CALCULATING THE OUTPUT DISTRIBUTION OF STACK FILTERS THAT ARE EROSION-DILATION CASCADES, IN PARTICULAR LULU-FILTERS

R. Anguelov
Department of Mathematics and Applied Mathematics, University of Pretoria,
Pretoria 0002, South Africa.
E-Mail roumen.anguelov@up.ac.za

P.W. Butler
Department of Mathematical Sciences, University of Stellenbosch, Private Bag X1,
Matieland 7602, South Africa.

C.H. Rohwer
Department of Mathematical Sciences, University of Stellenbosch, Private Bag X1,
Matieland 7602, South Africa.
E-Mail chr@sun.ac.za

M. Wild
Department of Mathematical Sciences, University of Stellenbosch, Private Bag X1,
Matieland 7602, South Africa.
E-Mail mwild@sun.ac.za

Abstract. Two procedures to compute the output distribution ϕ_S of certain stack filters S (so called erosion-dilation cascades) are given. One rests on the disjunctive normal form of S and also yields the rank selection probabilities. The other is based on inclusion-exclusion and e.g. yields ϕ_S for some important LULU-operators S. Properties of ϕ_S can be used to characterize smoothing properties of S. Also, in the same way as our polynomials ϕ_S are computed one could compute the reliability polynomial of a connected graph, or more generally the reliability polynomial w.r.t. any positive Boolean function.

Mathematics Subject Classification (2010): 94A12, 05A15, 68M15.
Key words: Stack filter, output distribution, LULU filter, reliability polynomial, inclusion-exclusion.

1. Introduction. The LULU-operators are well known in the nonlinear multiresolution analysis of sequences. The notation for the basic operators L_n and U_n, where $n \in \mathbb{N}$ is a parameter related to the window size, has given rise to the name LULU for the theory of these operators and their compositions. Since the time they were introduced nearly thirty year ago, while also being used in practical
problems, they slowly led to the development of a new framework for characterizing, evaluating, comparing and designing nonlinear smoothers. This framework is based on concepts like idempotency, co-idempotency, trend preservation, total variation preservation, consistent decomposition.

As opposed to the deterministic nature of the above properties, the focus of this paper is on properties of the \(LULU \) operators in the setting of random sequences. More precisely, this setting can be described as follows: Suppose that \(X \) is a bi-infinite sequence of random variables \(X_i (i \in \mathbb{Z}) \) which are independent and with a common (cumulative) distribution function \(F_X(t) \) from \(L^1([0, 1], [0, 1]) \). Let \(S \) be a smoother. Then we consider the following two questions:

1. Find a map \(\phi_S : [0, 1] \rightarrow [0, 1] \) such that the common output distribution \(F_{SX}(t) \) of \((SX)_i (i \in \mathbb{Z}) \) equals \(F_{SX} = \phi_S \circ F_X \). The function \(\phi_S \) is also called distribution transfer.

2. Characterize the smoothing effect an operator \(S \) has on a random sequence \(X \) in terms of the properties of the common distribution of \((SX)_i (i \in \mathbb{Z}) \).

With regard to the first question we present a new technique which one may call “expansion calculus” which uses a shorthand notation for the probability of composite events and a set of rules for manipulation. Using this technique we provide new elegant proofs of the earlier results in [1] for the distribution transfer of the operators \(L_nU_n \) and (dually) \(U_nL_n \). The power of this approach is further demonstrated by deriving the distribution transfer maps for the alternating sequential filters \(C_n = L_nU_nL_{n-1}U_{n-1}...L_1U_1 \) and \(F_n = U_nL_nU_{n-1}L_{n-1}...U_1L_1 \).

With regard to the second question, we may note that it is reasonable to expect that a smoother should reduce the standard deviation of a random sequence. Indeed, for simple distributions (e.g. uniform) and filters with small window size (three point average, \(M_1\), \(L_1U_1\), \(U_1L_1\)) when the computations can be carried out by hand a significant reduction of the standard deviation is observed (for the uniform distribution the mentioned filters reduce the standard deviation respectively by factors of 3, 5/3, 1.293, 1.293). In this paper we propose a new* concept of robustness which characterizes the probability of the occurrence of outliers rather than considering the standard deviation. Upper robustness characterizes the probability of positive outliers while the lower robustness characterizes the probability of negative outliers. In general, the higher the order of robustness of a smoother the lower the probability of occurrence of outliers in the output sequence. In terms of this concept it is easy to characterize a smoother given its distribution transfer function.

The paper is structured as follows. In the next section we give the definitions of the \(LULU \)-operators with some fundamental properties. The concept of robustness is defined and studied in Section 3. In Section 4 we show how the inclusion-exclusion principle helps to obtain the distribution transfer function of erosion-dilation cascades, a kind of operator frequently used in Mathematical Morphology. This method is considerably refined in Section 5 where it is applied to \(LULU \)-operators. They are particular cases of such cascades. Formulas for the major \(LULU \)-operators are obtained explicitly or recursively. Using these results the

*Related concepts of robustness exist. We touch upon one of them in Section 7.
robustness of these operators is also analyzed. Section 6 proposes to substitute inclusion-exclusion by some novel principle of exclusion which excels for erosion-dilation cascades that don’t allow the refinements of inclusion-exclusion possible for LULU-operators.

2. The basics of the LULU theory. Given a bi-infinite sequence \(x = (x_i)_{i \in \mathbb{Z}} \) and \(n \in \mathbb{N} \) the basic LULU-operators \(L_n \) and \(U_n \) are defined as follows

\[
(L_n x)_i := (x_{i-n} \land x_{i-n+1} \land \cdots \land x_i) \\
\lor (x_{i-n+1} \land \cdots \land x_{i+1}) \lor \cdots \lor (x_i \land \cdots \land x_{i+n})
\]

(1)

\[
(U_n x)_i := (x_{i-n} \lor x_{i-n+1} \lor \cdots \lor x_i) \\
\land (x_{i-n+1} \lor \cdots \lor x_{i+1}) \land \cdots \land (x_i \lor \cdots \lor x_{i+n})
\]

(2)

where \(\alpha \land \beta := \min(\alpha, \beta) \), and \(\alpha \lor \beta := \max(\alpha, \beta) \) for all \(\alpha, \beta \in \mathbb{R} \). Central to the theory is the concept of separator, which we define below. For every \(a \in \mathbb{Z} \) the operator \(E_a : \mathbb{R}^\mathbb{Z} \to \mathbb{R}^\mathbb{Z} \) given by

\[
(E_a x)_i = x_{i+a}, \quad i \in \mathbb{Z},
\]

is called a shift operator.

