Calculation of Atomic Structure

Jan C. A. Boeyens

Abstract The Thomas-Fermiand Hartree-Fock calculations of norrdtyeh atomic
structure rely on complicated numerical computationsetitta simple visualizable
physical model. A new approach, based on a spherical wavetste of the extranu-
clear electron density on atoms, self-similar to promirasitonomical structures,
simplifies the problem by orders of magnitude. It yields anmalized density dis-
tribution which is indistinguishable from the TF functiondaproduces radial dis-
tributions, equivalent to HF results. Extended to cal@itbmic ionization radii it
yields more reliable values than SCF simulation of atomimpession. All empir-
ical parameters used in the calculation are shown to be stensiwith the spherical
standing-wave model of atomic electron density.

Keywords: atomic wave model, electron density, golden-spiral ofation, ion-
ization radius, self-similarity

1 Introduction

The true meaning of both quantum and relativity theoriesctwvhas been demon-
strated [1] to emerge only in four-dimensional formalisnastserious implica-
tions for the three-dimensional theories of atomic and e structure. Non-
classical attributes of atomic matter, such as electron, spie associated with
four-dimensional hypercomplex functions, known as quaders, and cannot be ac-
counted for by classical three-dimensional models, whictude wave mechanics
as traditionally formulated. The notorious failure of gtian chemistry to model
the structure of non-hydrogen atoms and molecules is a gstatfon of the same
problem. The awareness that atomic and molecular struetiereslassical three-
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dimensional concepts, dictates the use of classical, ratfam four-dimensional
quantum models, for their characterization.

It is readily demonstrated [2] that a convergence anglerpf(2n— 1), with in-
tegern, generates a set of points on a golden spiral at increasatgaties from the
origin, reminiscent of the radin?ag that occur in the Bohr model of the hydrogen
atom. In a related study of satellites in the solar systenofB]ts were found to
correspond with divergence angles that optimize the twoedisional accretion of
matter from a rotating uniform cloud, along logarithmicrss. This consilience
can hardly be accidental and accounts for the successfumi@tmodels, indepen-
dently proposed by Nagaoka and Bohr, based on the strudt8egurnian rings and
planets in the solar system, respectively.

Although spectacularly successful at the time, these edoynic models failed,
because they followed the two-dimensional astronomicalyues, which are char-
acterized by three-dimensional angular-momentum veadmescted along fixed ro-
tation axes, too closely. Electronic rotation, by contrasturs in spherical mode,
correctly described by quaternions, that give rise to thentum-mechanical spin
function. The resulting distribution of extranuclear nédgacharge occurs in shells
around the atomic nucleus, in the form of a standing sphlesiage. Although the
total charge is an integral multiple of the elementary etatdt charge, individual
electrons cannot be distinguished within the undulatiregteic fluid. There are,
in particular, no such things as electronic particles i thiodel. The elementary
charge is associated with an elementary wave packet, whiélrther sub-division,
through interaction with a positron, disperses into theuuaa.

The Bohr atomic model, which describes an electron as atireghparticle, is
well known to fail for all atoms other than hydrogen. Maxinmathe optimization
function should therefore not be interpreted as orbits ratiter as the nodes of a
spherical standing wave in line with the periodic table & ¢lements.

2 The Periodicity of Matter

It was first noted by William Harkins [4] that the rati@\ — Z) /A for the known
nuclides never exceeded 0.62, later identified more acalyras the golden ra-
tio, T = 0.61803 -- = ®~1 [5]. A plot of Z/N vsA of non-radioactive nuclides are
shown in Fig. 1 with convergence curves as inferred by Hatkin

The region of stability is mapped more precisely by two sdtstaight-line
segments with inflection points at common valuesfofThrough these inflection
points eleven hem lines divide the field of stability sucht thach block contains
24 nuclides. Although there is no general agreement on ki that definetable
nuclides, the set of nuclides identified by different schemaver deviates seriously
from the 264 selected in Fig. 1.

