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Abstract

The genus Raffaelea was established in 1965 when the type species, R.
ambrosia, a symbiont of Platypus ambrosia beetles was described. Since then, many
additional ambrosia beetle symbionts have been added to the genus, including the
important tree pathogens R. quercivora, R. quercus-mongolicae, and R. lauricola,
causal agents of Japanese and Korean oak wilt and laurel wilt, respectively. The
discovery of new and the dispersal of described species of Raffaelea to new areas,
where they can become invasive, presents challenges for diagnosticians as well as
plant protection and quarantine efforts. In this paper, we present the first
comprehensive multigene phylogenetic analysis of Raffaelea. As itis currently defined,
the genus was found to not be monophyletic. On the basis of this work, Raffaelea
sensu stricto is defined and the affinities of undescribed isolates are considered.
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Research highlights
o Raffaelea as it is currently defined is not monophyletic.
e Raffaelea sensu stricto is defined.
e Raffaelea spp. isolates with unclear affinities are identified.

1. Introduction

Both Raffaelea and Ambrosiella species colonize the natal galleries of ambrosia
beetles in tree sapwood, and they maintain close associations with these insects (Batra
1967). Although most Raffaelea spp. live as saprophytes, colonizing dead and dying
wood, some species such as R. lauricola, R. quercivora, and R. quercus-mongolicae
are serious pathogens that can cause significant damage to forests and fruit crops (Kim
et al. 2009, Kubono and Ito 2002, Ploetz et al. 2013). The causal agent of laurel wilt, R.
lauricola, is highly virulent and able to cause systemic wilt from a single inoculation. It
threatens native Lauraceae in the southeastern United States and avocado production
in Florida (Ploetz et al. 2011, Ploetz et al. 2013). Thus, the discovery of new taxa and
the dispersal of known taxa to new areas may represent important threats to forests and
agriculture. Clarification of the taxonomy of Raffaelea, and related genera, would
clearly aid researchers and diagnosticians who deal with these important challenges.
Additionally, clear taxonomy and a strong phylogeny of the genus would allow for an
examination of the evolutionary biology of the ambrosial symbioses.

The genus Raffaelea was established by Arx and Hennebert (1965) to
accommodate R. ambrosiae, a symbiont of Platypus ambrosia beetles; it currently
includes up to 20 described species (Harrington et al. 2010; De Beer et al. 2013b).
Raffaelea has traditionally been distinguished from Ambrosiella by the sympodial

proliferation of the conidiogenous cells in Raffaelea and percurrent proliferation of the



conidiogenous cells in Ambrosiella (Batra 1967, Harrington et al. 2008). This distinction
is difficult to discern microscopically, and its utility to distinguish the two genera has
been questioned (Gebhardt and Oberwinkler 2005, Harrington et al. 2008). Molecular
phylogenetic approaches have been used to clarify the taxonomic relationships of most
groups of fungi, including the Ophiostomatales (Duong et al. 2012, Farrell et al. 2001,
James et al. 2006, Slippers et al. 2013, Wingfield et al. 2013). Ribosomal DNA
sequence data have confirmed that the two genera are not closely related, as Raffaelea
resides in the Ophiostomatales and Ambrosiella in the Microascales (Cassar &
Blackwell 1996; Jones & Blackwell 1998; De Beer et al. 2013a).

The relationships between Raffaelea and related genera and their placement
within the Ophiostomatales have not been fully resolved. The genus name
Dryadomyces was introduced by Gebhardt et al. (2005) to accommodate D. amasae
(=R. amasae). It fell in the Raffaelea clade in their phylogenetic analyses of the rDNA
small ribosomal subunit (SSU) sequences, but based on conidiogenesis, it differed from
Raffaelea. Harrington et al. (2008) reduced Dryadomyces to synonymy with Raffaelea,
supporting the view that all ambrosia beetle symbionts with similarities to Ophiostoma
should be included in Raffaelea. Massoumi Alamouti et al. (2009) conducted a
multigene phylogenetic analysis of a limited sampling of ambrosia fungi. They showed
that D. amasae grouped in a monophyletic lineage distinct from the lineage containing
R. ambrosiae, the type species for Raffaelea. However, Harrington et al. (2010) revised
Raffaelea and maintained the synonymy of Dryadomyces with Raffaelea. In a
taxonomic review of the Ophiostomatales, De Beer & Wingfield (2013) contextualized