Definition 1. An operator \(S : \mathbb{R}^\mathbb{Z} \to \mathbb{R}^\mathbb{Z} \) is called a separator if

1. \(S \circ E_a = E_a \circ S, \quad a \in \mathbb{Z}; \) (horizontal shift invariance)
2. \(P(f+c) = P(f)+c, \quad f, c \in \mathbb{R}^\mathbb{Z}; \) \(c \) - constant function (vertical shift invariance)
3. \(P(\alpha f) = \alpha P(f), \quad \alpha \in \mathbb{R}, \quad \alpha \geq 0, \quad f \in \mathbb{R}^\mathbb{Z}; \) (scale invariance)
4. \(P \circ P = P; \) (Idempotence)
5. \((id - P) \circ (id - P) = id - P. \) (Co-idempotence)

The first two axioms in Definition 1 and partially the third one were first introduced as required properties of nonlinear smoothers by Mallows, [6]. Rohwer further made the concept of a smoother more precise by using the properties (i)–(iii) as a definition of this concept. The axiom (iv) is an essential requirement for what is called a morphological filter, [13], [14], [16]. In fact, a morphological filter is exactly an increasing operator which satisfies (iv). The co-idempotence axiom (v) in Definition 1 was introduced by Rohwer in [11], where it is also shown that it is an essential requirement for operators extracting signal from a sequence. More precisely, axioms (iv) and (v) provide for consistent separation of noise from signal in the following sense: Having extracted a signal \(Sx \) from a sequence \(x \), the additive residual \((I - S)x \), the noise, should contain no signal left, that is \(S \circ (I - S) = 0 \). Similarly, the signal \(Sx \) should contain no noise, that is \((I - S) \circ S = 0 \). It was shown in [11] that \(L_n, U_n \) and their compositions \(L_n U_n, U_n L_n \) are separators.

The smoothing effect of \(L_n \) on an input sequence is the removal of picks, while the smoothing effect of \(U_n \) is the removal of pits. The composite effect of the
two \(LU\)-operators \(L_nU_n \) and \(U_nL_n \) is that the output sequence contains neither picks nor pits which will fit in the window of the operators. These are the so called \(n \)-monotone sequences, [11]. Let us recall that a sequence \(x \) is \(n \)-monotone if any subsequence of \(n+1 \) consecutive elements is monotone. For various technical reasons the analysis is typically restricted to the set \(\mathcal{M}_1 \) of absolutely summable sequences. Let \(\mathcal{M}_n \) denote the set of all sequences \(x \in \mathcal{M}_1 \) which are \(n \)-monotone. Then

\[
\mathcal{M}_n = \text{Range}(L_nU_n) = \text{Range}(U_nL_n)
\]

is the set of signals.

The power of the \(LU\)-operators as separators is further demonstrated by their trend preservation properties. Let us recall, see [11], that an operator is called neighbor trend preserving if \((Sx)_i \leq (Sx)_{i+1}\) whenever \(x_i \leq x_{i+1}, \, i \in \mathbb{N}\). An operator \(S \) is fully trend preserving if both \(S \) and \(I-S \) are neighbor trend preserving. The operators \(L_n, U_n \) and all their compositions are fully trend preserving. With the total variation of a sequence,

\[
TV(x) = \sum_{i \in \mathbb{N}} |x_i - x_{i+1}|, \quad x \in \mathcal{M}_1
\]

a generally accepted measure for the amount of contrast present, since it is a semi-norm on \(\mathcal{M}_1 \), any separation may only increase the total variation. More precisely, for any operator \(S : \mathcal{M}_1 \to \mathcal{M}_1 \) we have

\[
TV(x) \leq TV(Sx) + TV((I-S)x). \tag{3}
\]

All operators \(S \) that are fully trend preserving have variation preservation, in that

\[
TV(x) = TV(Sx) + TV((I-S)x). \tag{4}
\]

We mention these properties because they provide but few of the motivation for studying the robustness of operators, when the popular medians are optimal in that respect. We intend to show that some \(LULU \)-composition are nearly as good as the medians, but have superiority in other important aspects.

An operator \(S \) satisfying property (4) is called total variation preserving, [9]. As mentioned already, the \(LU \)-operators are total variation preserving.

3. Distribution transfer and degree of robustness of a smoother. Suppose that \(X \) is a bi-infinite sequence of random variables \(X_i \, (i \in \mathbb{Z}) \) which are independent and with a common (cumulative) distribution function \(F_X \). Let \(S \) be a smoother. As stated in the introduction we seek a function \(\phi_S : [0, 1] \to [0, 1] \), called a distribution transfer function such that

\[
F_{SX} = \phi_S \circ F_X \tag{5}
\]

is the common distribution of \((SX)_i \, (i \in \mathbb{Z})\). We should note that for an arbitrary smoother the existence of such a distribution transfer function is not obvious. However, for the smoothers typically considered in nonlinear signal processing (i.e.
Stack filters in particular \emph{LULU}-filters

Stack filters of which the \emph{LULU}-operators are particular cases) such a function does not only exist but it is a polynomial. For example, it is shown in [7] that the distribution transfer function of the ranked order operators

\[(R_{nk}x)_i = \text{the } k\text{th smallest value of } \{x_{i-n}, \ldots, x_{i+n}\}\]

is given by

\[
\phi_{R_{nk}}(p) = \sum_{j=k}^{2n+1} \binom{2n+1}{j} p^j (1-p)^{2n+1-j}. \tag{6}
\]

The popular median smoothers \(M_n, n \in \mathbb{N}\), are particular cases of the ranked order operators, namely \(M_n = R_{n,n+1}\). Hence we have

\[
\phi_{M_n}(p) = \sum_{j=n+1}^{2n+1} \binom{2n+1}{j} p^j (1-p)^{2n+1-j}. \tag{7}
\]

Note that in terms of (5) the common distribution function of \((M_nX)_i, i \in \mathbb{Z}\), is

\[
F_{M_nX}(t) = \sum_{j=n+1}^{2n+1} \binom{2n+1}{j} F_X^j(t)(1-F_X(t))^{2n+1-j}, t \in \mathbb{R}.
\]

Using that

\[
\frac{d}{dz} \phi_{M_n}(p) = (2n+1) \binom{2n}{n} p^n (1-p)^n \tag{8}
\]

its density is

\[
f_{M_nX}(t) = \frac{d}{dz} \phi_{M_n}(F_X(t)) f_X(t) = (2n+1) \binom{2n}{n} F_X^n(t)(1-F_X(t))^n f_X(t)
\]

where \(f_X(t) = \frac{d}{dt} F_X(t), t \in \mathbb{R}\), is the common density of \(X_i, i \in \mathbb{Z}\). The distribution of the output sequence of the basic smoothers \(L_n\) and \(U_n\) is derived in [11]. Equivalently these results can be formulated in terms of distribution transfer. More precisely we have

\[
\phi_{L_n}(p) = 1 - (n+1)(1-p)^{n+1} + n(1-p)^{n+2} \tag{9}
\]

\[
\phi_{U_n}(p) = (n+1)p^{n+1} - np^{n+2}. \tag{10}
\]

A primary aim of the processing of signals through nonlinear smoothers is the removal of impulsive noise. Therefore, the power of such a smoother can be characterized by how well it eliminates outliers in a random sequence. The concepts of robustness of a smoother introduced below are aimed at such characterization.

