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Abstract

In this article we derive error estimates for the Galerkin approxi-
mation of a general linear second order hyperbolic partial differential
equation. The results can be applied to a variety of cases e.g. vibrat-
ing systems of linked elastic bodies. The results generalize the work
of Baker [1] and also allow for viscous type damping. Splitting the
proofs for the semidiscrete and fully discrete cases not only simplifies
the proofs but less restrictive regularity assumptions are required.

1 Introduction

In this paper we consider the Galerkin finite element approximation of a
solution of a general second order hyperbolic equation. This includes the
general second order wave equation but also vibrating beams, plates etc.,
since the variational forms are the same as for the wave equation. Even
systems of linked elastic bodies can be accommodated, see Section 7. There
is a restriction to the theory however and this relates to damping. Damping
at the boundary or interfaces is for example not allowed.
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The general second order hyperbolic partial differential equation is formu-
lated in Section 2 in variational form and is referred to as Problem G. Con-
ditions for the existence of a unique solution are given.

Convergence of the Galerkin approximation for the wave equation was con-
sidered in the book [2] and article [3] both published in 1973. In [2] a sketch
of a proof of convergence for the undamped case is presented. In [3] error
estimates are derived for the undamped case and a problem with boundary
damping. These error estimates are for the semi discrete approximation and
the fully discrete approximation.

Dupont [3] made the assumption that the exact solution has a second order
time derivative with respect to the energy norm, which is rather restrictive.
In 1976 Baker derived error estimates with “minimal smoothness require-
ments on the solution”, but no damping [1]. This article had a significant
impact on the literature and other authors adapted his methods or were
influenced by it, see e.g. [4], [5], [6], [7] and [8].

We generalize the results of Baker [1]. The spaces L2(Ω) and H1
0 (Ω) are

replaced by general Hilbert spaces W and V , where V is a subset of W .
In the general problem the L2-norm is replaced by the general inertia norm
‖ · ‖W and the well known energy norm for the wave equation (equivalent to
the H1 norm) is replaced by a general energy norm ‖ · ‖V . Naturally certain
properties of the spaces and their norms need to be assumed in a general
setting (see Section 2). An attempt to obtain error estimates for a general
hyperbolic problem was made in [9] and [10]. The assumptions made were
also rather restrictive. The differentiability assumption is the same as in [3]
and modal damping is assumed.

As mentioned, Problem G in Section 2 is the abstract variational problem in
Hilbert space. (The problem in [1] is a special case.) So called viscous type
damping is included. It is natural to ask whether this restriction is necessary.
We believe that boundary or interface damping requires a different approach
based on the fact that existence results are influenced by the type of damping.

The existence result in Section 2 is presented in variational form. This is more
convenient for the finite element method as one can compare conditions for
existence to conditions for convergence. We see that sufficient conditions
for existence are also used to prove convergence but they seem not to be
sufficient and more regularity of solutions is assumed.

This article is not merely about generalization but other contributions to
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the theory are also made. Consider for example the significance of the semi-
discrete approximation. In [3], [1] and other publications (e.g. [5], [6] and [7])
error estimates are derived for the semi discrete approximation and then for
the fully discrete approximation without using the results already obtained.
In some cases the semi-discrete approximation is ignored. We derive an error
estimate for the semi-discrete approximation with respect to the inertia norm
and then an estimate for the error in approximating the solution of the semi-
discrete problem by the fully discrete approximation with respect to the same
norm. The final estimate follows trivially by the triangle inequality. This
approach has two advantages. It is not necessary to assume the existence of
a third or fourth order derivative for the exact solution and the convergence
analysis for the fully discrete approximation is simplified.

In [1] error estimates are derived “using L2-projections of the initial data as
starting values”. The fact that the starting values for the approximation are
a projection, is used to derive estimates (see Section 4). But it is not always
possible to determine the projections exactly. It is not clear in such an event
how the error estimates can be interpreted. In our approach projections are
not used as initial approximations in the fundamental estimate. The errors
for the initial approximations are dealt with at a later stage (see Section 5).

It is well known that the smoothness of a solution is important in convergence
analysis. In this paper we attempt to pinpoint exactly where the regularity in
space and time is used in the analysis. Regarding time, see Sections 4 and 6
and for spatial regularity, see Section 5. An issue that deserves attention here
is the differentiability of the projection of the exact solution. It is possible
that the exact solution does not have a second order derivative with respect
to the energy norm but its projection may have a second order derivative
(see Section 3).

To summarize, error estimates for the semi-discrete approximation are pre-
sented in Section 5 and those for the fully discrete appear in Section 6.
Finally, applications are discussed in Section 7.

Remark To compare results in different articles is time consuming due to
differences in notation. We have used the notation from [2].
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2 Existence and uniqueness of solutions

In this section we consider the general second order hyperbolic equation or
general linear vibration problem in variational form. Let X, W and V denote
Hilbert spaces such that V ⊂ W ⊂ X.

Notation

X has inner product (·, ·)X and norm ‖ · ‖X .

W has inner product c and norm ‖ · ‖W .

V has inner product b and norm ‖ · ‖V .

Let J be a bounded or unbounded interval, either an open interval containing
zero or of the form [0, τ) or [0,∞). Let Y be any Hilbert space and consider
a function u on J with values in Y .

We write u′(t) ∈ Y if the derivative exists with respect to the norm
of Y ;

u(k) ∈ L2
(
J ;Y

)
if u(k)(t) ∈ Y for each t and

∫
J
‖u(k)‖2

Y <∞;

u ∈ Ck
(
J ;Y

)
if u(k) ∈ C

(
J ;Y

)
.

Consider a bilinear form a defined on W and the following general problem.

Problem G
Given a function f : J → X, determine a function u ∈ C(J ;V ) such that u′

is continuous at 0 and for each t ∈ J

u(t) ∈ V, u′(t) ∈ V, u′′(t) ∈ W,

c
(
u′′(t), v

)
+ a
(
u′(t), v

)
+ b
(
u(t), v

)
=
(
f(t), v

)
X

for each v ∈ V, (2.1)

while u(0) = u0 , u′(0) = u1 .