the phylogenetic placement of Raffaelea spp. alongside all other accepted genera within



the order based on available LSU data, confirming the polyphyly of the genus as
suggested by Massoumi Alamouti et al. (2009). They defined Raffaelea sensu stricto,
as well as two distinct clades. In one clade, R. lauricola, R. brunnea, and an
undescribed species from Canada were included in Ophiostoma sensu lato, but the
definition of what should be included in Ophiostoma was vague. The second clade
included R. quercivora, R. montetyi, R. sulphurea, and R. amasae in Leptographium
sensu lato (De Beer & Wingfield 2013). These authors concluded that additional data
would be required to fully resolve the generic status of these two unrelated clades
accommodating diverse species of Raffaelea.

The objectives of this study were to conduct multigene phylogenetic analyses of
Raffaelea spp. and to test the monophyly of the genus as it is currently defined. An
additional objective was to assess the affinity of a collection of isolates that have yet to
be identified.

2. Materials and Methods
2.1. Taxon Sampling

Data from previous studies were assessed and the LSU, SSU, and B-tubulin (BT)
loci were selected for the present study because they have been useful for constructing
phylogenies for these fungi and are available in GenBank (Massoumi Alamouti et al.
2009, Harrington et al. 2010, De Beer & Wingdfield 2013). In all, 77 isolates were
analyzed, including 9 in the Microascales and 55 in the Ophiostomatales (18 species of
Ophiostoma, three of Ceratocystiopsis, 11 of Grosmannia, one of Esteya, two of
Fragosphaeria, and all 20 species of Raffaelea that were defined by Harrington et al.

(2010)) (Table 1). Unidentified isolates and outgroup taxa comprised the remaining



isolates. Sequences were either acquired from GenBank or obtained by sequencing

(Table 1).

Table 1. Taxon names, isolate and GenBank accession numbers used in the study.

Accession

Taxon Isolate

LsuU SSuU BT
Ambrosiella ferruginea CBS408.68 EU984285 EU984254 EU977461
Ambrosiella ferruginea JB13 EU984286 EU984255 EU977462
Ambrosiella hartigii CBS404.82 EU984288 EU984256 EU977463
Ambrosiella xylebori CBS110.61 EU984294 AY858659 EU977469
Ceratocystiopsis manitobensis UM237 DQ268607 EU984266 DQ268638
Ceratocystiopsis minuta CBS463.77 DQ268615 EU984267 EU977481
Ceratocystiopsis minuta-bicolor CBS635.66 DQ268616 EU984268 EU977482
Ceratocystis adiposa CBS600.74 EU984304 EU984263 EU977479
Ceratocystis coerulescens CL13-12 AY214000 EU984264 AY 140945
Ceratocystis moniliformis CBS155.62 EU984305 EU984265 EU977480
Claviceps fusiformis ATCC26019 u17402 DQ522539 AF263569
Daldinia concentrica u47828 U32402 FJ185285
Epichloe typhina U17396 AB105953 X52616
Esteya vermicola CBS115803 EU668903 FJ490552
Fragosphaeria purpurea CBS133.34 AF096191 AF096176
Fragosphaeria reniformis CBS134.34 AB189155 AB278193
Grosmannia abiocarpa MUCL18351 AJ538339 EU984269 DQO097857
Grosmannia clavigera ATCC18086 AY544613 EU984270 AY263194
Grosmannia cucullata AJ538335 AY497513 EU977483
Grosmannia penicillata DQ097851 AY858662 DQ097861
Grosmannia piceiperda AY707209 AY497514 AY707195
Grosmannia serpens DQ294394 AY497516 AY707188
Leptographium abietinum DAOM60343 DQ097852 EU984271 AY263182
Leptographium fruticetum DAOM234390 DQ097848 EU984272 DQ097855
Leptographium longiclavatum AY816686 EU984273 AY288934
Leptographium lundbergii UAMH9584 AY544603 EU984274 AY263184
Leptographium terebrantis UAMH9722 AY544606 EU984275 AY263192
Microascus cirrosus CBS217.31 AF275539 EU984279 EU977490
Ophiostoma abietinum AF155685 EU984276 EU977484
Ophiostoma bicolor DQ268604 AY497512 DQ268635
Ophiostoma canum AJ538342 EU984277 EU977485
Ophiostoma floccosum AJ538343 AF139810 AY789142
Ophiostoma ips AY172022 AY172021 GU170412
Ophiostoma macrosporum CBS367.53 EU984290 EU984257 EU977465
Ophiostoma montium CBS15178 AY194947 EU984278 AY194963



