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Abstract 

Analysis of any heat transfer problem 
that includes thermal radiation with absorption 
and emission is always complicated by the 
“action-at-a-distance” nature of thermal 
radiation.  This implies that the entire 
temperature field has to be determined 
simultaneously rather than focusing on a single 
location and the immediate neighborhood about 
that location as in a conduction-only problem.  
This paper introduces the concept of the effective 
optical depth (EOD) which limits the range 
about a location over which a solution is 
conducted rather than solving the entire 
temperature field at once.  In this study, we 
investigate the error introduced in the solution of 
a planar, gray, radiation-conduction heat transfer 
problem with black and grey boundaries for a 
range of EOD/optical thickness ratio from 0.01 
to 10 and conduction-radiation parameter from 
0.01 to 10.  In general, the accuracy of the 
predicted temperature profiles and total heat flux 
was within a few percentage points and was 
observed to be as high as 10% for small 
EOD/optical thickness ratios.  Computational 
times using the finite element method were 
estimated to be 12.5% or less using the EOD as 
compared to solving the entire temperature field 
for each element.  This savings in computational 
time may justify the small errors introduced by 
using the EOD approximation. 

 
Nomenclature 
A – Area, m2 

EOD – Effective Optical Depth measured in 
optical distance 
G – Incident radiant flux – kJ/s-m2 
Ib – Blackbody function, kJ/s-m2  
k – Thermal conductivity, kJ/K-s-m 

N – Conduction-radiation parameter, kκ/4σΤ4 
qr – Radiative heat flux, kJ/s-m2 

r – Radius, m 
r0 – Origin, m 
T – Temperature, K 
Tw – Bounding wall temperature, K 
V – Volume, m3 
κ – Absorption coefficient, m-1 
ε – Wall emissivity 
θ – angle, radians 
τ − Optical coordinate or distance, κx 
τL – optical thickness 
 
Introduction 

The “at-a-distance” nature of 
volumetric radiation heat transfer in absorbing, 
emitting, and scattering media makes the 
analysis of the energy transfer in these situations 
difficult.  Heat transfer analysis becomes even 
more difficult when radiative transfer is coupled 
with conduction and convection.  The primary 
difficulty with analyzing radiative transfer 
coupled with conduction and convection is the 
difference in their governing equations.  
Conduction and convection are described by 
differential equations because a point in the 
medium is only influenced by its immediate 
neighborhood while volumetric radiative transfer 
is governed by integral equations since the entire 
medium impacts the energy balance at a point in 
the medium.  Thus, one must solve integro-
differential equations when analyzing heat 
transfer situations that include volumetric 
radiative transfer.  An approximate numerical 
method for solving combined conduction-
radiation without scattering in a one-dimensional 
planar geometry under steady-state conditions 
with temperature-independent properties is 
presented in this paper.  The limitations of this 



approximation are also determined for varying 
boundary conditions and radiation-conduction 
parameter N. 

Extensive reviews of heat transfer in 
semitransparent media have been presented by 
Viskanta and Anderson [1] and Howell [2]. A 
variety of numerical methods, including finite-
difference (FD), P-N, Zonal, discrete-ordinate, 
Monte Carlo, and successive approximations, 
have been applied to the planar, conduction-
radiation in an absorbing medium problem [3] 
with varying degrees of success.  All have been 
demonstrated to be successful when the problem 
is conduction dominant, large N, and tend to 
become problematic and inaccurate when the 
field is radiation dominant, small N.  All of these 
methods are difficult to apply to more realistic 
multi-dimension, temperature-variable 
properties, unsteady, and etc. situations.  These 
complexities also increase the computer 
resources (and consequently cost) that are 
needed to effect a solution.   Highly refined 
finite-element methods are now extensively 
available for heat transfer analysis [4].  Razzaque 
[5], Utreja, and Chung [6], Chung and Kim [7] 
have developed and applied the finite element 
(FE) method to more complicated combined 
mode heat transfer situations.   

Various approximations, such as the 
Rosseland diffusion [8], Taylor series [9] and 
exponential integral approximations, have been 
introduced to simplify the analysis of radiative 
heat transfer.  These approximations have limited 
ranges of applicability, typically 1≈N  and 
greater, and do introduce errors in the analysis.  
These limitations are offset by their 
simplification and reduction in analytical 
resources required to obtain solutions.   