Assumptions The following assumptions are used for existence theory as
well as convergence theory.

E1 V is dense in W ,
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E2 There exists a constant Cb such that ‖v‖W ≤ Cb‖v‖V for each v ∈ V ,

E3 There exists a constant Cc such that ‖v‖X ≤ Cc‖v‖W for each v ∈ W ,

E4 The bilinear form a is nonnegative, symmetric and bounded on W , i.e.

|a(u, v)| ≤ Ka‖u‖W‖v‖W .

If the bilinear form a satisfies Assumption E4 we refer to the damping as
viscous type since it is valid for viscous damping in the wave equation and
other vibration problems. (In [11] it is referred to as weak damping.) The
assumption is not valid for boundary damping; it does not hold for the model
in [3].

Remark In the rest of this paper, except Section 7, b and c are inner prod-
ucts for the spaces V and W respectively and a is a bilinear form satisfying
assumption A4.

For the wave equation ‖ · ‖X is just the L2-norm and in many applications
the norms ‖ · ‖X and ‖ · ‖W are equivalent.

Definition

Eb = { x ∈ V
∣∣ there exists a y ∈ W such that c(y, v) = b(x, v) for all v ∈ V }.

Theorem 2.1. Suppose Assumptions E1, E2, E3 and E4 hold, then there
exists a unique solution

u ∈ C1
(
J ;V

)
∩ C2

(
J ;W

)
,

for Problem G for each u0 ∈ Eb, u1 ∈ V and each f ∈ C1
(
J ;X

)
. If f = 0

then u ∈ C1
(
(−∞,∞);V

)
∩ C2

(
(−∞,∞);W

)
.

Proof. See [11].

Problem G is equivalent to a first order differential equation in the product
space V ×W : y′ = Ay with y(0) = 〈u0, u1〉. The operator A is determined by
the three bilinear forms c, b and a and D(A) = Eb × V . The construction of
A is given in [11]. Due to Assumptions E1, E2 and E4, A is the infinitesimal
generator of a C0 group of contractions.

Remarks
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1. The definition of Eb implies that Eb is the set of equilibrium states.

2. Existence results may be found in other publications e.g. [12, 1972]
and [13, 1977] but the result in [11, 2002] is convenient for this paper.

3 Galerkin approximation

In this section we consider the Galerkin approximation. Assumptions E1, E2,
E3 and E4 are assumed to hold for the general convergence theory. Suppose
Sh is a finite dimensional subspace of V . (The symbol h has no meaning at
this stage, but it is customary to use the notation.)

Problem Gh

Given a function f : J → X, find a function uh ∈ C2(J) such that for each
t ∈ J

c
(
u′′h(t), v

)
+ a
(
u′h(t), v

)
+ b
(
uh(t), v

)
=
(
f(t), v

)
X

for each v ∈ Sh, (3.1)

while uh(0) = uh0 , u′h(0) = uh1 .

The initial values uh0 and uh1 are elements of Sh as close as possible to u0 and
u1, see Section 5.

Since c is an inner product and Sh is finite dimensional, existence is no
problem if f is continuous (see Section 6).

Theorem 3.1. If f ∈ C(J,X), then there exists a unique solution uh ∈
C2(J) for Problem Gh for each uh0 and uh1 in Sh. If f = 0 then uh ∈
C2
(
(−∞,∞)

)
.

To find an estimate for the discretization error eh(t) = u(t) − uh(t), a pro-
jection is used. The projection operator Ph is defined by

b(u− Phu, v) = 0 for each v ∈ Sh.

If no confusion is possible we will write P for Ph. We also use the symbol P
to denote the projection Pu of a function u, i.e. (Pu)(t) = Pu(t) for each
t ∈ J . Using the projection we split the error. Let e(t) = Pu(t)− uh(t) and
ep(t) = u(t)− Pu(t). Then

eh(t) = ep(t) + e(t). (3.2)
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Estimates for the norm of ep(t) are obtained from interpolation theory in ap-
plications (see Sections 5 and 7). The problem is to determine an estimate for
e(t), the difference between the projection Pu(t) and the Galerkin approxi-
mation uh(t). Our aim is to estimate this error in terms of the projection
error and errors for the initial conditions.

The convergence results that can be obtained, depend on the properties of
the solution. But these may vary from problem to problem. The weak-
est assumption is the result of the existence theorem: if u is a solution of
Problem G, then u ∈ C1(J ;V ) ∩ C2(J ;W ).

Lemma 3.1. If u ∈ C1(J, V ), then Pu ∈ C1(J) and (Pu)′(t) = Pu′(t).

Proof. As the projection operator P is a bounded linear operator with norm
less than one, we have that

‖(δt)−1 (Pu(t+ δt)− Pu(t))−Pu′(t)‖V ≤ ‖(δt)−1(u(t+δt)−u(t))−u′(t)‖V .

Clearly Pu ∈ C1 (J, V ) and (Pu)′(t) = Pu′(t).

We need the following property of the solution for the convergence analysis.

Assumption A1
The solution u ∈ C(J, V ) of Problem G has the property that (Pu) ∈ C2(J).

Remark In [3] the assumption u ∈ C2(J, V ) is used and it is then pos-
sible to prove that Pu ∈ C2(J). Baker [1] derived error estimates for the
undamped case using a weaker assumption, but assumed A1 without explic-
itly mentioning it. The assumption in [3] is sufficient to prove A1 but not
necessary.

It is important to note that we use the fact that (Pu)′ = Pu′ but not (Pu)′′ =
Pu′′.

If the solution u of Problem G satisfies Assumption A1, then ep ∈ C2(J,W ).
This is easy to see since ep = u − Pu and since norms in Sh are equivalent,
Pu ∈ C2(J,W ).

Proposition 3.1. If the solution u of Problem G satisfies Assumption A1,
then

c(e′′h(t), v) + a(e′h(t), v) + b(e(t), v) = 0 for all v ∈ Sh.