Replotting the data on axesBfN vsZ (Fig. 2) does not affect the general shape
of the straight-line profiles, but the hem lines, becauséeif tmodified slopes, no
longer intercept all lines of constarfN at the samé.
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Fig. 1 Distribution of stable nuclides as a function of mass number
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Fig. 2 Periodic functions defined by nuclide distribution

Intersection with the lineg/N = 0.58 0.62, 1.0 and 1.04 is of special interest.
The points of intersection alorg/N = 1 all coincide with atomic numbers com-
monly interpreted to signal the completion of an electrauisshell according to the
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periodic table of the elements:
10(2p), 18(3p), 28(3d), 36(4p), 38(5s), 46(4d), 48(5s), 56(6s), 62(4f : 6/8), 70(4f),80(5d)

The points at 0.58 define the periodicity implied by the wawechanical solution
of the H electron:

10(2p),18(3p),28(3d),36(4p),46(4d),52(4f : 6/8),60(4f),68(5p), 78(5d)

The relationship with the points of intersectionNitZ = 1.0 and atN/Z = 1.04
is clarified by noting how these points represent an invarsicenergy levels. The
points at 1.04:

14(41),24(3d), 32(1s), 38(5f : 6/8),56(4d), 62(3p), 78(6),88(5d), 96(3s)

represent the completely inverted wave-mechanical spc#df < 3d < 2p <
1s...etc. The points at 1.0 define the inverted observed periodi@tabthe ele-
ments.

The only known process which could invert atomic energylkisthe applica-
tion of relentless pressure [6]. It becomes logical to imaghat inverted period-
icity occurs where the environmental pressure on an atormoappes infinity, as
in a black hole. The reciprocal situation of zero pressureetates with the wave-
mechanical assumption of nothing but the potential field sfrale proton. This
implies an empty universe and therefore flat space-time higyargument the ar-
rangement alN/Z = t occurs at the moderate curvature and pressure that prevails
in the solar system. AZ/N = 1 an equilibrium between protons and neutrons is
interpreted as suitable conditions for high-pressuret®sis of all nuclides from
“He.

This interpretation implies a periodicity of 24 among seahlclides, with the
periodic table of the elements as a subset. It confirms tleadiiserved periodicity
is not predicted correctly by wave mechanics, but can bere@mithout the use of
higher mathematics. The prominent rolefN = T suggests a possible number-
theory model of elemental periodicity.

2.1 ThePeriodic Table

The importantZ/N ratio must by definition always be a rational fraction and an
ordered set of nuclides must therefore correspond to a Baigayence. It is readily
demonstrated [7] that a set lbf modular Simple Farey fractions

n

S(:mv

not necessarily in reduced form, plotted against naturaibrs, has the same ap-
pearance as Fig. 1, except for being of infinite extent. Cayarece of nuclide com-
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position from unity toZ/N — t implies that the limiting curves must be generated
by the intersection of the infinite Farey festoons with a @ging series of Fi-
bonacci fractions. This way it could be demonstrated [6f tha points within the
resulting triangle of stability represent the naturallgoeing stable isotopes.

The relationship between unimodular Farey sequences ambcitales [8] en-
ables direct mapping of the periodic function by touchingdadircles, producing a
table of the form shown in Fig. 3 [8].

2k 2

[87 88] 94| 95 102/ 103 110111 118 32
373839 46|47 48 54 18

111 18] 8

12| 2

3 4 10, 8

[19 2021 2829 30 36 18

[55 56 62]63 7071 78/ 7980 86 32

Fig. 3 Mapping of the periodic table of the elements as the recgnadii of the.%, unimodular
Ford circles

The characteristic values &/N = 1, and of 0.58 for observed and wave-
mechanical periodicities are the limits of converging Fiaoci fractions around
3/5. The segmentation of the table into groups of 2 and 8 apewbds 2, 8, 18, 32
summarizes the observed periodicity as a subset of nudidedicity. The sub-level
structure, despite formal resemblance to the wave-mecalddisolution, emerges
from number theory without reference to atomic structure.