\textbf{Definition 2.} A smoother \(S : \mathbb{R}^\mathbb{Z} \to \mathbb{R}^\mathbb{Z}\) is called \emph{lower robust} of order \(r\) if there exists a constant \(\alpha > 0\) such that for every bi-infinite sequence \(X_i\) of identically distributed random variables \(X_i (i \in \mathbb{Z})\) there exists \(t_0 \in \mathbb{R}\) such that \(P(X_i < t) < \varepsilon\) implies \(P((SX)_i < t) < \alpha \varepsilon^k\) for all \(t < t_0\) and \(\varepsilon > 0\).
Similarly, a smoother \(S : \mathbb{R}^\mathbb{Z} \to \mathbb{R}^\mathbb{Z} \) is called upper robust of order \(r \) if there exists a constant \(\alpha > 0 \) such that for every bi-infinity sequence \(X \) of identically distributed random variables \(X_i (i \in \mathbb{Z}) \) there exists \(t_0 \in \mathbb{R} \) such that \(P(X_i > t) < \varepsilon \) implies \(P((SX)_i > t) < \alpha \varepsilon^k \) for all \(t > t_0 \) and \(\varepsilon > 0 \).

A smoother which is both lower robust of order \(r \) and upper robust of order \(r \) is called robust of order \(k \).

The reasoning behind these concepts is simple: If a distribution density is heavy tailed, there is a probability \(\varepsilon \) that the size of a random variable is excessively large (larger than \(t \)) in absolute value. Using a non-linear smoother we would aim to restrict this to an acceptable probability \(\alpha \varepsilon^k \) that such an excessive value can appear in \(SX \), by choosing a smoother with the order of robustness \(k \).

Clearly there is a general problem of smoothing: a trade-off to be made between making a smoother more robust, and the (inevitable) damage to the underlying signal preservation. (A smoother clearly cannot create information, but only selectively discard it.) This is fundamental. There are two main reasons for using one-sided robustness: Firstly, the unreasonable pulses often are only in one direction, as in the case of "glint" in signals reflected from objects with pieces of perfect reflectors, and there clearly are no reflections of negative intensity possible. Secondly, we may choose smoothers that are not symmetric, as are the \(LU \)-operators, for reasons that are of primary importance. In this case the robustness is determined from the sign of the impulse.

The robustness of a smoother can be characterized through its distribution transfer function as stated in the theorem below.

Theorem 3. Let the smoother \(S \) have a distribution transfer function \(\phi_S \). Then

a) \(S \) is lower robust of order \(r \) if and only if \(\phi_S(p) = O(p^r) \) as \(p \to 0 \).

b) \(S \) is upper robust of order \(r \) if and only if \(\phi_S(1 - p) - 1 = O(p^r) \) as \(p \to 0 \).

Proof. Points a) and b) are proved using similar arguments. Hence we prove only a). Let \(\phi_S(p) = O(p^r) \) as \(p \to 0 \). This means that there exists \(\alpha > 0 \) and \(\delta > 0 \) such that \(\phi_S(p) < \alpha p^k \) for all \(p \in [0, \delta) \). Let \(X \) be a sequence of identically distributed random variables with common distribution function \(F_X \). Since \(\lim_{t \to -\infty} F_X(t) = 0 \), there exists \(t_0 \) such that \(F_X(t_0) < \delta \). Let \(t < t_0 \) and \(\varepsilon > 0 \) be such that \(P(X_i < t) < \varepsilon \). The monotonicity of \(F_X \) implies that \(F_X(t) \in [0, \delta) \). Then

\[
P((SX)_i < t) = F_{SX}(t) = \phi_S(F_X(t)) < \alpha (F_X(t))^k < \alpha \varepsilon^k,
\]

which proves that \(S \) is lower robust of order \(k \). It is easy to see that the argument can be reversed so that the stated condition is also necessary.

In the common case when the distribution transfer function is a polynomial, conditions a) and b) can be formulated in a much simpler way as given in the next corollary.
Corollary 4. Let the distribution transfer function of a smoother S be a polynomial ϕ_S. Then

a) S is lower robust of order r if and only if $p = 0$ is a root of order r of ϕ_S.

b) S is upper robust of order r if and only if $p = 1$ is a root of order r of $\phi_S - 1$.

Using the distribution transfer functions given in (9) and (10) it follows from Corollary 4 that U_n is lower robust of order $n + 1$ and that L_n is upper robust of order $n + 1$.

The robustness of the median filter M_n can be obtained from (7). Obviously $p = 0$ is a root of order $n + 1$. Furthermore, $\phi_{M_n}(1) = 1$. Then using also that $p = 1$ is a root of order n of $\frac{d}{dx} \phi_{M_n}$, see (8), we obtain that $p = 1$ is a root of order $n + 1$ of $\phi_{M_n} - 1$. Therefore, M_n is robust of order $n + 1$.

Clearly with symmetric smoothers, in that $S(-x) = -S(x)$, the concepts of lower and upper robustness are not needed, as is the case for example with M_n. However, we have to recall in this regard that the operators L_n, U_n and their compositions, which are the primary subject of our investigation, are not symmetric. A useful feature of the lower and upper robustness is that it can be induced through the point-wise defined partial order between the operators. Let us recall that given the maps $A, B : \mathbb{R}^\mathbb{Z} \rightarrow \mathbb{R}^\mathbb{Z}$, the relation $A \leq B$ means that $Ax \leq Bx$ for all $x \in \mathbb{R}^\mathbb{Z}$.

Theorem 5. Let $A, B : \mathbb{R}^\mathbb{Z} \rightarrow \mathbb{R}^\mathbb{Z}$ be smoothers. If $A \leq B$ then $\phi_B \leq \phi_A$.

Proof. Let X be a sequence of independent random variables $X_i (i \in \mathbb{Z})$ uniformly distributed on $[0, 1]$. Let $p \in [0, 1]$. If t is such that $p = F_X(t)$ then

$$
\phi_B(p) = \phi_B(F_X(t)) = F_{BX}(t) = P((BX)_i \leq t) \\
\leq P((AX)_i \leq t) = F_{AX}(t) = \phi_A(F_X(t)) = \phi_A(p).
$$

As a direct consequence of Theorem 5 and Theorem 3 we obtain the following theorem.

Theorem 6. Let $A, B : \mathbb{R}^\mathbb{Z} \rightarrow \mathbb{R}^\mathbb{Z}$ be smoothers such that $A \leq B$. Then

a) If A is lower robust to the order k, then so is B.

b) If B is upper robust to the order k, then so is A.

Using Theorem 6 one can derive statements about the lower robustness and the upper robustness of the LU-operators:

$$
U_n L_n \leq M_n \leq L_n U_n.
$$

Therefore, $U_n L_n$ inherits the upper-robustness of M_n, while $L_n U_n$ inherits the lower-robustness of M_n. More precisely

- $U_n L_n$ is upper robust of order $n + 1$;

- $L_n U_n$ is lower robust of order $n + 1$.