7



Proof. By subtracting (3.1) from (2.1) we obtain the following identity. For
any v ∈ Sh,

c(u′′(t)− u′′h(t), v) + a(u′(t)− u′h(t), v) + b(u(t)− uh(t), v) = 0.

Add and subtract Pu in the bilinear form b above and we have

c(e′′h(t), v) + a(e′h(t), v) + b(u(t)− Pu(t), v) + b(Pu(t)− uh(t), v) = 0,

for all v ∈ Sh. Since P is a projection with respect to the inner product b,
the result follows.

4 Fundamental estimate

The following lemma is a generalization of an estimate for e = Pu − uh in
[1] and we also include damping.

Lemma 4.1. If the solution u of Problem G satisfies Assumption A1, then
for t ∈ [0, T ],

‖e(t)‖W ≤
√

2

(
‖e(0)‖W + 3T‖e′h(0)‖W + 3

∫ T

0

‖e′p(t)‖W

+3KaT‖eh(0)‖W + 3Ka

∫ T

0

‖ep(t)‖W
)
.

Proof. In Proposition 3.1 we have

c(e′′h(t), v) + a(e′h(t), v) + b(e(t), v) = 0 for all v ∈ Sh.

Now, if v is a function on [0, T ] with values in Sh, then

c(e′′h(t), v(t)) + a(e′h(t), v(t)) + b(e(t), v(t)) = 0. (4.1)

Let v′(t) = e(t), then

d

dt

[
1

2
c(e, e)− 1

2
b(v, v)− c(e′h, v)− a(eh, v)

]
= c(e′, e)− b(e, v)− c(e′′h, v)− a(e′h, v)− c(e′h, e)− a(eh, e)

= −c(e′p, e)− a(eh, e) (4.2)

from (4.1).
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Choose v(τ) = 0 for some τ ∈ (0, T ), and integrate (4.2) between 0 and τ .
We obtain

−
[

1

2
c(e(0), e(0))− 1

2
b(v(0), v(0))− c(e′h(0), v(0))− a(eh(0), v(0))

]
+

1

2
c(e(τ), e(τ)) = −

∫ τ

0

c(e′p, e)−
∫ τ

0

a(ep, e)−
∫ τ

0

a(e, e).

Since a(e, e) ≥ 0 and b(v(0), v(0)) ≥ 0, we have

1

2
c(e(τ), e(τ)) ≤ 1

2
c(e(0), e(0))− c(e′h(0), v(0))− a(eh(0), v(0))

−
∫ τ

0

c(e′p, e)−
∫ τ

0

a(ep, e) (4.3)

and consequently

c(e(τ), e(τ)) ≤ c(e(0), e(0)) + 2

∫ τ

0

c(e′h(0), e)− 2

∫ τ

0

c(e′p, e)

+2

∫ τ

0

a(eh(0), e)− 2

∫ τ

0

a(ep, e). (4.4)

Estimates for the terms on the right are now required. We use Young’s
inequality (see e.g. [14]) and denote max

t∈[0,T ]
by max.∣∣∣∣2 ∫ τ

0

c(e′h(0), e)

∣∣∣∣ ≤ 2

∫ τ

0

|c(e′h(0), e)|

≤ 2

∫ τ

0

‖e′h(0)‖W ‖e‖W

≤ 2T max ‖e(t)‖W‖e′h(0)‖W

≤ 1

9

[
max ‖e(t)‖W

]2
+ 9T 2‖e′h(0)‖2

W .

Similarly∣∣∣∣2∫ τ

0

a(eh(0), e)

∣∣∣∣ ≤ 2KaT max ‖e(t)‖W‖eh(0)‖W

≤ 1

9

[
max ‖e(t)‖W

]2
+ 9Ka

2T 2‖eh(0)‖2
W ,

also using E4. Next∣∣∣∣2 ∫ τ

0

c(e′p, e)

∣∣∣∣ ≤ 2 max ‖e(t)‖W
∫ τ

0

‖e′p‖W

≤ 1

9

[
max ‖e(t)‖W

]2
+

(
3

∫ τ

0

‖e′p‖W
)2
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and ∣∣∣∣2 ∫ τ

0

a(ep, e)

∣∣∣∣ ≤ 2Ka max ‖e(t)‖W
∫ τ

0

‖ep‖W

≤ 1

9

[
max ‖e(t)‖W

]2
+

(
3Ka

∫ τ

0

‖ep‖W
)2

.

Using these estimates in (4.4), we obtain

‖e(τ)‖2
W ≤ 4

9
max ‖e(t)‖2

W + ‖e(0)‖2
W + 9T 2‖e′h(0)‖2

W + 9

∫ T

0

‖e′p(t)‖2
W

+9K2
aT

2‖eh(0)‖2
W + 9K2

a

∫ T

0

‖ep(t)‖2
W .

Since this is true for all τ ∈ (0, T ), we have that

max ‖e(t)‖2
W ≤ 1

2
max ‖e(t)‖2

W + ‖e(0)‖2
W + 9T 2‖e′h(0)‖2

W + 9

∫ T

0

‖e′p(t)‖2
W

+9K2
aT

2‖eh(0)‖2
W + 9K2

a

∫ T

0

‖ep(t)‖2
W ,

and hence

max ‖e(t)‖2
W ≤ 2

(
‖e(0)‖2

W + 9T 2‖e′h(0)‖2
W + 9

∫ T

0

‖e′p(t)‖2
W + 9K2

aT
2‖eh(0)‖2

W

+9K2
a

∫ T

0

‖ep(t)‖2
W

)
≤ 2

(
‖e(0)‖W + 3T‖e′h(0)‖W + 3

∫ T

0

‖e′p(t)‖W + 3KaT‖eh(0)‖W

+3Ka

∫ T

0

‖ep(t)‖W
)2

.

Suppose that there is no damping, i.e. a = 0 in (4.4). Then, using the same
arguments as in the proof above, we have the following corollary.