We now consider the possibility of characterizing the etadt structure of
atoms as it relates to cosmic self-similarity and the pecibdof atomic matter.

3 The Golden Spiral

Casual interpretation of the local environment as threeedisional space and uni-
versal time flow is not consistent with the known four-dimenal structure of
space-time on a cosmic scale. Local Euclidean space is adid tangent to the
underlying four-dimensional curved space-time.

It has been argued [8] that the transformation from curveatsgime to Eu-
clidean tangent space is described by the golden ratio.ig hist an entirely unex-
pected conclusion, in view of the prominencertoih the operation of self-similar
symmetries, related to equiangular logarithmic spirals.

The complex numbefa,b) = a+ ib is represented in polar coordinates by
(r,8) =r€8 =r(cosh +isind) as in Fig. 4. Continuous rotation of the pojat 0),
which transforms each poifit, 6) into (r, 8 +t), has the locus = a that describes
a circle. In the same way, whén,0) is transformed by continuouwdlatation (en-
largement), the locu8 = 0 of (a,0) describes the rafr, 0) for increasing > 0.
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Fig. 4 The complex plane |

Combination of these two operations represents a contsdibative rotation
that transforms the general poimt0) into (a'r, 6 +t), ast changes continuously.
The locus of the transform @&, 0) is the equiangular spiral

r=a'a , 0=t

i.e.r =au?. Taking the derivative:

dr d 0
a ~ ao (')
:auelnu:rlnu.

The constanti represents the dilatation on rotation of 1 radian. On re@eaent
into q
r
" =dInr=Inudo,

the simplest equation of the logarithmic spiral followsras pexp(c6), more fre-
quently given in the classical form

r— aeecoup’
wherea and @ are constants. It is common practice to aet 1 to obtain a unit
spiral.

In the special case wherg ~ 73, cotp = 17/2, the spiralr = aexp(81/2),
equivalent tor = a/12%/™, corresponds almost exactly to the golden spiral [9], as
constructed in a golden rectangle, and shown in Fig. 5. Thetaota is related to
the overall dimensions of the spiral [10]. More generalfytérms of the complex
numbera—+ib:

r=Ae®Pe  po. (1)

The distinctive property of logarithmic spirals is the ctamg dilatation for equal
rotations. A dilative rotation of & transforms any point on the spiral intdhamoth-
etic point, which is similarly placed and directed. The spiraidsto be homothetic
to itself, therefore has the property of self-similarityaditscales. We note that the
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Fig. 5 The approximate a
golden logarithmic spiral.
tana = 1. Notethat ¢ ~ 271/5
radians, emphasizing the re-
lationship of T to a regular
pentagon: cog27m/5) =1/2

origin (r, 8 = 0) transforms into the homothetic poid¥" afternrotations. We pro-
pose that this property, described by the three fundameortesitantse, randr, is
related to the general curvature of space-time, which poesible for the observed
cosmic self-similaritye for growth, 17 for rotation andr for dilatation.

3.1 Sdf-similarity

The demonstration [1] that both Lorentz transformation gadntum spin are the
direct result of quaternion rotation implies that all relestic and quantum struc-
tures must have the same symmetry. This is the basis of casifisimilarity. The
observation that the golden mean features in many knowsssalfarities confirms
that T represents a fundamental characteristic of space-timetue. The exis-
tence of antimatter and the implied CP3ymmetry of space-time favours closed
metric-free projective geometry with involution; the oriypology that automati-
cally generates the gauge invariance that links quantunhamécs to the electro-
magnetic field [11]. This topology is consistent with comstspace-time curvature,
locally distorted by large gravitating masses. It seemsaeable to assume that the
logarithmic spiral (1) follows the general curvature in tdimensional projection,
characteristic of stable structures and growth patterriarigent Euclidean space.
In four-dimensional space-time the curvature is more apeitely described by a
formula such as

p(xH) = Ael@/ Vo2 e e

which describes spherical rotation in quaternion notation

The spacing of planetary orbits and of moons orbiting a plaaee been shown
[3] to obey simple whole number rules, not unlike the quantulas of wave me-
chanics. Orbital radii, in particular, correspond to posis separated by a constant
divergence angle along a golden spiral. We now demonsthnatethe spacing of
atomic electron shells are also related by a divergenceaagtording to the same
procedure.