Ophiostoma montium CBS435.34
Ophiostoma novo-ulmi CMW10573
Ophiostoma piceae

Ophiostoma pulvinisporum CMW9022
Ophiostoma quercus

Ophiostoma setosum

Ophiostoma stenoceras CMW3202
Ophiostoma tingens CBS366.53
Ophiostoma ulmi
Ophiostomataceae sp. TR25
Penicillium expansum

Petriella setifera CBS385.87
PL1001?

PL1004 "

PL1635

Raffaelea albimanens CBS271.70
Raffaelea amasae CBS116694
Raffaelea ambrosiae CBS185.64
Raffaelea arxii CBS273.70
Raffaelea brunnea CBS378.68
Raffaelea canadensis CBS168.66
Raffaelea canadensis CBS805.70
Raffaelea ellipticospora

Raffaelea fusca C2394 °

Raffaelea gnathotrichi CBS379.68
Raffaelea lauricola

Raffaelea lauricola PL159 °
Raffaelea montetyi

Raffaelea montetyi PC06.001
Raffaelea quercivora MAFF410918
Raffaelea quercus-mongolicae KACC44405
Raffaelea santoroi CBS399.67
Raffaelea scolytodis CCF3572
Raffaelea subalba C2401 °
Raffaelea subfusca C2335 °
Raffaelea sulcati CBS806.70
Raffaelea sulphurea CBS380.68
Raffaelea tritirachium CBS726.69
S21

S22

S28

S31

S32

EU984289
DQ294375
AJ538341
DQ294380
DQ294376
AF128929
DQ294350
EU984293
DQ368627
EU984281
U15483
AF027666
KJ909293°
KJ909296°
KJ909308"
EU984296
EU984295
EU984297
EU984298
EU984284
EU984299
EU984291
HQ688664
EU177449
EU177460
EU123077
KJ909303"
EU984301
JF909540
AB496454

EU984302
AM267270
EU177443
EU177450
EU177462
EU984292
EU984303

AY858657

AB007663

AF234835

FJ176850
EU984258
M83261
EU984251
DQ912698
EU984280
KJ909294°
KF026302
KJ909309°
EU984259
AY858660
AY497518
AY497519
AY858654
AY858665
AY858658
KJ909299™
KJ909300°
AY858655
EU123076
EU257806
AY497520
JF909512
AB496428
GQ225700
EU984261
AM267261
KJ909304°
KJ909306"
AY858666
EU170272
EU984262
KJ909314°
KJ909311°
KJ909312°
KJ909313°
KJ909315°

EU977464
FJ430508

AY305698
EU977487
AY789157
AY305703
DQ296074
EU977468
EU977489
EU977457
AF003248
EU977491
KJ909295"
KJ909297¢
KJ909310"
EU977471
EU977470
EU977472