Corollary 4.1. If the solution u of Problem G with a = 0 satisfies Assump-
tion A1, then for t ∈ [0, T ],

‖e(t)‖W ≤
√

2‖e(0)‖W + 2T‖e′h(0)‖W + 4
√
T max
t∈[0,T ]

‖e′p(t)‖W .
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Now, consider the undamped case with the additional assumption that
c(u1 − uh1 , v(0)) = c(e′h(0), v(0)) = 0. The estimate in (4.3) reduces to

1

2
c(e(τ), e(τ)) ≤ 1

2
c(e(0), e(0))−

∫ τ

0

c(e′p, e)

and we have the following result.

Corollary 4.2. Suppose the solution u of Problem G with a = 0 satisfies
Assumption A1. If c(u1 − uh1 , v) = 0 for all v ∈ Sh, then for t ∈ [0, T ],

‖e(t)‖W ≤
√

2‖e(0)‖W + 2
√
T max
t∈[0,T ]

‖e′p(t)‖W .

This is a generalization of the estimate for e = Pu − uh in (3.13) in [1].
However, it is not necessary to make the assumption at this stage.

5 Convergence and error estimates for the

semi-discrete approximation

The error estimates follow readily from Lemma 4.1.

Theorem 5.1. If the solution u of Problem G satisfies Assumption A1, then

‖u(t)− uh(t)‖W ≤ ‖ep(t)‖W +
√

2

(
‖Pu0 − u0‖W + 3T‖u1 − uh1‖W + 3

∫ T

0

‖e′p(t)‖W

+(1 + 3KaT )‖u0 − uh0‖W + 3Ka

∫ T

0

‖ep(t)‖W
)
, (5.1)

for each t ∈ [0, T ].

Proof. From (3.2), ‖u(t)−uh(t)‖W ≤ ‖ep(t)‖W +‖e(t)‖W . The result follows
from Lemma 4.1 since ‖Pu0 − uh0‖W ≤ ‖Pu0 − u0‖+ ‖u0 − uh0‖.

In applications it is necessary to consider the errors on the right hand side
of the estimate (5.1).

To formulate an assumption regarding the error when an element of V is
approximated by an element of Sh, we suppose h is a parameter related to
the dimension n of Sh and h→ 0 as n→∞.
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Assumption A2
There exists a subspace H of V and a positive integer α such that if w ∈ H,
then

inf
v∈Sh
‖w − v‖V ≤ Ĉhα|||w|||H ,

where |||w|||H is a norm or semi-norm for H.

Using Assumption A2, estimates for the projection errors in (5.1) can be
obtained. For example, ‖e′p(t)‖W = ‖u′(t)−Pu′(t)‖W ≤ Cb‖u′(t)−Pu′(t)‖V
by Assumption E2 and Lemma 3.1. Therefore

‖e′p(t)‖W ≤ CbĈh
α|||u′(t)|||H .

If we now choose uh0 = Pu0 and uh1 = Pu1 as in [1], then we have for example

‖u0 − uh0‖W ≤ CbĈh
α|||u0|||H , (5.2)

and we are done. This is in general not possible. However, the estimate in
Assumption A2 is derived from the interpolation error in applications. If we
choose uh0 = Πu0 and uh1 = Πu1, where Π denotes the interpolation operator,
then we have the same estimate as in (5.2).

Theorem 5.2. Suppose Assumption A2 holds and uh0 = Πu0 and uh1 = Πu1.
If the solution u of Problem G satisfies Assumption A1, u(t) ∈ H and
u′(t) ∈ H, then

‖u(t)− uh(t)‖W ≤ CbĈh
α|||u(t)|||H +

√
2CbĈh

α
(
3T max |||u′(t)|||H

+3KaT max |||u(t)|||H + (2 + 3KaT )|||u0|||H
+3T |||u1|||H

)
,

for each t ∈ [0, T ].

Remark In applications it is sometimes possible to use the Aubin-Nitche
trick (see [15], [16]) to obtain higher order estimates for the projection error.
But the improved projection errors serve no purpose if the interpolants are
used to approximate the initial values u0 and u1. If the starting values uh0
and uh1 are projections of u0 and u1 with respect to the inner product c (as in
[1]), then the result above can be improved. This is in general not possible.
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6 Fully discrete approximation

6.1 A system of ordinary differential equations

In this section we consider the discretization of Problem Gh. Suppose Sh is
the span of the set {φ1, φ2, · · · , φn}. Problem Gh is equivalent to a system
of ordinary differential equations as we prove below.

Notation
Matrices K, C, M and the vector F are defined by

Kij = b(φj, φi), Cij = a(φj, φi), Mij = c(φj, φi) and Fi(t) = (f(t), φi)X .

If a function w has values in Sh, i.e. w =
∑n

j=1 wjφj, then we define a
function

w̄ = (w1, w2, . . . , wn) = [w1 w2 . . . wn]t,

with values in Rn. It is convenient to use dh and vh for initial conditions in
this section instead of uh0 and uh1 . We define the vectors d̄ = (d1, d2, . . . , dn)
and v̄ = (v1, v2, . . . , vn) where dh =

∑n
j=1 djφj and vh =

∑n
j=1 vjφj.

Problem ODE
Determine ū ∈ C2(J) such that

Mū′′ + Cū′ +Kū = F (t) with ū(0) = d̄ and ū′(0) = v̄.

Proposition 6.1. Suppose M , K, C, F , d̄ and v̄ are defined as above. Then,
the function uh is a solution of Problem Gh if and only if the function ū is a
solution of Problem ODE.

Proposition 6.2. If F ∈ C(J), then Problem ODE has a unique solution
for each pair of vectors d̄ and v̄.

Proof. Since c is an inner product, M is invertible and the differential equa-
tion in Problem ODE may be written in the form ū′′+M−1Cū′+M−1Kū =
M−1F (t). It follows from the theory of linear differential equations that the
initial value problem has a unique solution.

Proof of Theorem 3.1.
Clearly F ∈ C(J) if f ∈ C(J,X). The result follows from Propositions 6.1
and 6.2. �
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Remark For existence the continuity of F is sufficient but for ū to have
derivatives of order 2+k, we need to assume that F has derivatives of order k.
(Note that F ∈ Ck(J) if f ∈ Ck(J,X).)