One may expect that, since L_n is upper robust of order $n + 1$ and U_n is lower robust of order $n + 1$, their compositions should be both lower and upper robust of order $n + 1$. However, as we will see later, this is not the case. The problem is the following. The definition of robustness requires that the random variables in the sequence X are identically distributed but they are not necessarily independent. However, the distribution transfer functions ϕ_{L_n} and ϕ_{U_n} are derived under the assumption of such independence. Noting that entries in the sequences L_nX are not independent, it becomes clear that the common distribution of U_nL_nX cannot be obtained by applying ϕ_{U_n} to F_{L_nX}. More generally, since the distribution transfer functions are derived for sequences of independent identically distributed random variables the equality $\phi_{AB} = \phi_A \circ \phi_B$ does not hold for arbitrary operators A and B. Therefore the order of robustness of B is not necessarily preserved by the composition AB.

Observe that another concept of robustness is introduced in [15]. Other than Definition 2 it only applies to stack filters. The concept is similar in that it also based on certain probabilities (in this case “selection probabilities”).

4. The output distribution of arbitrary erosion-dilation cascades. Here we present a method for obtaining output distributions of so called erosion-dilation cascades (defined below). It essentially uses the inclusion-exclusion principle for the probability of simultaneous events. For convenience we recall this principle below. For $n = 2$ the easy proof will be given along the way.

Lemma 7. For any random variables $Z_1, Z_2 \ldots Z_n$ it holds that

$$P(Z_1, \ldots, Z_n \leq t) = 1 - \sum_{i=1}^{n} P(Z_i > t) + \sum_{1 \leq i < j \leq n} P(Z_i, Z_j > t)$$

$$- \sum_{1 \leq i < j < k \leq n} P(Z_i, Z_j, Z_k > t) + \cdots + (-1)^n P(Z_1, \ldots, Z_n > t).$$

Let us recall that in the general setting of mathematical morphology [14] the basic operators L_n and U_n are morphological opening and closing respectively. As such they are compositions of an erosion and a dilation. More precisely, for a sequence $x = (x_i)_{i \in \mathbb{Z}}$ we have

$$(L_n x)_i : = (\lor^n (\land^n x))_i$$

$$(U_n x)_i : = (\land^n (\lor^n x))_i$$

where

$$(\land^n x)_i : = x_{i-n} \land x_{i-n+1} \land \cdots \land x_i$$

is an erosion with structural element $W = \{-n, -n-1, \ldots, 1, 0\}$ and

$$(\lor^n x)_i : = x_i \lor x_{i+1} \lor \cdots \lor x_{i+n}$$
is a dilation with structural element $W' = \{0, 1, \ldots, n\}$. Generalizing the LU-operators L_nU_n and U_nL_n, call a LU-LU-operator any composition of the basic smoothers L_n and U_n, such as $L_3U_4L_2U_1U_5$. In particular, each LU-LU-operator is a composition of dilations and erosions, that is, an erosion-dilation cascade (EDC).

More generally, each alternating sequential filter (ASF), which by definition [4] is a composition of morphological openings and closings with structural elements of increasing size, is an EDC with the extra property of featuring the same number of erosions and dilations.

We will demonstrate our method on two examples of EDC’s - the first in one dimension, the second in two dimensions. This method is considerably refined in the next section.

Example 1. Consider $S := \bigvee^1 \bigwedge^2 \bigvee^3$. It is a cascade of an erosion \bigwedge^2 and dilations \bigvee^1, \bigvee^3 (but not an ASF). To compute the distribution transfer of S, let X be a bi-infinite sequence of independent identically distributed random variables X_i. Put

$$Y_i = \left(\begin{array}{c} 3 \\ \bigvee X_i \end{array} \right), \quad Z_i := \left(\begin{array}{c} 2 \\ \bigwedge Y_i \end{array} \right), \quad A_i := \left(\begin{array}{c} 1 \\ \bigvee Z_i \end{array} \right).$$

(13)

Thus Y, Z, A are again bi-infinite sequences of identically distributed (though dependent) random variables. Let $t \in \mathbb{R}$ and $p = F_X(t)$. Then

$$\phi_S(p) = F_{SX}(t) = F_A(t) = P(A_0 \leq t) = P(Z_0 \vee Z_1 \leq t) = P(Z_0 \leq t \text{ and } Z_1 \leq t).$$

In order to reduce the Z_i’s to the Y_i’s we switch all $\leq t$ to $> t$ by using exclusion-inclusion (the case $n = 2$ in Lemma 7):

$$P(Z_0, Z_1 \leq t) = P(Z_0 \leq t) - P(Z_0 \leq t, Z_1 > t) = P(Z_0 \leq t) - (P(Z_1 > t) - P(Z_1, Z_0 > t)) = 1 - P(Z_0 > t) - P(Z_1 > t) + P(Z_1, Z_0 > t).$$

Since our Z_i’s are identically distributed we have $P(Z_0 > t) = P(Z_1 > t)$ and hence

$$\phi_S(p) = 1 - 2P(Z_0 > t) + P(Z_1, Z_0 > t) = 1 - 2P(Y_{-2} \wedge Y_{-1} \wedge Y_0 > t) + P(Y_{-1} \wedge Y_0 \wedge Y_1, Y_{-2} \wedge Y_{-1} \wedge Y_0 > t) = 1 - 2P(Y_{-2}, Y_{-1}, Y_0 > t) + P(Y_{-2}, Y_{-1}, Y_0, Y_1 > t) = 1 - 2P(Y_0, Y_1, Y_2 > t) + P(Y_0, Y_1, Y_2, Y_3 > t).$$
By the dual of Lemma 7 and because e.g. \(P(Y_0, Y_1 \leq t) = P(Y_1, Y_2 \leq t) = P(Y_2, Y_3 \leq t) \) we get

\[
\phi_S(p) = 1 - 2(1 - 3P(Y_0 \leq t) + 2P(Y_0, Y_1 \leq t) + P(Y_0, Y_2 \leq t) - P(Y_0, Y_1, Y_2 \leq t)) \\
+ (1 - 4P(Y_0 \leq t) + 3P(Y_0, Y_1 \leq t) + 2P(Y_0, Y_2 \leq t) + P(Y_0, Y_3 \leq t) \\
- 2P(Y_0, Y_1, Y_2 \leq t) - 2P(Y_0, Y_1, Y_3 \leq t) + P(Y_0, Y_1, Y_2, Y_3 \leq t) \\
= 2P(Y_0 \leq t) - P(Y_0, Y_1 \leq t) + P(Y_0, Y_3 \leq t) - 2P(Y_0, Y_1, Y_3 \leq t) \\
+ P(Y_0, Y_1, Y_2, Y_3 \leq t) \\
= 2P(X_0, X_1, X_2, X_3 \leq t) - P(X_0, X_1, X_2, X_3, X_4 \leq t) + P(X_0, X_1, \ldots, X_6 \leq t) \\
- 2P(X_0, X_1, \ldots, X_6 \leq t) + P(X_0, X_1, \ldots, X_6 \leq t) \\
= 2p^4 - p^5 + p^7 - 2p^7 + p^7 \\
= 2p^4 - p^5.
\]

