1.2-1.8t/ha), 

$112.75 (>1.8 t/ha) 

Sheep 

grazing 

GSR-

Stocking 

rate 

calculation 

1900-2007 Revenue Wool 840c/kg, Wethers $95/head Entry Cost  

$32/ha 

Exit Salvage  

$29/ha 

Variable 

Costs 

SA Farm Gross Margin Guide 2012 

 

4. Results 

The time series of gross margins at each location was modelled using Ornstein-Uhlenbeck 

stochastic differential equations with the parameters estimated using Maximum Likelihood 

Estimation based on equation (6). Although, ordinary least-squares could also be used as the 

errors are not heteroskedastic. Table 2 presents the parameter estimates for each location. 

These parameter estimates are used to describe the stochastic production regimes along each 

transect. In particular, the parameter   of an Ornstein-Uhlenbeck process, the average state 

attractor, represents the average gross margin at each location in our models. Moving along this 

transect,   is 649.8 at Clare, translating to an average gross margin of $649.8/ha. Notably,  



14 

 

Table 2: Estimated Ornstein-Uhlenbeck SDE parameters for regime gross margins ($/ha) 

Location Regime b   σ    

Clare 
Wheat 0.916 649.8 203.7 0.232 

Sheep 0.887 471.6 147.9 0.235 

Orroroo 
Wheat 1.038 481.3 353.9 0.510 

Sheep 0.923 186.6 93.5 0.369 

Hawker 
Wheat 0.940 328.7 314.7 0.698 

Sheep 0.891 157.6 111.9 0.532 

 

average gross margins decrease to $481.3/ha at Orroroo and $328.7/ha at Hawker as we move 

along this transect.  

If the rate of reversion, b, was 0.5, the Ornstein-Uhlenbeck process would become a normally 

distributed process and the coefficient of variation could be calculated in the usual way as 

     ⁄ . In Table 2, the rate of reversion is much larger and the variance has been scaled, 

      ⁄ , so that the coefficient of variation as a measure of relative riskiness of production 

can be calculated as    √  ⁄ . The value of CV is estimated for wheat production as 0.232 for 

Clare, 0.510 for Orroroo, and 0.698 for Hawker. This indicates that wheat production at Clare is 

the least risky when compared with Orroroo or Hawker, given that larger values of CV imply 

greater production risk. In contrast, at Orroroo and Hawker, sheep grazing is less profitable than 

wheat but is also less risky, whereas at Clare, sheep grazing is less profitable than wheat but 

about as risky. 

The real options analysis conducted using the ROADs and TRIPs modules uses the parameters 

estimated for the Ornstein-Uhlenbeck processes at each location to examine three decision 

problems, (1) ‗Enter wheat‘ with the possibility to exit farming, (2) ‗Exit wheat to enter sheep‘, 

and (3) ‗Exit sheep‘. The costs of transition k appearing in equations (4) and (5) are reported in 

Table 1, for both entry and exit from a particular regime. Table 3 presents the resulting estimates 

from ROADs of the option value (w), regime threshold (x), expected waiting time at the 
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threshold (T-t), and the estimates from TRIPs of the probability of transition from one regime to 

another (F).   

Table 3: Estimated option values w ($/ha), threshold values x ($/ha), expected waiting times at the threshold T-t 

(years) and transition probabilities F (%) 

Location Decision w x T-t F 

Clare 

Enter wheat 320.3 629 0.18 55.50 

Exit wheat to 

enter sheep  
369.0 268 2.19 0.56 

Exit sheep 5.3 29 0.05 0.00 

Orroroo 

Enter wheat 201.7 509 0.61 40.72 

Exit wheat to 

enter sheep  
253.0 148 2.21 8.73 

Exit sheep 5.5 29 0.14 1.17 

Hawker 

Enter wheat 113.0 419 0.47 34.71 

Exit wheat to 

enter sheep  
220.6 158 1.01 22.85 

Exit sheep 12.5 19 0.15 5.07 

 

We use the case study to explain how these estimates can be interpreted. At Clare for the first 

decision ‗Enter wheat‘ we are examining the conditions under which a farmer would exit the 

current regime, which in this case is akin to money sitting in the bank earning interest, to enter a 

regime of wheat growing. Each of these regimes has different risks, and the switch will not 

happen immediately. The results in Table 3 indicate that a farmer will wait until a threshold 

gross margin (x) of $629/ha is observed before entering wheat production, and is willing to pay 

an option value (w) in foregone potential earnings of $320.3/ha while they wait. The expected 

waiting time at the threshold (T-t) of 0.18 years indicates that once a gross margin of $629/ha is 

observed, a farmer will start wheat cropping within a year. A graphical illustration of this 

situation is captured in Figure 3, which identifies the threshold gross margin on the x-axis 

($629/ha) and the option value on the y-axis ($320.3/ha). 
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Figure 3: Option value at state threshold – entry into wheat cropping at Clare 

 

With the rapid rates of reversion estimated in Table 1, the transition probability in equation (8) 

converges to the invariant probability in equation (9) in about 5 years. Figure 4 allows us to 

estimate the probability of entering wheat cropping within a 5 year period for a given threshold 

gross margin.  