1 Charge conjugation-parity-time
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4 Atomic Structure

Each electronic energy level is assumed to occur as a sphshell at a distance
from the nucleus, determined by a positive integexnd a minimum radius. of
the innermost shell. Atomic size is wave-mechanically podefined. For principal
guantum numbem, the electronic radial distribution function has a singdmum
[13] when the angular momentum quantum numbéas its largest value of— 1.
The relative density is determined by the degeneracy ef2= 2n— 1. Enhanced
nuclear attraction and increased charge density, imply div@rgence angles for
optimal spacing will not be constant, but likely to decrelagé¢he factor(2n— 1) for
each quantum level. The first shell is assumed to occur at#iontof 47 from the
origin?. Successive divergence angles for higher levels then¥alka, = 471/ (2n—
1).

16

25

Fig. 6 A sequence of Fibonacci squares on a scale of 1:2 serveseocagerthe 2k 13 cm golden
rectangle with its inscribed spiral. Directly measuraladiirof n?a (a = 6.7 mm) at convergence
angles of 41/(2n— 1) terminate at the labeled points.

Using this as a guide the distribution of charge densityinoiged by a golden
spiral at a divergence angle oft4(2n— 1), for principal quantum numbaer, was

2 This generates spin /2.
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Table1 The Schrodinger Table
n  Configuration Electrons Total

1 2 2
2 25220 8 10
3 3s23pf3d10 18 28
4 44p84di04114 32 50
5 5¢25p55d105f 145918 50 100

calculated before [2]. The simplest demonstration of sletten-density optimiza-
tion is in terms of a Fibonacci spiral [8] that converges tooédgn spiral with in-
creasing Fibonacci number. Graphical derivation of otladii, according to this
model, is shown in Fig. 6, predictinga=1,4,9, 16, etc., for unitradiusa, in agree-
ment with the Bohr radii of, = n?ag. The labeled points in Fig. 6 lie progressively
closer to the spiral and predict to good approximation tHames and charge den-
sities of al atoms witlz =1 — 118. On a virtually identical logarithmic spiral,
r =1.164exp6 - 1/2), when sampled &, = 5 ,47m/(2n— 1), ther, round off to
n?.

According to Schrodinger’s solution for the hydrogen atand the exclusion
principle, successive energy levels can accommodaitectrons, as in Table 1.
This arrangement cannot account for either the periodie tabthe elements, the
electronic structure of non-hydrogen atoms or the prediotéital radii.

Fig. 7 Self-similar distribution of atomic electron density. RO 1 the unit of radial distance is
assumed aa = ap, the Bohr radius

14 rla

1‘.5f‘3 T"') 7‘.5 1(?.5

Y

16
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The Thomas-Fermi (TF)[14] and Hartree-Fock (HF) schemeslahatomic
structure empirically, by assuming spectroscopicallyedatned electron configu-
rations. On the other hand, the correct form of the periodidet emerges from
elementary number theory, which suggests an alternatieepiretation of the Bohr
radii.