Example 2. Let \(S \) be an opening on \(\mathbb{R}^{Z \times Z} \) with defining structural element a \(2 \times 2 \) square. Let now \(X \) be an infinite 2-dimensional array of independent identically distributed random variables \(X_{(i,j)} \) where \((i, j) \) ranges over \(\mathbb{Z} \times \mathbb{Z} \). In order to derive the output distribution of \(S \) we put

\[
Y_{(i,j)} := X_{(i,j)} \land X_{(i-1,j)} \land X_{(i,j+1)} \land X_{(i-1,j+1)} \\
Z_{(i,j)} := Y_{(i,j)} \lor Y_{(i+1,j)} \lor Y_{(i,j-1)} \lor Y_{(i+1,j-1)}.
\]

Let \(t \in \mathbb{R} \) and \(p = F_X(t) \). The output distribution of \(S \) is

\[
\phi_S(p) = P(Z_{(0,0)} \leq t) \\
= P(Y_{(0,0)}, Y_{(1,0)}, Y_{(0,-1)}, Y_{(1,-1)} \leq t).
\]

Following [1], which introduced that handy notation in the 1-dimensional case, we abbreviate the latter as

\[
((0,0), (1,0), (0,-1), (1,-1))_Y.
\]

If say \(((0,0), (1,0), (0,-1))_Y\) means

\[
P(Y_{(1,0)} \leq t, Y_{(0,0)}, Y_{(0,-1)} > t),
\]

then it follows from Lemma 7 and from translation invariance (e.g. \(((0,0), (1,0)) = ((0,-1), (1,-1))_Y \)

\[
\phi_L(q) = ((0,0), (1,0), (0,-1), (1,-1))_Y \\
= 1 - 4((0,0), (1,0), (0,-1), (1,-1))_Y \\
+ 2((0,0), (1,0), (0,-1), (1,-1))_Y + 2((0,0), (0,-1), (1,-1))_Y \\
+ ((0,0), (1,-1))_Y - (0,0), (0,-1), (1,-1))_Y - (0,0), (1,0), (1,-1))_Y \\
- (0,0), (0,-1), (1,0))_Y - (1,0), (0,-1), (1,-1))_Y \\
+ (0,0), (1,0), (0,-1), (1,-1))_Y.
\]
According to the definition of $Y_{(i,j)}$ we e.g. have

$((0,0),(0,-1))_Y = ((0,0),(-1,0),(0,1),(-1,1),(0,-1),(-1,-1),(0,0),(-1,0))_X$,

Putting $q = 1 - p = P(X_{(0,0)}>t)$ the latter contributes a term q^6 to

$$
\phi_L(p) = 1 - 4q^4 + 2q^6 + 2q^6 + q^7 + q^7 - q^8 - q^8 - q^8 + q^9
= 1 - 4q^4 + 4q^6 + 2q^7 - 4q^8 + q^9.
$$

5. Formulas for the distribution transfer of the major $LULU$-operators.

As it was already done in the preceding section it is often convenient to use the notation $q = 1 - p$. For example the output distribution of M_n, L_n and U_n given in (7), (9) and (10) respectively can be written in the following shorter form:

$$
\phi_{M_n}(p) = \sum_{j=n+1}^{2n+1} \binom{2n+1}{j} p^j q^{2n+1-j},
\phi_{L_n}(p) = 1 - (n+1)q^{n+1} + nq^{n+2},
\phi_{U_n}(p) = (n+1)p^{n+1} - np^{n+2}.
$$

Theorem 11 below deals with the output distribution of L_nU_n and U_nL_n. They were first derived in [2], but the statement of the theorem was also independently proved by Butler [1]. In 5.1 we present a proof using Butler’s “expansion calculus”. In 5.2 this method is applied to more complicated situations.

5.1. The output distribution of the LU-operators. First, observe that instead of winding up with full blown inclusion-exclusion when switching all inequalities $> t$ to $\leq t$ (dual of Lemma 7), one can be economic and only switch some inequalities:

$$(0,1,\ldots,n)_X = (0,\ldots,n-1)_X - (0,\ldots,n-1,n)_X$$

$$= (0,\ldots,n-2)_X - (0,\ldots,n-2,n-1)_X - (0,\ldots,n-1,n)_X$$

$$\vdots$$

$$= (0)_X - (0,1)_X - (0,1,2)_X - \cdots - (0,\ldots,n-1,n)_X$$

$$= 1 - (0)_X - \sum_{i=0}^{n-1} (0,\ldots,\overline{i},i+1)_X.$$
Note that for \(i = 0 \) we get the summand \(n(0,1)_X \).

Proof. From

\[
(k + 1)_X = (k + 1, k)_X + (k + 1, \overline{k})_X \\
= (k + 1, k)_X + (k + 1, \overline{k}, k - 1)_X + (k + 1, \overline{k}, k - 1)_X = \cdots \\
= (k + 1, k)_X + (k + 1, \overline{k}, k - 1)_X + \cdots + (k + 1, \overline{k}, \cdots, \overline{1}, 0)_X
\]

follows, by translation invariance, that

\[
(0, \cdots, \overline{k}, k + 1)_X = (k + 1)_X - (0, k + 1)_X - \sum_{i=0}^{k-1} (k - i - 1, \overline{k} - i, \cdots, \overline{k}, k + 1)_X \\
= (0)_X - (0, 1)_X - \sum_{i=0}^{k-1} (0, \overline{1}, \cdots, \overline{i} + 1, i + 2)_X.
\]

Using (17) one derives for (say) \(n = 4 \) that

\[
(0, \overline{1}, 2, 3, 4)_X = 1 - (0)_X - \sum_{k=0}^{3} (0, \cdots, \overline{k}, k + 1)_X \\
= 1 - (0)_X - \sum_{k=0}^{3} \left[(0)_X - (0, 1)_X - \sum_{i=0}^{k-1} (0, \overline{1}, \cdots, \overline{i} + 1, i + 2)_X \right] \\
= 1 - 5(0)_X + 4(0, 1)_X \\
+ (0, \overline{1}, 2)_X \\
+ (0, \overline{1}, 2)_X + (0, \overline{1}, 2, 3)_X \\
+ (0, \overline{1}, 2)_X + (0, \overline{1}, 2, 3)_X + (0, \overline{1}, 2, 3, 4)_X \\
= 1 - 5(0)_X + \sum_{i=0}^{3} [4 - i](0, \overline{1}, \cdots, \overline{i}, i + 1)_X.
\]

Unsurprisingly, for *dependently* distributed random variables \(B_i \) certain combinations of \(B_i \)'s being \(\leq t \) and simultaneously other \(B_j \)'s being \(> t \), could be impossible, i.e. have probability 0. More specifically:

Lemma 9. ([1, Theorem 10]) Let \(A \) be a bi-infinite identically distributed sequence of random variables and let \(B = \bigvee^r A \). Then

\[
(0, \overline{1}, \cdots, \overline{n-1}, n)_B = \begin{cases}
0 & , \ n \leq r + 1 \\
(0, \cdots, r, \overline{r + 1}, \overline{n-1}, n, \cdots, n + r)_A & , \ r + 1 < n < 2r + 4.
\end{cases}
\]