 

Figure 4: Transition probability – entry into wheat cropping at Clare 
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The estimated value for the probability of transition (F) is 55.5 per cent. This value can be 

identified in Figure 4 as one minus the probability (44.5%) along the y-axis that corresponds to 

the threshold gross margin ($629/ha) along the x-axis. That is, the probability of being above a 

gross margin of $629/ha is 55.5 per cent. This probability indicates the likelihood of entering the 

wheat production regime sometime in the next 5 years, regardless of the current gross margin.  

An examination of the results for the decision to enter wheat production for the two other 

locations on our spatial transect, Orroroo and Hawker, indicate estimated transition probabilities 

are 40.72 and 34.71 per cent, respectively (Table 3). Compared to the estimated probability at 

Clare (55.5%) there is a steady decline in the probability of a farmer entering wheat production. 

This is consistent with the steady decline in the favourable conditions for wheat production as we 

move along the transect (Table 2).  

Similar patterns emerge for other regime transitions, such as the transition from wheat to sheep 

production. At Clare, Orroroo and Hawker these transition probabilities are 0.56, 8.73 and 22.85 

per cent, respectively (Table 3). Wheat is a profitable albeit relatively risky regime when 

compared to sheep production. Under these circumstances the probability of a transition from 

wheat to sheep is consistent with an overall decline is the profitability of the farm. The likelihood 

of crossing this threshold increases along the transect towards less favourable wheat production 

locations.  

Using this approach to real options analysis in conjunction with a spatial-temporal analogues 

approach allows us to consider the implications of adverse climate change without relying on 

particular climate projections. Climatic conditions at Clare may approach conditions at Orroroo 

or Hawker because there are reasons to anticipate a pattern of warming and drying. For instance, 

Suppiah et al. (2006) report worst case projections of rainfall change based on scenarios in the 

region of the study transect. Projected change by 2030 in rainfall falls within ranges of autumn -6 

to +2 per cent, winter -11 to -1 and spring -20 to -1 per cent. Projected change by 2070 in 
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autumn is -19 to +7, winter is -35 to -3 and spring is -60 to -3 per cent. Given the relatively 

greater importance that spring growing season rainfall has for crop development, these worst 

case scenarios look rather dire. The growing season rainfall in Clare is approximately 50 per cent 

greater than that in Orroroo, and 60 per cent greater than that in Hawker. In the worst case, Clare 

would experience conditions somewhere between its current conditions and those at Orroroo by 

2030, and approximately the current conditions experienced at Hawker by 2070. The implication 

being that as conditions at Clare became more like current conditions at Orroroo or Hawker, then 

the likelihood of a transition from a wheat production to a sheep production regime is increased. 

Of course, these results are not forecasts. They are predicated on the assumption that space is a 

good analogue for climate change and that climate will change significantly. One region may 

come to resemble another region but will never become exactly like an analogue along a spatial 

transect. 

Beyond the direct biophysical implications of climate change for farmers there are also important 

implications for market prices. For instance, commodity prices could also be characterised by a 

stochastic process. Because our analysis depends upon APSIM results, stochastic prices were not 

included. We can, however, illustrate possible implications by examining the sensitivity of 

transition probabilities to changes in the relative prices of outputs. For instance, Table 4 presents 

estimated transition probabilities from wheat to sheep under conditions of a wheat price 

 $100/T from the $300/T assumed above, with the price of sheep held constant.  

Table 4: Probabilities for transition between wheat and sheep production regimes based on alternative wheat pricing 

assumptions with sheep prices held constant. 

Wheat Price ($/T) Clare (F) Orroroo (F) Hawker (F) 

200 32.26% 31.38% 45.27% 

300 0.56% 8.73% 22.85% 

400 0.00% 2.13% 11.29% 
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Probabilities indicate that transition out of wheat into the alternative sheep-based production 

regime is strongly contingent on the price of wheat relative to sheep. For instance, if we take a 

starting point at Clare with a price of wheat at $200/T, then a change in the climate that 

approximates current conditions at Orroroo would be more than offset by a $100/T increase in 

the price of wheat, since this would see a decline in the probability of transition out of wheat 

from 32.26 to 8.73 per cent. Indeed the same is true for Clare approaching a Hawker-like 

climate, since an increase in the price of wheat would outweigh the negative consequences of 

less favourable growing conditions. This demonstrates that a sufficient change to relative prices 

would mean that wheat production could persist despite adverse climate changes. Farmers will 

need to adapt to changing biophysical conditions but they will also take changes in the relative 

prices of commodities into account.  

 

5. Discussion 

The impacts of climate change on Australian agriculture will ultimately be determined by the 

decisions made by farmers. This paper demonstrates how methods for the real options analysis of 

agricultural production can be extended to account for the value of flexibility in decision-making 

as agricultural systems transition through alternative production regimes. Option values capture 

the benefits of retaining flexibility and are estimated in contrast with a counter-factual where 

there is no flexibility and the decision-maker instead has an obligation to continue in their 

current production regime. We model stochastic returns by fitting appropriate stochastic 

processes to gross margins in order to estimate option values, threshold values, and expected 

waiting times at thresholds. In addition, we use the Ornstein-Uhlenbeck process to estimate the 

probabilities of regime transitions. We demonstrate this approach by examining possible 

sequences of transition for Australian wheat production under climate change, for example, as 

shown in Figure 5 for Clare. 
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Figure 5: The sequence of regime transitions at Clare showing the option values, threshold values, expected times, 

and transition probabilities for each decision threshold. 