Table 2 Screening factorgv) and comparison of the calculated maxima at alkali-metalewav
crests(ry), scaled against Hartree-Fock [16] radial expectationeslin units ofg.

n /@ Li Na K Rb Cs Fr Key

1 15 1 1 1 1 1 1 Vi

0.50 | 0.136 | 0.079| 0.041 | 0.027 | 0.017 In
0.57 | 0.143| 0.081| 0.041 | 0.028 | 0.017 HF

4.05| 0.818 | 0.316| 0.162 | 0.109 | 0.069
3.87 | 0.779 | 0.386| 0.169 | 0.110| 0.068

450 | 1.315( 0.540 | 0.273| 0.172
421 | 1.357| 0.520 | 0.297 | 0.168

5.07 | 1.620 | 0.682 | 0.431
524 | 1.617 | 0.768 | 0.392
5 10.5 10.5 7.5

5.67 | 2.005| 0.905
5.63 | 1.975| 0.916

6 14 14
6.31 | 2.253
6.31 | 2.168
7 18
6.95
6.63

Interpreted in terms of the symmetrical form of the periotdible (Fig. 3) the
quantum numbers that define the radial distances-eh?a specify the nodal sur-
faces of spherical waves that define the electronic shaltstre. Knowing the num-
ber of electrons in each shell, the density at the crestseogfinerical waves that
represent periodic shellse. at 1.5, 3.etc. (a), can be calculated. This density dis-
tribution, shown in Fig. 7, decreases exponentially vidtand, like the TF central-
field potential, is valid for all atoms and also requires eleteristic scale factors to
generate the density functions for specific atoms. The Barddinger model, rep-
resented by the stippled curve in Fig. 7, breaks down comlgléir non-hydrogen
atoms.

The TF potential is shown as a solid curve [14] in Fig. 8, witlr oalculated
points on the same scale (Numerical factor=55). The cureéippled outline is an
approximate simulation of the Hartree-Fock electron dgrier unit atoms. A few
simple assumptions allow more detailed simulation of HRlltegor any atom:
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10 (r): Thomas—Fermi

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Atomic radius/a

Fig. 8 Simulation of Thomas-Fermi and Hartree-Fock electron iiessfor unit atoms

() Anelectron at the innermost level is not screened agaitisaction by the nu-
clear charge of-Ze. The one-electron radiu$ = 1.5ay is thereby contracted to
ri=r'/Z[15].

(i)  The radii of intermediate shells contract to
o Vil’llq
'z
wherev is a screening constant.
(i)  The radius of the outer shell is modelled as
= ﬁ
ns
Using the HF results of Mann [16] for the alkali metals as adbenark, this screen-

ing factor could be fixed a& = 0.37. Appropriate values of; are summarized in
Table 2.

In this calculation the calculated maximgaare scaled against the radial expecta-
tion values of Manf The multiplet level structure of the HF analysis is reproetl
in detail. The fundamental assumption underlying this $&sspnulation is the indis-
tinguishability of individual electrons in a collectives amphasized by Schrodinger
[17], Madelung [18] and Pauli [19]. This calculation has been done for other

3 SCF multiplet structure is empirically based on spectrpacoesults
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elements, but once outer-level radial expectation valaedieen obtained, the pro-
cedure of Table 2 applies.

The highest radial maxima for non-alkali atoms in the sam@gdenust decrease
uniformly from the alkali values}/, depending on the number of electrons at each
sub-level. For elements of theblock correct values of these radial maxima are
predicted as
r-o

up
from characteristic values @ and u for a numberm of electrons. The results are
summarized in Table 3.

|’_:

Table 3 Calculated radir /ag of highest electron-density maxima pfblock and alkaline-earth
elements, compared to the corresponding HF values [16]