For instance, for \(n = 5, r = 1 \) we have \(r + 1 < n < 2r + 4 \), and so

\[
(0, \overline{1}, 2, 3, 4, 5)_B = (0, 1, 2, 4, 5, 6)_A
\]
Let us give an ad hoc argument which conveys the spirit of the proof. In view of \(B_i = A_i \lor A_{i+1} \) one e.g. has that \(B_5 \leq t \Leftrightarrow A_5, A_6 \leq t \). Using inclusion-exclusion we get

\[
(0, 5, 2, 4, 1, 3)_B = (0, 5, 2, 4)_B - (0, 5, 2, 4, 1)_B - (0, 5, 2, 4, 3)_B + (0, 5, 2, 4, 1, 3)_B
\]

\[
P(A_0, A_1, A_5, A_6 \leq t, B_2, B_3 > t) = P(A_0, A_1, A_2, A_5, A_6 \leq t, B_2, B_4 > t)
\]

\[
- P(A_0, A_1, A_3, A_4, A_5, A_6 \leq t, B_2, B_4 > t) + P(A_0, A_1, \cdots A_6 \leq t, B_2, B_4 > t).
\]

Since \(A_4, A_5 \leq t \) is incompatible with \(B_4 = A_4 \lor A_5 > t \), the last two terms are 0. Furthermore, given that \(A_5 \leq t \), the statement \(B_4 > t \) amounts to \(A_4 > t \). Ditto, given that \(A_2 \leq t \), the statement \(B_2 > t \) amounts to \(A_3 > t \). Hence

\[
(0, 5, 2, 4, 1, 3)_B
\]

\[
= P(A_0, A_1, A_5, A_6 \leq t, A_4 > t, B_2 > t) - P(A_0, A_1, A_2, A_5, A_6 \leq t, A_4 > t, A_3 > t)
\]

\[
= (P(A_0, A_1, A_5, A_6 \leq t, A_4 > t) - P(A_0, A_1, A_5, A_6 \leq t, A_4 > t, A_2 \leq t, A_3 \leq t))
\]

\[
- P(A_0, A_1, A_5, A_6 \leq t, A_4 > t, A_2 \leq t, A_3 > t)
\]

\[
= P(A_0, A_1, A_5, A_6 \leq t, A_4 > t) - P(A_0, A_1, A_5, A_6 \leq t, A_4 > t, A_2 \leq t)
\]

\[
= (0, 1, 2, 4, 5, 6)_A.
\]

Dualizing Lemma 9 yields:

Lemma 10. ([1, Corollary 11]) Let \(B = \bigwedge^n A \). Then

\[
(0, 1 \cdots, n - 1, \overline{\pi})_B = \begin{cases}
0, & n \leq r + 1 \\
(0, \cdots, \pi, r + 1, n - 1, \pi, \cdots, \overline{n + r})_A, & r + 1 < n < 2r + 4.
\end{cases}
\]

Theorem 11. The distribution transfer functions of \(L_n U_n \) and \(U_n L_n \) are:

\[
\phi_{L_n U_n}(p) = p^{n+1} + np^{n+1}q + p^{2n+2}q + \frac{1}{2}(n - 1)(n + 2)p^{2n+2}q^2,
\]

\[
\phi_{U_n L_n}(p) = 1 - \phi_{L_n U_n}(q) = 1 - q^{n+1} - npq^{n+1} - pq^{2n+2} - \frac{1}{2}(n - 1)(n + 2)p^2q^{2n+2}.
\]

Proof. Since \(L_n U_n = (\bigvee^n \bigwedge^n)(\bigwedge^n \bigvee^n) = \bigvee^n \bigwedge^{2n} \bigvee^n \) we put

\[
A = \bigvee^n X, \quad B = \bigwedge^n A, \quad C = \bigvee^n B
\]
and calculate

\[\phi_{L_nU_n}(p) = P(C_0 \leq t) = (0)_C = (0, \ldots, n)_B \]

\[= 1 - [n + 1](0)_B + \sum_{i=0}^{n-1} [n - i](0, 1, \ldots, i, i + 1)_B \quad \text{(dual of Lemma 8)} \]

\[= 1 - [n + 1](0, \ldots, 2n)_A + n(0, \ldots, 2n + 1)_A + \sum_{i=1}^{n-1} 0 \quad \text{(Lemma 10, } r = 2n) \]

\[= 1 - [n + 1]\left[1 - [2n + 1](0)_A + \sum_{i=0}^{2n-1} [2n - i](0, 1, \ldots, i, i + 1)_A \right] \]

\[+ n\left[1 - [2n + 2](0)_A + \sum_{i=0}^{2n} [2n + 1 - i](0, 1, \ldots, i, i + 1)_A \right] \quad \text{(Lemma 8)} \]

\[= [n + 1](0)_A + \sum_{i=0}^{2n} [i - n](0, 1, \ldots, i, i + 1)_A \]

\[= [n + 1](0)_A - n(0, 1)_A + \sum_{i=1}^{n} [i - n](0, 1, \ldots, i, i + 1)_A \]

\[+ (0, 1, \ldots, n + 1, n + 2)_A + \sum_{i=n+2}^{2n} [i - n](0, 1, \ldots, i, i + 1)_A \]

\[= [n + 1](0, \ldots, n)_X - n(0, \ldots, n + 1)_X + 0 + (0, \ldots, n, n + 1, n + 2, \ldots, 2n + 2)_X \]

\[+ \sum_{i=n+2}^{2n} [i - n](0, \ldots, n, n + 1, i, i + 1, \ldots, i + 1 + n)_X \quad \text{(Lemma 9)} \]

\[= (n + 1)p^{n+1} - np^{n+2} + p^{2n+2}q + \sum_{i=n+2}^{2n} (i - n)p^{2n+2}q^2 \]

\[= p^{n+1} + np^{n+1}p + p^{2n+2}q + (2 + 3 + \cdots + n)p^{2n+2}q^2 \]

\[= p^{n+1} + np^{n+1}q + p^{2n+2}q + \frac{1}{2}(n - 1)(n + 2)p^{2n+2}q^2. \]

From (18) it is clear that \(p^{n+1} \) is the highest power of \(p \) dividing \(\phi_{L_nU_n} \). An easy calculation confirms that, as a polynomial in \(p \), the right hand side of (19) is \((2n + 3)p^2 + (\cdots)p^3 + \cdots\). From Corollary 4 hence follows that \(L_nU_n \) is lower robust of order \(n + 1 \), but upper robust only of order 2.