This study proposes and investigates the 
effective optical depth (EOD) approximation as a 
technique for reducing the computational 
resources required for combined conduction-
radiative heat transfer analysis.  The basic 
premise of this approximation is that one only 
need consider the finite elements or finite-
difference nodes that are within the EOD of an 
element or node rather than include the entire 
field when conducting FE or FD analysis.  This 
approximation is motivated by the exponential 
decay of the radiative intensity and heat flux 
with distance from the source.  Hence, the 
emitting media sufficiently far from the 
absorbing media makes but a small contribution 

to the energy balance of the absorbing node or 
element. 
 
Analysis 

The steady-state heat balance for a 
differential element of a gray absorbing, 
emitting, and conducting medium gives: 

 
( ) 0∇ ∇ − ∇ =rk T q                                 (1) 

 
where the radiative heat flux divergence at 
location r  is given by: 
 

[ ]4 ( ) ( )κ π∇ = −r bq I T G r .                               (2) 

 
Equation 2 accounts for both the local emission 
of thermal radiation through the black-body 
function ( )bI T  and absorption of the radiation 
incident, ( )G r  on the medium element.  The 
incident radiation consists of that which is 
leaving the bounding surfaces and arrives at the 
medium element, and that which is emitted by all 
the other medium elements and arrives at the 
medium element, 
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Observe how the radiant intensity leaving a 
boundary surface element, 0*( )I r , is attenuated 

by the optical distance, ( )0κ −r r , between it 
and the medium element under consideration.  
The same attenuation occurs over the optical 
distance, ( )'κ −r r , between a volume emitting 
element and the element under consideration.   

These equations need to be solved 
subject to the boundary conditions: 

 
0( ) = wT r T                                    (4) 

And 

( ) ( )( ) ( )0 0 0
(1 )* *

2
εε

π
−

= +bI r I T r G r            (5) 

Equation 4 is the conduction boundary condition 
that sets the medium temperature to that of the 
bounding surfaces where it contacts the 
boundaries.  Equation 5 is for a gray diffusely 



emitting and reflecting boundary which relates 
the radiant intensity leaving the bounding surface 
to that emitted by the surface and the reflection 
of the radiant intensity incident upon the 
bounding surface.  The exponential divided by 
distance squared kernel of the two integrals of 
Equation 3 suggests that these integrals only 
need be performed over bounding surface and 
emitting volume elements that are within a 
limited number of optical depths, κr , of the 
medium element being considered.     

The governing equations given above 
were further reduced to fit a one-dimensional 
planar geometry with gray, diffuse, isothermal 
walls maintained at temperatures 1T  and 2T  [10].  
Chung’s [6, 7] development and implementation 
of the general Galerkin finite element 
methodology was then applied to develop the 
finite element model for the heat transfer 
between the bounding walls.  This model 
incorporated the optical thickness, effective 
optical depth, conduction-radiation interaction 
parameter, wall temperatures, and wall emittance 
as parameters.   

The natural nonlinearities of radiative 
transfer were accommodated in this model with 
successive iterations and over-relaxation.  The 
integrals were resolved using Gaussian 
quadratures.  Solutions were accepted when the 
individual element difference between iterations 
were 1(10-5) or less and the integrated difference 
was 1(10-3) or less.  The code was verified by 
comparing the predicted temperature profiles and 
heat fluxes with the EOD equal to the layer 
optical thickness to those results of other 
researchers [1, 3, 11].  These verifications were 
conducted for the conditions where the 
temperature of one wall is one-half that of the 
other wall, 2 10.5θ θ= , the layer optical thickness, 
τ L , was 1, the conduction-radiation parameter, 
N, varied from 0.00001 to 10, and the wall 
emittance, ε , was either 0.5 or 1.0.  The 
maximum temperature error for N = 10, Lτ  = 1, 
and ε  = 1 was 0.15%.  At higher layer optical 
thickness, Lτ  = 10, the temperature error rose to 
3.5%. With grey walls, ε  = 0.5, N = 0.03, 
and Lτ  = 10, the maximum temperature error 
was 1.5%.  Total heat flux comparisons were 
made for black walls, 0.01 10N≤ ≤ , and 
0.01 10Lτ≤ ≤ .  The heat flux predicted by the 
code was exact to within 3 significant digits over 

this entire range.  These errors are not 
inconsistent with the errors of other numerical 
methods [1]. 