" r
u o r r

1.17 Li Be B C N (@) F Ne
059 | 405 3.27 | 2.04| 1.75| 1.49| 1.27 | 1.09| 0.93
(HF) | 3.87 | 265 | 220| 1.74| 1.45| 1.24| 1.08| 0.97
1.14 Na Mg Al Si P S Cl Ar
0.8 | 450 | 3.62 | 3.16( 2.77| 2.43| 213 | 1.87| 1.64
(HF) | 421 | 3.25 | 3.43| 2.79| 237 | 2.07 | 1.84| 1.66
1.11 K Ca Ga Ge As Se Br Kr
0.7 | 5.07 | 409 | 3.20( 2.88| 259 | 2.34 | 2.11| 1.90
(HF) | 5.24 | 421 | 342|290 | 256 | 2.31| 2.11| 1.95
1.11 Rb Sr In Sn Sb Te | Xe
0.73| 5.67 | 457 | 3.73| 3.36 | 3.03| 2.73 | 2.45| 2.21
(HF) | 5.63 | 4.63 | 3.78| 3.29| 295| 2.70| 250| 2.34
1.10 Cs Ba TI Pb Bi Po At Rn
0.68| 6.31 | 5.09 | 3.90| 3.54| 3.22| 293 | 2.67| 2.42
(HF) | 6.31| 5.26 | 3.93| 3.45| 3.14| 2.89 | 2.70| 2.54

Fr Ra
6.95 | 5.60
6.63 | 5.64

The parameters and 1/u are empirical estimates which describe the stepwise
radial decrease &~ andp—density maxima within a periodic group. The expected
periodic increase off with increasing period number is interrupted by atomic con-
traction due to the first appearancedfnd f levels. It will be shown that these
parameters depend on the periodic variation of angular mameand spin, and
hence the exclusion principle.

The decrease qgi with periodic number refers to the relative weight of a singl
electron in shells of different size. At alevel, consisting of only two electrons,
we estimatgu = 21, decreasing smoothly and convergingte- 1 with increasing
electron count. Accordingly we calculate=T1"/2t for the alkaline-earth metals,
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also shown in Table 3. The decreaseuds) > p(p) > p(d) > u(f) — 1, reflects
the same trend.

All atoms, except for those of theblock and of the element palladium, have an
outer shell ok electrons. Atoms of the so-calléeblock have a penultimatgshell.
Variation of atomic radius, within such a series with a unif@uter shell, is almost
continuous. Discontinuity occurs where the number of etet in the outer shell
differs from the generaf.

Thed-block, consisting of the & 8 transition elements and the coinage group,
has radial expectation values described correctly as
'm0 and r= _Tn0

= (1.03)d” (1.0

describes inner-transition elements with an incompfeghell. The results are in
Tables 4 and 5.

Table4 Radial distances of highest maxima of d-block elements

o || Sc| Ti V | Cr* | Mn Fe Co Ni | Cu* | Zn

0.78(5.07| 3.84 | 3.73 | 3.62 3.41| 331 | 3.22 | 3.12 2.94
0.88 3.85 3.32
(HF)| 3.96 | 3.77 | 3.69| 3.84 | 3.35| 3.24 | 3.16 | 3.06 | 3.33| 2.90
567 Y Zr | Nb* [ Mo* | Tc | R& Rh [ Pd* | Ag* | Cd

0.76 4.18 | 4.06 3.72 3.21
0.85 4.28 | 4.16 3.92 | 3.80 | (4.2) | 3.59
(HF)| 4.30| 4.08 | 4.21| 4.08 | 3.65| 3.88 | 3.80 | 1.53 | 3.66| 3.24
6.31| Lu Hf Ta W Re Os Ir Pt | Au* Hg

0.69 423 | 410 | 3.98| 3.87 | 3.76| 3.65 | 3.54 3.24
0.78 3.77 | 3.66
(HF)| 4.26 | 4.07 | 3.92| 380 | 3.69 | 3.60 | 3.52 | 3.76 | 3.70| 3.33

No attempt was made to calculate HF wave functions from csultg but the
correspondence between alkali expectation values [16R(r)/r, with \/p, mea-
sured at the wave crests, demonstrates the feasibilityabf asimulation, in Table
6.