5.2. The output distributions of the \textit{LULU}-operators \(C_n \) and \(F_n \)

We consider next the specific, mutually dual \textit{LULU}-operators

\[C_n = L_nU_nL_{n-1}U_{n-1} \cdots L_1U_1, \]

\[F_n = U_nL_nU_{n-1}L_{n-1} \cdots U_1L_1. \]
In view of

\[
C_{n-1} = \bigvee^{n-1} \bigwedge^{2n-2} \bigvee^{n-1} C_{n-2}
\]

\[
C_n = \bigvee^n \bigwedge^{2n} \bigvee^n C_{n-1}
\]

\[
= \bigvee^n \bigwedge^{2n} \bigvee^{2n-1} \bigwedge^{2n-2} \bigvee^{n-1} C_{n-2}
\]

we define the following doubly infinite sequences of identically distributed random variables. Starting with a sequence \(X\) of i.i.d. random variables, put

\[
A := \bigvee^{n-1} C_{n-2} X
\]

\[
B := \bigwedge^{2n-2} A
\]

\[
C' := \bigvee^{n-1} B
\]

\[
C := \bigvee^{2n-1} B
\]

\[
D := \bigwedge^{2n} C
\]

\[
E := \bigvee^n D.
\]

Theorem 12. ([1, Theorem 14]) With \(A, B\) as defined above the output distribution \(\phi_{C_n}\) of \(C_n\) can be computed recursively as follows:

\[
\phi_{C_n} = \phi_{C_{n-1}} + n(G_{2n} - G_{2n-1}),
\]

where

\[
G_{2n} := (0, \cdots, 2n - 1, \overline{2n}, 2n + 1, \cdots, 4n)_B
\]

\[
G_{2n-1} := (0, \cdots, 2n - 2, \overline{2n - 1}, 2n, \cdots, 4n - 2)_A.
\]

Proof. First, one calculates

\[
\phi_{C_{n-1}} = (0)_{C'} = (0, \cdots, n - 1)_B
\]

\[
= 1 - n(\overline{0})_B + \sum_{i=0}^{n-2} [n - 1 - i](\overline{0}, 1, \cdots, i, \overline{i + 1})_B \quad \text{(dual of Lemma 8)}
\]

\[
= 1 - n(\overline{0}, \cdots, \overline{2n - 2})_A + [n - 1](\overline{0}, \cdots, \overline{2n - 1})_A + \sum_{i=1}^{n-2} 0
\]

\[
= 1 - n(\overline{0}, \cdots, \overline{2n - 2})_A + [n - 1](\overline{0}, \cdots, \overline{2n - 1})_A. \quad \text{(Lemma 10, } r = 2n - 2) \quad (20)
\]
The expansion of ϕ_{C_n} is driven a bit further:

\[
\phi_{C_n} = (0)_E = (0, \cdots, n)_D
\]

\[
= 1 - [n + 1](0)_D + \sum_{i=0}^{n-1} [n - i](\emptyset, 1, \cdots, i, \bar{i} + 1)_D \quad \text{ (dual of Lemma 8)}
\]

\[
= 1 - [n + 1](0, \cdots, 2n)_C + n[\emptyset, \cdots, 2n + 1]_C + \sum_{i=0}^{n-1} 0 \quad \text{ (Lemma 10, } r = 2n)\]

\[
= 1 - [n + 1]\left[1 - [2n + 1](0)_C + \sum_{i=0}^{2n-1} [2n - i](0, 1, \cdots, i, \bar{i} + 1)_C\right]
\]

\[
+n\left[1 - [2n + 2](0)_C + \sum_{i=0}^{2n} [2n + 1 - i](0, 1, \cdots, i, \bar{i} + 1)_C\right] \quad \text{ (Lemma 8)}
\]

\[
=[n + 1](0)_C - \sum_{i=0}^{2n} [n - i](0, 1, \cdots, i, \bar{i} + 1)_C \quad \text{ (easy arithmetic)}
\]

\[
=[n + 1](0, \cdots, 2n - 1)_B - n[0, \cdots, 2n)_B - \sum_{i=1}^{2n-1} 0
\]

\[
+n[0, \cdots, 2n - 1, 2n, 2n + 1, \cdots, 4n)_B \quad \text{ (Lemma 9, } r = 2n - 1)\]

\[
=[n + 1](0, \cdots, 2n - 1)_B - n[0, \cdots, 2n)_B + nG_{2n}. \quad (21)
\]

This yields

\[
\phi_{C_n} - nG_{2n} = [n + 1](0, \cdots, 2n - 1)_B - n[0, \cdots, 2n)_B \quad \text{ (by (21))}
\]

\[
= [n + 1]\left[1 - 2n(0)_B + \sum_{i=0}^{2n-2} [2n - 1 - i](\emptyset, 1, \cdots, i, \bar{i} + 1)_B\right]
\]

\[
-n\left[1 - [2n + 1](0)_B + \sum_{i=0}^{2n-1} [2n - i](\emptyset, 1, \cdots, i, \bar{i} + 1)_B\right]
\]

\[
= 1 - n(\emptyset)_B + \sum_{i=0}^{2n-1} [n - 1 - i](\emptyset, 1, \cdots, i, \bar{i} + 1)_B \quad \text{ (easy arithmetic)}
\]

\[
= 1 - n(\emptyset, \cdots, 2n - 2)_A + [n - 1](\emptyset, \cdots, 2n - 1)_A + \sum_{i=1}^{2n-2} 0
\]

\[
-n(\emptyset, \cdots, 2n - 2, 2n - 1, 2n, \cdots, 4n - 2)_A \quad \text{ (Lemma 10, } r = 2n - 2)\]

\[
= \phi_{C_{n-1}} - nG_{2n-1} \quad \text{ (by (20))}
\]

which, upon adding nG_{2n} on both sides, gives the claimed formula for ϕ_{C_n}. \qed
As an example, let us compute the output distribution of C_2. From $A = \vee^1 C_0 X = \vee^1 X$ follows $B = \land^2 A = \land^2 \vee X$. Using expansion calculus the reader may verify that

$$G_{2n} = G_4 = (0,1,2,3,4,5,6,7,8)_B = p^4 q^2 [p + p^2 q]^2.$$

Similarly one gets

$$G_{2n-1} = G_3 = p^2 q^2 (1 - p^2)^2.$$

Therefore

$$\phi_{C_2} = \phi_{C_1} + 2(G_4 - G_3) = 3p^3 + 3p^4 - 9p^5 + 4p^6 + 4p^7 - 10p^8 + 4p^9 + 8p^{10} - 8p^{11} + 2p^{12}.$$

As to robustness, from the above representation of ϕ_{C_2} and by using Corollary 4 we obtain that C_2 is lower robust of order 3 like U_2. Similar to $L_2 U_2$ discussed in 5.1, the upper robustness of C_2 is not inherited from L_2. Indeed, we have

$$\phi_{C_2} - 1 = q^2 (2p^{10} - 4p^9 - 2p^8 + 4p^7 + 4p^4 - p^3 - 3p^2 - 2p - 1)$$

which implies that C_2 is upper robust only of order 2. However, upper robustness is not constantly 2; these results were obtained from Theorem 12:

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower robustness</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>upper robustness</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

We mention that some nice closed formula for G_{2n} and G_{2n-1} is verified for small n and conjectured to hold universally in [1, Section 4.5.6].