EU977460
EU977473
EU977466
KJ909298%
KJ909301°

KJ909302°
EU977475

GQ225691
GQ225688
EU977476

KJ909305"
KJ909307*
EU977477
EU977467
EU977478



Sporothrix humicola CMW7618 EF139114 EF139100

Sporothrix schenckii DQ294353 M85053 DQ296076
Sporothrix schenckii CMW7614 DQ294352 AY280477
Taphrina populina CBS337.55 AF492050 D14165 AF170968
Xylaria sp. AY327481 u32417 AY951763

?isolate UCR1073 from Eskalen and McDonald (2011), *from authors collections,

¢ from Dr. T. C. Harrington lowa State University, d Sequenced in this study,

2.2. DNA Extraction, PCR Amplification, and Sequencing

Polymerase chain reactions were performed using DNA that was extracted from
cultures (Justesen et al. 2002, Duong et al. 2012) using PCR primer pairs NL1/LR3,
NS1/NS4, and Bt2a/Bt2b for the LSU, SSU, and BT loci, respectively (Glass and
Donaldson 1995, O'Donnell 1993, Vilgalys and Hester 1990, White et al. 1990). Sanger
sequencing was performed using the same primers at the University of Florida
Interdisciplinary Center for Biotechnology Research, and consensus sequences were
constructed using both the forward and reverse sequence reads using Geneious Pro
5.6.6 (Biomatters Ltd., Auckland, New Zealand). After many attempts, rDNA internal
transcribed spacer region ITS1-5.8s-ITS2 (ITS) PCR amplicons were generated for
several Raffaelea spp. isolates using FastStart Taq with the GC-RICH solution (Roche
Applied Science, Basel, Switzerland) and primers ITS1F/ITS4 (Gardes and Bruns 1993,
White et al. 1990). Sanger sequencing of ITS amplicons was performed at the Forestry
and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South
Africa, and aligned as above.

2.3. Phylogenetic Analyses

DNA sequences were aligned with sequences retrieved from GenBank (Table 1)
using the Geneious alignment default settings in Geneious Pro 5.6.6, manually

adjusted, and then trimmed. The introns in the BT loci could not be unambiguously



aligned and were removed from the dataset. The presence or absence of the BT
introns was also coded, but gave maximum parsimony (MP) results similar to the non-
intron-coded dataset and was not used in subsequent analyses. Congruence among
the three datasets was first evaluated using the partition-homogeneity test (PHT) in
PAUP* 4.0al, with a heuristic search, tree-bisection-reconnection (TBR) branch
swapping algorithm and Maxtree set to auto increase, and again using Maxtree=500
with both TBR and nearest-neighbor interchange (NNI) branch swapping algorithms
(Swofford 2003). Congruence among gene trees was evaluated by conducting a
maximum likelihood (ML) analysis on each gene (Fig S2-S4), and then comparing the
results visually. The ML analyses were conducted at the University of Florida High
Performance Computing Center (HPC) using RAXML version 7.3.5 using the
GTRGAMMAI model, as determined by JModelTest, with 100 distinct starting trees and
1000 bootstrap analyses (BS) (Posada 2008, Stamatakis 2006). Gene sequences
(LSU, SSU, BT) missing from isolates were treated as missing data then concatenated
to form the combined data set with 1849 characters total. The combined data set was
analyzed using ML, as described above, with each gene in a separate partition.

The MP analysis was conducted using PAUP* 4.0a129 with gaps treated as
missing data, a heuristic search with 10 random stepwise addition replicates, and TBR
(Swofford 2003). Branches with zero branch lengths were collapsed, and support was
assessed by BS analysis using 1000 MP heuristic searches using TBR. The Bayesian
Inference (BI) analysis was conducted at the HPC using MrBayes 3.2.1 using the
GTR+I+G model with all parameters unlinked (adapted from JModelTest), each gene in

a separate character set, and 5 million generations that were sampled every 1000



generations (Ronquist et al. 2012). The first 5,000 trees were discarded as burn-in, as
determined using Tracer 1.4, and the remaining 15,002 trees were used to calculate the
posterior probabilities (PP) and construct the majority-rule consensus tree using
MrBayes (Rambaut and Drummond 2007).