 

Option values reflect the nature of risk and returns. For instance, increasing   in Equation 1 for 

the decision to ‗Enter wheat‘ at Clare but leaving all other parameters the same increases the risk 

of returns from wheat, thereby increasing the option value and the threshold value for this 

decision. Likewise, option values increase with the expected value of returns in the prospective 

regime relative to the current regime. For instance, even though at Clare returns from wheat are 

not particularly variable (Table 2), the option value to enter wheat is relatively high compared to 

Orroroo and Hawker (Table 3) because returns from wheat are higher at Clare. Consequently, the 

transition probability to enter wheat at Clare is quite high (55.5%). In contrast, the high option 

value for ‗Exiting wheat to enter sheep‘ ($369/ha) at Clare reflects the value of delaying entry 

into the lower returning sheep production regime. The low transition probability (0.56%) 

reinforces the observation that the high option value reflects the high returns from wheat relative 

to sheep.  
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Whilst this paper demonstrates the application of real options analysis to analyse particular 

sequences of regime transitions, future applications could use similar approaches to help identify 

optimal adaptation pathways. In theory, the total value of a firm or a farm‘s assets is comprised 

of the present value of expected future returns plus the option value of future regimes (Dixit and 

Pindyck, 1994). In other words, a farm with the flexibility to switch production regimes has a 

higher value than an identical farm without that flexibility. This implies that a sequence of 

regime transitions organised from highest total value to lowest total value is an optimal 

adaptation pathway. For instance, the sequence from Wheat to Sheep at Clare (Figure 5) could be 

interpreted as an optimal pathway, given that Wheat has higher expected future returns and a 

higher option value than Sheep (Table 2). However, this assessment of asset value assumes that 

it is possible to account for all the sources and factors that affect the option value of the firm. In 

practice, adaptation pathways can be complex (e.g. Wise et al., 2014) and further advances in the 

methodology of real options analysis will be needed to analyse the relative costs and benefits of 

managing risks and returns given multiple sources of uncertainty and irreversibility (e.g. Mezey 

and Conrad, 2010). 

Real options analysis can provide additional insights for policy makers and private enterprise. It 

demonstrates that rational decision-makers will tend to delay switching to alternative production 

systems under uncertainty. It is important for policy-makers to understand that rather than 

unnecessary delay, a farmer‘s hesitation to adopt new practices can reflect the value of retaining 

flexibility. Real options methods can help policy analysts better understand how farmers might 

adjust their practices to adapt to changing conditions, and future research could extend this 

analysis to examine how alternative policies might influence the transitions of agricultural 

systems. For instance, expensive bulk grain-handling infrastructure, such as silos and rail lines, 

are at risk of becoming stranded assets in regions with a general transition away from wheat 

cropping. Future applications of real options analysis to adaptation pathways have the potential 
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to help policy makers better understand industry level change by quantifying option values, key 

thresholds and the associated probabilities of transition among alternative production regimes.  

A particular challenge is to move the analysis beyond the direct biophysical implications of 

climate change for farmers to the implications of climate change for market prices. Farmers 

adjust their mix of inputs depending on the relative prices of inputs and outputs and their 

expectations about the growing season. The corollary is that the transformation of Australian 

agriculture depends upon international prices, which in turn depend upon the transformations of 

agriculture globally in response to climate change. If global wheat yields decline with adverse 

climate change wheat prices may rise over time. An increased price for wheat relative to other 

commodities (wool or sheep meat) may partially, completely or overly compensate for declining 

yields. We may see farmers enter wheat production as the climate becomes hotter and drier if 

rising wheat prices more than compensate for the decreased yields and increased risks.  

Future research should extend the analysis presented here to examine the simultaneous effects of 

global climate change on biophysical conditions and market prices. Formal modelling will 

require extending the ROADs framework to specify yields and prices as separate stochastic 

processes in the optimization problem. This is not straightforward and would require the 

development of real options models that can handle multiple stochastic processes. If such 

technical challenges can be overcome, then this research can be extended to examine broader 

patterns of industry transition, since alternative production regimes are all dependent on prices in 

markets for labour, capital, and infrastructure.  

 

6. Conclusion 

Climate adaptation can be costly, costly to reverse, or effectively irreversible. This means we 

need to account for the value of flexibility in decision-making. Real options analysis provides a 
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methodology for comparing the costs and benefits associated with waiting for new information 

to resolve some of the uncertainty about climate change whilst retaining the option to act later. 

Although farmers will also have new options available to them in the future, real options analysis 

helps us understand how climate adaptation depends upon the availability of alternatives. This 

paper outlines an approach to modelling these alternatives which emphasizes the importance of 

understanding farmers‘ decisions for analysing the impacts of climate change on agricultural 

production.  
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