6. Using exclusion instead of inclusion-exclusion. As witnessed by 5.2, one can sometimes exploit symmetry to tame the inherent exponential complexity of inclusion-exclusion. However, without the possibility to clump together many identical terms, the number of summands in Lemma 7 is 2^n, which is infeasible already for $n = 20$ or so.

In [17] on the other hand, some multi-purpose principle of exclusion (POE) is employed which had been useful in other situations before. When POE is aimed at calculating the output distribution of a stack filter S, a prerequisite is that the stack filter† S be given as a disjunction of conjunctions K_i, i.e. in disjunctive

†More precisely, the positive Boolean function that underlies the stack filters must be given in DNF. Apart from signal processing (present paper) positive Boolean functions $f(x)$ also arise in reliability analysis. Provided $f(x)$ is in DNF the method of [17] immediately applies to calculate the coupled reliability polynomial as well.
normal form (DNF). The POE then begins with the calculation of the set \(\text{Mod}_1 \) of all bitstrings that satisfy \(K_1 \), then from \(\text{Mod}_1 \) it excludes all bitstrings that violate \(K_2 \). This yields \(\text{Mod}_2 \subseteq \text{Mod}_1 \), from which all bitstrings are excluded that violate \(K_3 \), and so on. The feasibility of the POE hinges on the compact representation (using wildcards) of the sets \(\text{Mod}_i \).

The details being given in [17], here we address the question of how one gets the DNF in the first place. Specifically we consider the frequent case that our stack filter \(S \) is an EDC (Section 4) whose structural elements are provided. Let us go in medias res by reworking \(S = \bigvee^1 \bigwedge^2 \) of Example 1:

\[
(SX)_0 = A_0 = Z_0 \lor Z_1
\]

\[
= (Y_2 \land Y_1 \land Y_0) \lor (Y_2 \land Y_0 \land Y_1)
\]

\[
= Y_0 \land Y_1 \land (Y_2 \lor Y_1)
\]

\[
= (X_0 \lor X_1 \lor X_2 \lor X_3) \land (X_1 \lor X_2 \lor X_3 \lor X_4)
\]

\[
= (X_0 \lor X_1 \lor X_2 \lor X_3) \land (X_1 \lor X_0 \lor X_1 \lor X_2)
\]

\[
= X_0 \lor X_1 \lor X_2 \lor X_3
\]

The last line is the sought DNF of \(S \). It is obtained by starting with the DNF \(Z_0 \lor Z_1 \). This gets “blown up” to a DNF in terms of \(Y_i \)'s (using definition (13) of \(Z_0 \) and \(Z_1 \)). This DNF needs to be switched\(^\dagger\) to CNF (= conjunctive normal form). This in turn is blown up to a CNF in terms of \(X_i \)'s. Usually the result can and must be condensed in obvious ways (“condense further” meant that only the inclusion-minimal index sets carry over). Continuing like this one takes turns switching DNF’s with CNF’s, and blowing up expressions. This is done as often as there are structural elements. As a “side product” the so called rank selection probabilities \(\text{RSP}[i] \) are calculated. The latter is defined as the probability that the filter selects the \(i \)-th smallest pixel in the \(w \)-element sliding window. For instance here \(w = 5 \) and \(\text{RSP}[1] = \text{RSP}[2] = \text{RSP}[3] = 0 \), \(\text{RSP}[4] = 0.4 \), \(\text{RSP}[5] = 0.6 \).

The fourth author has written a Mathematica 9.0 program\(^\ddagger\) which, given the structural elements of any EDC’s (also 2-dimensional), first calculates the DNF of \(S \) and from it the output distribution \(\phi_S(p) \). (Alternatively the DNF of any stack filter, whether EDC or not, can be fed in directly.) Albeit Wild’s algorithm is multi-purpose, it managed to calculate \(\phi_{C_n}(p) \) up to \(n = 5 \), and the result agreed with Butler’s. Written out as EDC we have \(C_5 = \bigvee^5 \bigwedge^{10} \bigvee^9 \cdots \bigwedge^{2} \bigvee \) and \(C_5 \) has a sliding window of length 61. The corresponding structural elements \(\{0,1,2,3,4,5\}, \{0,-1,\ldots,-10\}, \{0,1,\ldots,9\} \) and so forth triggered the calculation of a DNF comprising a plentiful 12018 conjunctions (time: 168224 sec). From this \(\phi_{C_5}(p) \) was calculated in 45069 sec. Here it is:

\(\dagger\) How one switches between DNF and CNF of a positive Boolean function is a well researched topic which we won’t persue here.

\(\ddagger\) It is available upon sending an email to mwild@sun.ac.za
12p^5 + 7p^6 - 23p^7 + 19p^8 - 130p^9 + 194p^{10} - 59p^{11} - 142p^{12} + 460p^{13} - 787p^{14} + 715p^{15} - 7p^{16} - 1030p^{17} + 1959p^{18} - 2216p^{19} + 8412p^{20} + 3711p^{21} - 6748p^{22} + 812p^{23} - 7587p^{24} + 4680p^{25} - 7903p^{26} + 8839p^{27} - 13540p^{28} + 30009p^{29} - 51715p^{30} + 50159p^{31} - 142p^{32} - 1030p^{33} + 51417p^{34} + 78198p^{35} - 50589p^{36} + 6900p^{37} - 7680p^{38} + 56330p^{39} - 86905p^{40} + 43710p^{41} + 49540p^{42} - 114680p^{43} + 103390p^{44} - 40555p^{45} - 15370p^{46} + 33955p^{47} - 25460p^{48} + 11790p^{49} - 3645p^{50} + 740p^{51} - 90p^{52} + 5p^{53}.

As to the rank selection probabilities of C_5 one has

$RSP[1] = \cdots = RSP[4] = 0, \quad RSP[5] = 0.000002, \quad RSP[6] = 0.00001, \quad \cdots,$

$RSP[37] = 0.04701, \quad RSP[38] = 0.04703, \quad RSP[39] = 0.04643, \quad \cdots,$

$RSP[58] = 0.00012, \quad RSP[59] = RSP[60] = RSP[61] = 0,$

the maximum being $RSP[38]$.

7. Conclusion. As mentioned in the introduction, concepts of robust smoothers related to ours have been previously considered. To quote from the abstract of [15]:

In this paper we focus on rank selection probabilities (RSPs) as measures of robustness as it is well known that other statistical characterization of stack filters, such as output distributions, breakdown probabilities and output distributional influence functions can be represented in terms of RSPs.

While we agree with this praise of RSPs we don’t share the opinion on page 1642 of [15]:

Efficient spectral algorithms exist for the computation of the selection probabilities of stack filters.

The article cited in [15] is [3] which offers Boolean derivatives and weighted Chow parameters but no computational evidence of the feasibility of the proposed intricate method. Similarly [5] which reduces the calculations of the RSPs of stack filters of window size n to the corresponding problem for size $n - 1$ offers no computational data; its complexity in theory (and likely in practise) is $O(n!)$. In the same vein no numerical experiments are carried out in [8]. It is evident that none of the approaches [3], [5], [8] (and in fact none that handles the models of a Boolean function one by one) scales up to [8].

References