6.2 Fully discrete Galerkin scheme

A finite difference method is used to approximate the solution of the system
in Problem Gh (or Problem ODE). We follow [1] with an obvious modification
to include the damping term. Suppose the interval [0, T ] is divided into N
steps of length τ = T/N and denote the approximation of uh(tk) by uhk. Our
aim is to estimate the difference between the solution of Problem G and the
fully discrete approximation

u(tk)− uhk = [u(tk)− uh(tk)] + [uh(tk)− uhk].

An estimate for the error u(tk) − uh(tk) was obtained in Section 5 and an
estimate for the error uh(tk)− uhk is required. To be precise, an estimate for
‖u(tk) − uh(tk)‖W is derived in Theorem 5.2 and an estimate for the other
error must be with respect to ‖ · ‖W . Although norms are equivalent in a
finite dimensional space, the dimension of Sh is not fixed and equivalence
of norms may not be used. For this reason we consider the fully discrete
problem in variational form as in [3], [1] and [14].

Notation For any sequence {xk} ⊂ Rn :

δtxk = τ−1[xk+1 − xk],

xk+ 1
2

=
1

2
[xk+1 + xk].

Problem Gh-D
Find a sequence {uhk} ⊂ Sh such that for k = 0, 1, 2, . . . , N − 1,

δtu
h
k = vk+ 1

2
, (6.1)

c(δtvk, ψ) + a(vk+ 1
2
, ψ) + b(uh

k+ 1
2
, ψ) =

1

2
([f(tk) + f(tk+1)], ψ)X (6.2)

for each ψ ∈ Sh, while uh0 = uh(0) = dh and v0 = u′h(0) = vh.

Following [1] we prove that the solution of Problem Gh-D is well defined. In
the process an algorithm is derived. No confusion can arise if we write uk for
uhk.
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Proposition 6.3. Problem Gh-D has a unique solution for any pair of vectors
dh and vh in Sh.

Proof. For any ψ ∈ Sh,

τ

2
b(uk+1 + uk, ψ) =

τ 2

2
b(τ−1[uk+1 − uk], ψ) +

τ

2
b(uk, ψ) +

τ

2
b(uk, ψ)

=
τ 2

2
b(

1

2
[vk+1 + vk], ψ) + τb(uk, ψ)

=
τ 2

4
b(vk+1, ψ) +

τ 2

4
b(vk, ψ) + τb(uk, ψ).

Substitution into (6.2) yields

c(vk+1, ψ)− c(vk, ψ) +
τ

2
a(vk+1 + vk, ψ) +

τ 2

4
b(vk+1, ψ) +

τ 2

4
b(vk, ψ) + τb(uk, ψ)

=
τ

2
([f(tk) + f(tk+1)], ψ)X

or

c(vk+1, ψ) +
τ

2
a(vk+1, ψ) +

τ 2

4
b(vk+1, ψ)

= c(vk, ψ)− τ

2
a(vk, ψ)− τ 2

4
b(vk, ψ)− τb(uk, ψ)

+
τ

2
([f(tk) + f(tk+1)], ψ)X . (6.3)

for any ψ ∈ Sh. The bilinear forms b and c are positive definite and as a
consequence c + τ

2
a + τ2

4
b is positive definite. Therefore vk+1 is uniquely

determined by (6.3) and uk+1 = uk + τvk+ 1
2

from (6.1).

The following algorithm may be used.

Problem FD
Find a sequence {ūk} ⊂ Rn such that for each k,

ūk+1 = ūk + τ v̄k+ 1
2
,

(M +
τ

2
C +

τ 2

4
K)v̄k+1 = (M − τ

2
C − τ 2

4
K)v̄k − τKūk +

τ

2
[F (tk) + F (tk+1)]

with ū0 = d̄ and v̄0 = v̄.

15



6.3 Error estimates

In this subsection we derive an estimate for the error uh(tk)−uhk. Recall that
it must be with respect to ‖ · ‖W . Usually the error u(tk) − uhk is estimated
directly, see e.g. [3], [1], [14], [5], [6] and [7]. To do this, the assumption is
made that the exact solution has derivatives u(k) ∈ L2([0, T ], V ) for k ≤ 4 or
k ≤ 3. This assumption is very restrictive.

To obtain our general result, we adapt the proof in [1] (which is for the wave
equation).

Truncation

Consider Problem Gh-D. Substituting t = tk and t = tk+1 respectively into
Problem Gh (Equation (3.1)), we obtain

c(τ−1[vh(tk+1)− vh(tk)], ψ) +
1

2
a([vh(tk+1) + vh(tk)], ψ) +

1

2
b([uh(tk+1) + uh(tk)], ψ)

=
1

2
([f(tk+1) + f(tk)], ψ)X + c(ρk, ψ) (6.4)

where vh(t) = u′h(t) and

ρk = τ−1[vh(tk+1)− vh(tk)]−
1

2
[v′h(tk+1) + v′h(tk)]. (6.5)

We denote the errors by ek and qk:

ek = uh(tk)− uk and qk = u′h(tk)− vk.

Note that in our approach e0 = 0 and q0 = 0.

By subtracting (6.2) from (6.4) we obtain

c(τ−1[qk+1 − qk], ψ) + a(
1

2
[qk+1 + qk], ψ) + b(

1

2
[ek+1 + ek], ψ) = c(ρk, ψ),

which can be rewritten as follows

c(δtqk, ψ) + a(qk+ 1
2
, ψ) + b(ek+ 1

2
, ψ) = c(ρk, ψ). (6.6)

Substitution of uh and vh into (6.1) yields

τ−1[uh(tk+1)− uh(tk)] =
1

2
([vh(tk+1) + vh(tk)] + σk, (6.7)
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where (obviously)

σk = τ−1[uh(tk+1)− uh(tk)]−
1

2
([vh(tk+1) + vh(tk)]. (6.8)

It follows from (6.1) and (6.7) that

δtek = qk+ 1
2

+ σk. (6.9)

Stability

Consider any integer n > 0. It follows from (6.9) that

en = τ
n−1∑
k=0

δtek = τ
n−1∑
k=0

qk+ 1
2

+ τ
n−1∑
k=0

σk.