To test for monophyly of Raffaelea, Bayes factors (BF) were calculated by first
conducting a Bl analysis, as described above, with the addition of a constraint that the
Raffaelea taxa form a single clade. BFs were then calculated using the harmonic mean
from MrBayes and the BF from Tracer (Kass and Raftery 1995, Rambaut and
Drummond 2007, Ronquist et al. 2012). Expected likelihood weight (ELW) and
Shimodaira-Hasegawa (SH) tests were conducted in RAXML, as described above, with
the addition of a monophyletic Raffaelea constraint tree (Stamatakis 2006).

An additional ML analysis was performed to determine the placement of
undescribed isolates. To do this, sequences from seven isolates were included in the
concatenated dataset: five (S21, S22, S28, S31, S32) from nutmeg, Myristica fragrans,
with wilt symptoms in Grenada, one (PL1001, strain UCR 1073 GenBank Accession
JF327799 from Eskalen and McDonald (2011) from avocado with wilt symptoms in
California), and one (PL1635) associated with a pine-specific ambrosia beetle in
Thailand. Only SSU sequences were available for the five isolates from Grenada,
whereas SSU, LSU, and BT sequences were available for the remaining undescribed
isolates. DNA sequence alignments and phylogenetic trees were deposited in
TreeBase (http://purl.org/phylo/treebase/phylows/study/TB2:S15908).

3. Results

After running for two hours, the first PHT, with Maxtree set to auto increase, was

still on replicate 1a and had 500,532, and increasing, trees remaining to swap and was



aborted. The inability of the PHT to reach completion was not surprising because the
MP analysis of the LSU dataset resulted in 20,700 equally parsimonious trees (Fig S5).
The next PHT analyses using Maxtree = 500, yielded P values of 0.01 and 0.073 (TBR
with 100 replicates, and NNI with 1000 replicates, respectively). Results from the PHT
indicate the genes might be incongruent but are questionable because of the limited
search strategies that were employed so the analysis could be completed effectively.
For these reasons and other shortcomings of the PHT, as noted by Hipp et al. (2004)
and references therein, we believe the PHT results do not provide sufficient evidence
not to combine the datasets. The ML analyses of the individual genes showed weak
support for both deeper nodes and terminal branches but the general topologies were
similar (Fig S2—-S4). The most notable differences were the placements of
Ceratocystiopsis and Fragosphaeria, which probably contributed to the incongruent
PHT. However, following similar conclusions by Massoumi Alamouti et al. (2009), we
accepted that the gene histories were sufficiently similar to combine the data and we
present results from both the combined and individual datasets (Fig 1, 2, S2—-S4).
Taxa in the Ophiostomatales formed a highly supported clade with 100, 1, and 99
ML BS, BI PP, and MP BS values, respectively. All three analyses strongly supported
placement of Ceratocystiopsis and Fragosphaeria in the Ophiostomatales; however,
they could not be placed relative to the other genera because the individual gene
phylogenies had different topologies (Fig 1, S2—-S4). The Ophiostoma sensu lato clade
was well supported with 88, 1, and 77 ML BS, Bl PP, and MP BS values, respectively.
Raffaelea fell into two clades, one of which included R. amasae, R. sulphurea, R.

guercus-mongolicae, R. quercivora, R. montetyi, and E. vermicola (97, 1, and 89 ML
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Fig 1. Raffaelea ML phylogeny from the combined, LSU, SSU, and BT dataset. Clade support values
are ML bootstrap percentages with Bl posterior probabilities >0.9 and MP bootstrap
percentages >70% for selected clades shown as bars above and below the branches,
respectively. Type species for select genera are indicated in blue and isolates missing gene
sequences have the genes that were used listed in red. Raffaelea isolates are highlighted
with a red bars and Leptographium sensu lato with a blue bar.
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BS, Bl PP, and MP BS values, respectively) within the Leptographium sensu lato clade
(87, 1, 67, ML BS, BI PP, and MP BS values, respectively). The second Raffaelea
clade contained R. brunnea, R. lauricola, R. scolytodis, R. arxii, R. gnathotrichi, R.
fusca, R. subfusca, R. ellipticospora, R. ambrosiae (type species for the genus), R.
canadensis, R. albimanens, R. subalba, R. tritirachium, R. santoroi, and R. sulcati (93,
1, and 87 ML BS, BI PP, and MP BS values, respectively) and was sister to
Leptographium sensu lato. The placement of Fragosphaeria was disregarded due to
the incongruence of the different loci and the consequent uncertainty in its placement.