5 lonization Radii

The effect of applied pressure on the electronic structéitbeohydrogen atom has
been studied many times [20, 21] by changing the boundardition in wave-
mechanical simulation of the energy-level structure. Téreegal effect is an increase
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Table5 Radial distances of highest inner-transition element maxi

Cs o La* Ce Pr Nd Pm Sm

rn10.825 5.10 | 5.05 | 5.00 | 4.95 | 4.90
6.31 |0.775| 4.89
(HF) | 4.93 | 511 | 505 | 4.99 | 493 | 4.88
Eu Gd* Th Dy Ho Er ™™ Yb

4.86 4.76 471 | 4.67 | 4.62 4.57 4.53
4.56
483 | 455| 474 | 470 | 4.66 | 4.62 4.58 4.54
Fr Ac* Th** pPa u* Np* Pu
r 0.75 5.11 | 506 | 5.01
6.95 | 0.795 5.21

(HF) | 5.23 | 498 | 511 | 5.05 | 500 | 5.18
Am | Cm* Bk Cf Es Fm Md No

4.86
5.15 5.05 5.00 | 4.95 491 4.86 4.81
513 | 486 | 5.05 | 5.01 | 497 | 493 | 490 | 4.86

| *:dl **:dZ |

Table 6 Simulated wave functions
Li Na K Rb Cs
|@(HF)| 0.1352 0.1140 0.0840 0.0782 0.0666
P 0.1844 0.1122 0.0917 0.0656 0.0566

of all energy levels with pressure, until the point is reattdere the ground-state
level reaches the ionization limit on compression to a mdiuy = 1.835a.

Such a calculation for non-hydrogen atoms was carried oatemigally by a
modified Hartree-Fock-Slater procedure [22]. The boundamydition for each
wave function was introduced on defining a cut-off radiush®ydtep function:

S=e (/P = p>>1.

The value ofp determines the sharpness of the cut-off and it may vary frimm &o
atom.

A set of ionization radii withp = 20 was found to correspond fairly well with
the characteristic atomic radii [7] that generate chenboald dissociation energies
in either point-charge or Heitler-London simulation. Treue of these character-
istic radii are plagued by uncertainties in thermochemégaintities and in their
relationship with spectroscopic measurements.

The rationale behind this identification lies therein tha energy simulations
assume uniform one-electron density within the charasttewolume, whereas an
electron, decoupled from the nucleus by hydrostatic cosgie, is likewise con-
fined to a sphere of radiug at constant density. By exploiting this property, ioniza-
tion radii were also calculated from the maxima of HFS wavefions normalized
over spheres of constant density [23]. The same proceduvesnggests itself for
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the calculation of such radii, directly from the calculatdthrge densitieso) and
radial expectation valueas in Fig. 7.
Normalization of the radial wave function in the ionizatigphere requires

41t 5 (U?(r)

— =1.

3 r0< an
The density at the radial maximum is given lpy= (r/r")[1/u?(r)], and hence, in
A units,

The scale factor increases with the size of the excludedregien. In general

e
s=(1-17)
for a core of radiusc. For group 2y = 0 andS= 1. For higher groupg; = 2r,_».
For the Na group only theslevel is inaccessible, hen&=1-0.272/4.5=0.94.
In period 4 the appearance ofla-level between Ca and Ga results in contraction

of the core, compensated for by setting=r,,_», i.e. S=0.93 for the 4 level. The
results for representative elements of femd p blocks are shown in Table 7.