Consequently

en+ 1
2

=
1

2
(en+1 + en)

=
τ

2

(
n∑
k=0

qk+ 1
2

+
n−1∑
k=0

qk+ 1
2

)
+
τ

2

(
n∑
k=0

σk +
n−1∑
k=0

σk

)
. (6.10)

But from (6.9) we also have

δten =
1

2
[qn+1 + qn] + σn

=
τ

2

[
n∑
k=0

δtqk +
n−1∑
k=0

δtqk

]
+ σn. (6.11)

Let s0 = 0 and sn = τ
∑n−1

k=0 ek+ 1
2
, then

sn+ 1
2

=
τ

2

[
n∑
k=0

ek+ 1
2

+
n−1∑
k=0

ek+ 1
2

]
. (6.12)

In the analysis that follows, ψ denotes an arbitrary element of Sh. Using
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(6.10), (6.11) and (6.12), we have for n = 1, 2, . . . , N − 1

c(δten, ψ) + a(en+ 1
2
, ψ) + b(sn+ 1

2
, ψ)

=
τ

2
c

([
n∑
k=0

δtqk +
n−1∑
k=0

δtqk

]
, ψ

)
+ c(σn, ψ)

+
τ

2
a

([
n∑
k=0

qk+ 1
2

+
n−1∑
k=0

qk+ 1
2

]
, ψ

)

+
τ

2
b

([
n∑
k=0

ek+ 1
2

+
n−1∑
k=0

ek+ 1
2

]
, ψ

)
.

Using (6.6), it follows that

c(δten, ψ) + a(en+ 1
2
, ψ) + b(sn+ 1

2
, ψ)

=
τ

2
c

([
n∑
k=0

ρk +
n−1∑
k=0

ρk

]
, ψ

)
+ c(σn, ψ). (6.13)

Let

εn =
τ

2
ρn + τ

n−1∑
k=0

ρk + σn (6.14)

for n = 1, 2, . . . N − 1, then

c(δten, ψ) + a(en+ 1
2
, ψ) + b(sn+ 1

2
, ψ) = c(εn, ψ).

Choose ψ = en+ 1
2
, then

‖en+1‖2 − ‖en‖2 + 2τa(en+ 1
2
, en+ 1

2
) + ‖sn+1‖2

V − ‖sn‖2
V

= 2τc(εn, en+ 1
2
). (6.15)

Consider any integer ν with 2 ≤ ν ≤ N . Using (6.15) and the fact that
a(en+ 1

2
, en+ 1

2
) ≥ 0, we have

ν−1∑
n=1

[
‖en+1‖2 − ‖en‖2 + ‖sn+1‖2

V − ‖sn‖2
V

]
≤ 2τ

ν−1∑
n=1

c(εn, en+ 1
2
).
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It follows that

‖eν‖2
W − ‖e1‖2

W + ‖sν‖2
V − ‖s1‖2

V

≤ 4Tτ
ν−1∑
n=1

‖εn‖2
W +

τ

4T

ν−1∑
n=1

‖en+ 1
2
‖2
W , (6.16)

using the Cauchy-Schwartz inequality and Young’s inequality.

Now, consider n = 0. Let k = 0 in (6.6):

c(δtq0, ψ) + a(q 1
2
, ψ) + b(e 1

2
, ψ) = c(ρ0, ψ). (6.17)

Also, let k = 0 in (6.9):

δte0 = q 1
2

+ σ0.

Since q0 = 0 and e0 = 0 we have δte0 = e1
τ

, e 1
2

= e1
2

, δtq0 = q1
τ

and q 1
2

= q1
2

and hence

q1 =
2

τ
e1 − 2σ0.

Making the appropriate substitutions into (6.17) we obtain

2

τ 2
c(e1, ψ) +

1

τ
a(e1, ψ) +

1

2
b(e1, ψ)

= c(ρ0, ψ) +
2

τ
c(σ0, ψ) + a(σ0, ψ). (6.18)

From the definition of s0 and s1, we have e1 = 2
τ
s1. Substituting this into

the bilinear form b in (6.18) (and multiplying by τ2

2
) yields

c(e1, ψ) +
τ

2
a(e1, ψ) +

τ

2
b(s1, ψ) =

τ 2

2
c(ρ0, ψ) + τ c(σ0, ψ) +

τ 2

2
a(σ0, ψ).

Choose ψ = e1, then

‖e1‖2
W + ‖s1‖2

V +
τ

2
a(e1, e1)

=
τ 2

2
c(ρ0, e1) + τ c(σ0, e1) +

τ 2

2
a(σ0, e1).
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Since a(e1, e1) ≥ 0,

‖e1‖2
W + ‖s1‖2

V ≤ τ 2

2
‖ρ0‖W‖e1‖W + τ ‖σ0‖W‖e1‖W +

τ 2

2
Ka ‖σ0‖W‖e1‖W

≤ τ 4‖ρ0‖2
W +

1

16
‖e1‖2

W + 4τ 2 ‖σ0‖2
W +

1

16
‖e1‖2

W

+τ 4K2
a‖σ0‖2

W +
1

16
‖e1‖2

W

=
3

16
‖e1‖2

W + τ 4‖ρ0‖2
W + (4τ 2 + τ 4Ka)‖σ0‖2

W , (6.19)

using the Cauchy-Schwartz and Young’s inequalities.

To proceed, we combine (6.16) and (6.19):

‖eν‖2
W ≤ 4Tτ

ν−1∑
n=1

‖εn‖2
W +

τ

4T

ν−1∑
n=1

‖en+ 1
2
‖2
W

+
3

16
‖e1‖2

W + τ 4‖ρ0‖2
W + (4τ 2 + τ 4Ka)‖σ0‖2

W

≤ 4Tτ
ν−1∑
n=1

‖εn‖2
W +

1

2
max ‖en‖2

W + τ 4‖ρ0‖2
W + (4τ 2 + τ 4Ka)‖σ0‖2

W .