The log likelihood values from the ML unconstrained and the monophyletic
Raffaelea constraint analyses were (-15790.81 and -15822.69) and for the Bl analyses
were (-15943.84 and -15973.97 from Tracer) and (-15960.43 and -15997.19 from
MrBayes), respectively. Although the ELW test indicated that the monophyletic
constrained hypothesis was significantly worse than the unconstrained hypothesis
(polyphyletic Raffaelea) (0.954 PP), the SH test did not find a significant difference
between the hypotheses at alpha < 0.05. The BFs were greater than 30 for both
methods used, indicating very strong support for the polyphyletic Raffaelea hypothesis
(Kass and Raftery 1995).

The ML analysis of the unidentified isolates provided evidence for six new taxa,
and supported previous indications that isolate TR25 represented a distinct taxon
(Massoumi Alamouti et al., 2009) (Fig 2). In the Leptographium sensu lato clade,
isolate S28 was close to R. sulphurea, and isolates S31 and S32 were close to R.

amasae. In the Raffaelea sensu stricto clade, S21 and S22 were close to PL1004 (see
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Dreaden et al. 2014 for more information on this isolate) and R. brunnea, PL1001 was

near R. canadensis, and PL1635 was near R. scolytodis.
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4. Discussion

The ML analyses of the individual gene datasets along with the ML, BI, and
MP analyses of the combined dataset all indicated that Raffaelea, as it is currently
defined, is polyphyletic. Esteya vermicola together with R. amasae, R. sulphurea, R.
guercus-mongolicae, R. quercivora, and R. montetyi formed a strongly supported
clade in Leptographium sensu lato (Fig 1, S2-S4). The remaining Raffaelea spp.
resided in a second clade sister to Leptographium sensu lato, also with strong
statistical support. Of the three tests used to consider monophyly in Raffaelea, only
the SH test indicated that the constrained tree did not differ from the unconstrained
tree. This is not surprising as the SH test has been shown to be conservative
(Czarna et al. 2006, Shimodaira and Hasegawa 1999, Strimmer and Rambaut 2002).
Taken as a whole, the evidence suggests that Raffaelea needs to be reevaluated
and that Leptographium sensu lato should be included in this reevaluation.

This study recognizes R. brunnea, R. lauricola, R. scolytodis, R. arxii, R.
gnathotrichi, R. fusca, R. subfusca, R. ellipticospora, R. ambrosiae, R. canadensis,
R. albimanens, R. subalba, R. tritirachium, R. santoroi, and R. sulcati as Raffaelea
sensu stricto. Raffaelea amasae, R. sulphurea, R. quercus-mongolicae, R.
guercivora, and R. montetyi should be removed from Raffaelea, but their correct
placement remains unclear at this time. Whether they should be placed in
Leptographium sensu lato or accommodated in a reinstated Dryadomyces with D.
amasae as the type species will require additional research. In particular, a
phylogenetic study that includes all, or most, Leptographium sensu lato and
Raffaelea taxa is recommended.

Massoumi Alamouti et al. (2009) noted, referencing work by Cassar and

Blackwell (1996) and Farrell et al. (2001), that SSU-based phylogenies indicated that
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both Ambrosiella and Raffaelea are polyphyletic. This led these authors to suggest
that the similar morphologies of the two genera and their intimate associations with
ambrosia beetles arose more than once in each genus. The ambrosial habit in
beetles is also polyphyletic and has arisen at least seven times (Farrell et al. 2001).
The multiple origins of both ambrosial fungi, including Raffaelea, and the beetles with
which they are associated suggests that these relationships should not be used to
define Raffaelea.