 
Results 

Once the code was verified, parametric 
studies were conducted to examine the 
temperature distribution and total heat flux errors 
produced when the EOD optical depth was one-
half of the layer optical depth or less, 

0.5τ τ≤EOD L .  Results predicted by the code 
when τ τ=EOD L  were considered to be exact. 

Figure 1 illustrates the error in the 
temperature distribution for N = 10, Lτ =10, 
ε =1, and the right-hand boundary temperature 
is one-half that of the left-hand boundary.  This 
is a conduction dominant situation and the 
temperature profile is almost linear.  Inspection 
of Figure 1 demonstrates that the maximum error 
is quite reasonable and acceptable even when 
only one-tenth of the radiation field is included 
in the calculations.   
 

 
 

Figure 1 Temperature Prediction Error for 
Various EOD (N = 10, Lτ =10, ε =1) 

 
The error in the temperature 

distribution, as shown in Figure 1, goes to zero 
as more and more of the layer, EOD approaching 

Lτ , is included in the calculation of the radiative 
hat flux.  But, since this is a conduction-
dominant situation and the radiative heat transfer 
is small, this error is acceptable even for EOD 
=1. 

A more radiation dominant situation, N 
= 0.10, is shown in Figure 2.  The error for small 
EOD is now large and may be unacceptable and 



most of the radiation field must be included in 
the model.  At least 30% or more of the radiation 
field must be included in the calculations if 
temperature errors of 1.5% or less are required.  
 

 
 

Figure 2 Temperature Prediction Error for 
Various EOD (N = 0.1, Lτ =10, ε =1) 

 
Figure 2 demonstrates that the greatest 

temperature error occurs in the hottest portions 
of the layer near the left-hand hot boundary.  
This is the region where the radiative heat flux 
and the blackbody function are the greatest.  
Only the radiative heat flux is approximated.  
Thus, errors can be expected to be the largest 
where the radiative heat flux is the greatest. 

Maximum temperature prediction errors 
for small layer optical thicknesses are presented 
in Figure 3.  These results demonstrate that 
temperature prediction errors tend to decrease 
with increasing layer optical thickness. The error 
also tends to be the largest at conduction-
radiation parameter values at or near 0.1. 
 

 

 
Figure 3 Maximum Temperature Prediction 

Errors 
 

The total heat fluxes predicted by the 
finite-element model are presented in Table 1.  
Conditions under which the error exceeded 2% 
or more are indicated by the shaded cells in the 
table.  This table indicates that total heat flux 
predictions are quite accurate as is typical with 
most numerical solutions of the conduction-
radiation heat transfer problem.  Heat fluxes are 
accurately predicted when the EOD is 30% or 
more of the layer optical thickness.    
 
Layer Optical Thickness = 10
EOD 10 5 2 1
N

10 2.1147 2.1133 2.1046 2.0901
1 0.3146 0.3122 0.2988 0.2825

0.1 0.1326 0.1279 0.1023 0.06342
0.01 0.1099 0.105 0.07796 0.03272

Layer Optical Thickness = 6
10 3.5066 3.499
1 0.5006 0.4909

0.1 0.2053 0.1819 0.1575
0.01 0.1671 0.1399 0.1013

Layer Optical Thickness = 2
10 10.403 10.398
1 1.4008 1.3921

0.1 0.4845 0.4697
0.01 0.3691 0.3437

 
 

Table 1 Total Heat Fluxes, kJ/s-m2 
 

Conclusions 
It has been demonstrated that the EOD 

is an accurate means of predicting coupled 
conduction – radiation heat transfer over a wide 
range of the conduction-radiation parameter and 
layer optical thicknesses of 2 or more.  
Acceptable error in the predictions typically 
occurs when the EOD is 30% or more of the 
layer optical thickness.  Thus, only about 30% of 
the radiation field impacts the energy balance of 
any finite element in the medium for the 
conditions investigated.  Temperature predictions 
are more sensitive to this approximation than 
total heat flux predictions.  Depending upon the 
error requirements of a given application, this 
approximation should be acceptable and does 



reduce the computing resources required.  
Similar findings are expected in problems 
involving more complicated geometries and 
situations. 
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