The stability result follows.

Lemma 6.1. Stability

max ‖en‖2
W ≤ 8Tτ

N−1∑
n=0

‖εn‖2
W + 2τ 4‖ρ0‖2

W + (8τ 2 + 2τ 4Ka)‖σ0‖2
W .

Convergence

It remains to determine estimates for ρk and σk. To find an estimate for ρk,
we consider the following two parts separately

ρA = τ−1[vh(tk+1)− vh(tk)]− v′h(tk +
τ

2
) and

ρB = −1

2
[v′h(tk+1) + v′h(tk)] + v′h(tk +

τ

2
).

Recall that vh(tk) =
∑n

i=1 vi(tk)φi. Using Taylor expansions we obtain

τ−1[vi(tk+1)− vi(tk)]− v′i(tk +
τ

2
)

=
1

4τ

∫ tk+1

tk+ τ
2

(tk+1 − θ)2v′′′i (θ)dθ +
1

4τ

∫ tk+ τ
2

tk

(tk − θ)2v′′′i (θ)dθ.
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From the Cauchy-Schwartz inequality(∫ tk+1

tk+ τ
2

(tk+1 − θ)2v′′′i (θ) dθ

)2

≤
∫ tk+1

tk+ τ
2

(tk+1 − θ)4 dθ

∫ tk+1

tk+ τ
2

(v′′′i (θ))2 dθ

=
τ 5

160

∫ tk+1

tk+ τ
2

(v′′′i (θ))2 dθ and(∫ tk+ τ
2

tk

(tk − θ)2v′′′i (θ) dθ

)2

≤ τ 5

160

∫ tk+ τ
2

tk

(v′′′i (θ))2 dθ.

Using the estimate above and assuming that {φj} is orthonormal, we have

‖ρA‖2
W =

∥∥∥τ−1[vh(tk+1)− vh(tk)]− v′h(tk +
τ

2
)
∥∥∥2

W

≤
n∑
i=1

2

(
1

4τ

∫ tk+1

tk+ τ
2

(tk+1 − θ)2v′′′i (θ)dθ

)2

+
n∑
i=1

2

(
1

4τ

∫ tk+ τ
2

tk

(tk − θ)2v′′′i (θ)dθ

)2

≤ τ 3

1280

[∫ tk+1

tk+ τ
2

‖v′′′h (θ)‖2
W dθ +

∫ tk+ τ
2

tk

‖v′′′h (θ))‖2
W dθ

]

≤ τ 4

1280
max ‖v′′′h ‖2

W ,

where maxθ∈[0,T ] is denoted by max.

To find an estimate for ρB, the same steps are followed.

From Taylor expansions

1

2
[v′i(tk+1) + v′i(tk)]− v′i(tk +

τ

2
)

=
1

2

∫ tk+1

tk+ τ
2

(tk+1 − θ)v′′′i (θ)dθ − 1

2

∫ tk+ τ
2

tk

(tk − θ)v′′′i (θ)dθ.

Using the Cauchy-Schwartz inequality again, we obtain(∫ tk+1

tk+ τ
2

(tk+1 − θ)v′′′i (θ)dθ

)2

≤
∫ tk+1

tk+ τ
2

(tk+1 − θ)2 dθ

∫ tk+1

tk+ τ
2

(v′′′i (θ))2 dθ

=
τ 3

24

∫ tk+1

tk+ τ
2

(v′′′i (θ))2 dθ and(∫ tk+ τ
2

tk

(tk − θ)2v
(4)
i (θ)dθ

)2

≤ τ 3

24

∫ tk+ τ
2

tk

(v′′′i (θ))2 dθ.
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Therefore

‖ρB‖2
W ≤ τ 4

48
max ‖v′′′h ‖2

W .

Combining the estimates for ρA and ρB yields

‖ρk‖2
W ≤ τ 4 max ‖v′′′h ‖2

W . (6.20)

Now consider σk = τ−1[uh(tk+1) − uh(tk)] − 1
2
[u′h(tk+1) + u′h(tk)]. Following

the same method as for ρk, we obtain

‖σk‖2
W ≤ τ 4 max ‖u′′′h ‖2

W . (6.21)

The following estimate for εn (see (6.14)) is obtained from (6.20) and (6.21).

‖εn‖2
W ≤ 5T 2τ 4 max ‖v′′′h ‖2

W + 4τ 4 max ‖u′′′h ‖2
W .

Using the result in Lemma 6.1 yields

max ‖en‖2
W ≤ 40T 4τ 4 max ‖v′′′h ‖2

W + 32T 2τ 4 max ‖u′′′h ‖2
W

+2τ 8 max ‖v′′′h ‖2
W + 8τ 6 max ‖u′′′h ‖2

W + 2τ 8Ka max ‖u′′′h ‖2
W .

Note that if f ∈ C2([0, T ], X), then uh ∈ C4([0, T ],W ) and consequently the
following error estimate is obtained.

Theorem 6.1. Error estimate.
If f ∈ C2([0, T ], X), then

‖uh(tk)− uhk‖W ≤ 7T 2τ 2 max ‖u(4)
h ‖W + 7Tτ 2 max ‖u′′′h ‖W

+
√

2Ka τ
4 max ‖u′′′h ‖W (6.22)

for each t ∈ (0, T ).

Finally, error estimates for the fully discrete approximation of the solution
of Problem G are obtained by combining results from Section 5 with Theo-
rem 6.1.
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7 Applications

The multi-dimensional wave equation

As an elementary application we consider the wave equation in a two-dimensional
bounded domain denoted by Ω. Let Σ be a part of the boundary ∂Ω. Given
functions f, u0 and u1, find u defined on Ω̄× [0, T ] such that

ρ∂2
t u = ∇ · (A∇u)− k∂tu+ f in Ω× (0, T ),

u = 0 on ∂Ω− Σ,

−A ∇u · n = 0 on Σ,

while u(·, 0) = u0 and ∂tu(·, 0) = u1.
The unit outer normal on the boundary is denoted by n. The given param-
eters in the problem are the matrix of functions A = (aij) and the functions
k and ρ. We assume that the parameters are bounded above and below by
positive numbers and the matrix A is uniformly positive definite. For the
problem in [1], Σ is empty and k = 0.