The ML phylogenies of individual gene datasets and ML, BIl, and MP
phylogenies of the combined dataset in the present study show that Raffaelea is
polyphyletic. This contradicts the MP results of Harrington et al. (2010) based on
LSU data but is consistent with those based on the SSU data. These discrepancies
could be due to differences in taxon sampling, the loci that were used, and the
methodologies used to define these relationships (MP vs. ML). Although the effect
of taxon sampling was not studied, the latter factors were shown to be significant, as
a MP analysis of LSU data in the present study also placed Raffaelea spp. in a
single clade (Fig S5). Thus, it appears that the previous conclusion (Harrington et
al., 2010) that Raffaelea is monophyletic was an artifact of the MP analysis and LSU
dataset that they used.

The ML analyses suggest that the nine unidentified isolates included in this
study contain seven undescribed taxa (Fig 2). These will be described elsewhere,
as additional isolates become available. The results also provide a strong indication
that there are many more new species of Raffaelea that remain to be identified.
Clearly, care should be taken when new isolates of Raffaelea are identified and
diagnostic and detection methods are designed. For example, isolate PL1004 had

been identified as R. lauricola, based on SSU data, but was shown later to be non-
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pathogenic and is now considered to be a new species (Dreaden et al. 2014).
Additionally, the R. lauricola detection method developed by Jeyaprakash et al.
(2014) utilizes a portion of the LSU where PL1004 and R. lauricola have 100%
sequence homology, implying that the method will likely detect PL1004 and R.
lauricola equally well and thus resulting in false positives. Likewise, SSU data were
used to identify isolate PL1001 as R. canadensis (Eskalen and McDonald 2011),
which was shown in the present study to differ from that species. A more detailed
study that includes additional isolates of the putative new taxa is needed to formally
describe them as new species. The BS support for this analysis was lower for many
clades when compared to the analysis not including the unknown isolates. This was
probably due to the uncertain placement of the isolates from Grenada for which only
SSU sequences were available (Fig 1 and 2).

The ITS region has been widely used for fungal diagnostics, phylogenetics
and has been proposed as the universal DNA barcode marker for Fungi (Schoch et
al. 2012). Unfortunately, the locus is notoriously difficult to utilize in Raffaelea
(Harrington et al. 2011, Jeyaprakash et al. 2014). We were able to produce PCR
amplicons, after much trial and error, for many Raffaelea spp. but only one high
quality ITS sequence could be generated and this sequence along with those from
GenBank could not be unambiguously aligned (Fig S1). Due to these difficulties, the
ITS locus was not used to discern the phylogeny of Raffaelea spp. in this study.
Jeyaprakash et al. (2014) were able to partially characterize the ITS for a R. lauricola
isolate, after considerable modification to their sequencing methodology, and when
aligned with the R. lauricola ITS2 sequence generated here has 15 bp differences,

GenBank Accessions KJ909303 and KF515711 respectively. It would be interesting

16



to sequence multiple cloned ITS PCR amplicons from multiple R. lauricola isolates to
determine the prevalence of intraspecific and intragenomic ITS variants.
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Fig S5. Strict consensus of 20,700 most parsimonious trees using the LSU dataset and PAUP*
(465 total characters, 230 were constant, and 195 were parsomony-informative).
Gaps were treated as missing data, and the TBR branch swapping algorithm was
used (Swofford 2003). This LSU MP analysis found Raffaelea as defined by
Harrington et al. (2010) to be monophyletic, as did their LSU MP analysis. Where as,
the ML (LSU, SSU and BT) analyses (Fig S2-S4) as well as the ML, Bl and MP
analyses using the combined data sets, in this study, found Raffaelea spp. in both
the Raffaelea and the Leptographium sensu lato clades (Fig 1). These findings
provide evidence the cause of the incongruence between our findings that Raffealea
is not monophyletic, and the Harrington et al. (2010) LSU MP study is because of an
interaction between the LSU dataset and MP.
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