Next consider the variational form. The test functions T (Ω) are functions
in C1(Ω̄) which vanish on ∂Ω− Σ. Let (f, g) denote the usual innerproduct
for L2(Ω). The bilinear forms a, b and c are defined as follows (using weak
derivatives for b)

b(u, v) =

∫∫
Ω

A∇u · ∇v dV

c(u, v) =

∫∫
Ω

ρuv dV

a(u, v) =

∫∫
Ω

kuv dV.

Let V denote the closure of T (Ω) in H1(Ω). The weak variational form of
the problem is to find u such that for each t > 0, u(t) ∈ V , u′′(t) ∈ L2(Ω)
and

c(u′′(t), v) + a(u′(t), v) + b(u(t), v) = (f(t), v), for each v ∈ V

while u(0) = u0 and u′(0) = u1.

Note that the restriction to two dimensions is not necessary. Next we show
that Assumptions E1, E2, E3 and E4 are satisfied.
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E1: V is dense in L2(Ω) since C∞0 (Ω) is dense in L2(Ω).

E2: Assuming that ∂Ω − Σ has positive length, the Poincaré-Friedrichs
inequality can be proved and it follows that b is positive definite. The
norm corresponding to the inner product b is ‖v‖V =

√
b(v, v). It is

equivalent to the norm of H1(Ω) on V .

E3: The bilinear form c is clearly an inner product for X = L2(Ω) and
the corresponding norm is equivalent to the norm of L2(Ω). The space
L2(Ω) with inner product c is the space W (with norm ‖ · ‖W ).

E4: Clearly a is defined on L2(Ω) and is bounded.

Existence of a unique solution for the weak variational problem follows from
Theorem 2.1, provided that f ∈ C1([0, T ],L2(Ω)).

Now consider the finite element approximation of the problem. For simplicity
we consider the two-dimensional case and use triangle elements. A finite
dimensional subspace Sh of V is constructed, using piecewise linear basis
functions.

The Galerkin approximation is to find a function uh ∈ C2(0, T ) ∩ C1[0, T ]
such that

c(u′′h(t), v) + a(u′h(t), v) + b(uh(t), v) = (f(·, t), v)X ,

for each v ∈ Sh, while uh(0) = uh0 and u′h(0) = uh1 .

Depending on the properties of the boundary of Ω, the parameters, initial
values u0 and u1 and the function f , it can be proved that A1 and A2 hold.
(It is beyond the scope of this article.) For the problem under discussion we
have that H = Hk(Ω) ∩ V (see Section 5). Instead of Assumption A2 we
have the following result for piecewise linear basis functions: If u ∈ Hk(Ω)
for k ≥ 2, then

‖Πu− u‖V ≤ ĈTh|u|2,
where | · |2 denotes the usual semi-norm.

Consider application of Theorem 5.2. For the present problem we have

‖u− Pu‖W ≤ Cb‖u− Pu‖V ≤ ĈbCTh|u|2. (7.1)

Error estimate 7.1
Suppose uh0 = Πu0 and uh1 = Πu1. If the solution u of Problem G satisfies
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Assumption A1, u(t) ∈ H2(Ω) and u′(t) ∈ H2(Ω), then

‖u(t)− uh(t)‖W ≤ CbĈTh|u(t)|2 +
√

2CbĈTh
(
3T max |u′(t)|2

+3KaT max |u(t)|2 + (2 + 3KaT )|u0|2 + 3T |u1|2
)
,

for each t ∈ [0, T ].

If the solution is sufficiently smooth, i.e. Eb ⊂ H2(Ω), the Aubin-Nitche

trick may be used. Instead of (7.1) we have ‖u− Pu‖W ≤ K̂h2|u|2 where K̂

depends on Cb and ĈT . Using this estimate in Theorem 5.1, we obtain the
following result.

Error estimate 7.2
Let uh0 = Pu0 and uh1 = Pu1. Assume that u(t) and u′(t) are in H2(Ω).
Then,

‖u(t)− uh(t)‖W ≤ K̂h2|u(t)|2 +
√

2K̂h2
(
3T max |u′(t)|2

+3KaT max |u(t)|2 + (2 + 3KaT )|u0|2 + 3T |u1|2
)
,

for each t ∈ [0, T ].

From the definition of the spaces X, W and V and the bilinear forms c, a
and b, it follows that the theory of Section 6 is applicable. Combining either
Estimate 7.1 or 7.2 with Theorem 6.1 yields the error estimate for the fully
discrete approximation.

Elasto-dynamics, hybrid models and structures

The theory in this article can also be applied to the Timoshenko beam
model (with viscous type damping) [5], the Reissner-Mindlin plate model
(undamped) [17] and linear elasto-dynamics (undamped) [7].

The theory of this article is really intended for systems where elastic bodies
interact. Numerous examples can be found in [18], for example networks of
linked beams.

Another example where the theory may be applied, is in article [19] where
the importance of vibration analysis of structures in engineering is stressed.
The authors consider a system consisting of two plates.

A hybrid model where a beam has complex boundary conditions due to a
damping tip body attached to one end is considered in [20]. The damping is
not of viscous type and the theory in this article does not apply, but it does
for the undamped hybrid model.
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Perhaps the most convenient example for the present discussion, is in a plate-
beam model from [21]. The model problem referred to as Problem RMT, is of
the same type as Problem G. If the damping in a joint is replaced by viscous
damping on the plate, then Problem RMT is a special case of Problem G. It
is proved in [21] that assumptions E1, E2 and E3 are satisfied. For viscous
damping on the plate, Assumption E4 is easy to verify.

Finally, we mention the rather obvious fact that other types of damping
need to be considered. Considering the existence results for different types
of damping in [11], we believe that mere adjustments to the present article
will not yield the desired results.
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