Table 7 lonization radii of representative elements

n r” Pn Atom

2 4.05 [ 0.034( Li Be B C N [e) F Ne
ro/A 236 | 220 | 1.88( 1.78| 1.69 | 1.60| 1.52| 1.44
femp | 2.70| 1.70 | 1.85| 1.85( 1.62 | 1.51 | 1.37
roHF)| 1.25| 1.09 | 1.62| 1.60| 1.56 | 1.45( 1.36| 1.20
3 4,50 [ 0.0126] Na Mg Al Si P S Cl Ar
ro/A | 3.09| 2.87 | 2.74| 2.62| 251 | 2.47 | 2.30| 2.21
remp | 3.00 | 2.10 | 2.60| 2.90 | 2.81 | 2.66 | 2.30
roHF)| 2.73 | 2.35 | 2.61| 2.40| 2.20| 2.05( 1.89| 1.81
4 5.07 1 0.0084| K Ca Ga Ge As Se Br Kr
rol,& 350 | 3.08|3.00|289|280| 2.71|261| 252
femp | 3.74 | 2.90 | 2.10| 3.00| 2.92 | 2.90 | 2.59
roHF) | 3.74 | 3.26 | 3.29| 2.94| 2.62 | 2.40 | 2.28| 2.12
5 5.67 [ 0.0043[ Rb Sr In Sn Sh Te | Xe
ro/A | 3.81| 354 | 3.31|3.20| 3.09| 2.98 | 2.88| 2.75
remp | 4.10 | 3.43 | 290| 2.80 | 3.40 | 3.30 | 2.92
roHF)| 431 | 3.83 | 355| 3.26| 3.01| 2.81 | 2.60| 2.49
6 6.31 [0.00323 Cs Ba TI Pb Bi Po At Rn
rol,& 403 | 3.75 | 3.43| 3.32| 3.22| 3.12| 3.03| 2.93
remp | 430 | 3.74 | 2.80| 3.10| 3.19 | 3.50
roHF) | 4.96 | 4.48 | 3.82| 3.47| 3.19| 3.14 | 3.12| 3.82
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lonization radii calculated with the same formula and séadtorsS(4) = 0.88,
S(5) = 0.81 andS(6) = 0.78 correspond well with the values calculated by atomic
compression,g(HFS), for the thred-series, as tabulated in Table 8.

Table 8 lonization radii ofd-block elements
o Sc Ti \Y Cr Mn Fe Co Ni Cu Zn

ro/A | 3.02| 299 | 296 | 3.02| 290 | 287 | 2.85 | 2.81 | 2.88 | 2.76
ro(HF)| 3.13 | 3.01 | 295 | 298 | 294 | 287 | 2.85 | 2.86 | 2.85 | 2.78
Y Zr Nb Mo Tc Ru Rh Pd Ag Cd

ro/A | 327 | 324 | 330 | 326 | 3.14 | 3.20 | 3.16 | 2.29 | 3.11 | 3.00
ro(HF)| 3.55| 3.32 | 3.30 | 3.21 | 3.16 | 3.13 | 3.08 | 249 | 3.04 | 3.02
Lu Hf Ta w Re Os Ir Pt Au Hg

ro/A | 354 | 350 | 3.47 | 3.44 | 3.40 | 3.37 | 3.34 | 3.41 | 3.38 | 3.24
ro(HF)| 4.24 | 3.83 | 357 | 342 | 338 | 3.37 | 3.23 | 3.16 | 3.14 | 3.12

lonization radii for the lanthanides are in TablgS= 0.97).

Table 9 lonization radii of the lanthanides

Atom La Ce Pr Nd Pm Sm
ro/A 462 | 469 | 468 | 466 | 464 | 4.63
ro(HF) 413 | 448 | 453 | 460 | 456 | 4.56

Atom Eu Gd Tb Dy Ho Er ™™ Yb
ro/A 461 | 451 | 4.58 4.57 455 | 454 | 4.52 4.50
roHF) | 460 | 422 | 459 | 456 | 463 | 463 | 4.62 | 4.66

lonization radii are of fundamental importance in chernyidBy definition they

represent the volume to which activated valence electromsa@nfined, and hence
the quantum-potential energy of the valence state. Thistiyas the same as the
classical concept of electronegativity [24]. Not only is #ntire theory of chemical
reactivity entangled with electronegativity, but the iattion sphere also features di-
rectly in the simulation of interatomic interactions. Hoais efforts to model ioniza-
tion radii theoretically invariably involved some unsudogiated assumptions. The
present calculation proceeds without such assumptioos) fferived extranuclear
electronic arrangements.

6 Discussion

The calculation of atomic structure presented here assamese structure of ex-
tranuclear electronic charge,distributed in a way seilfilgir to prominent objects
such as planetary, solar and galactic systems, as obserlazl three-dimensional
space. Experience shows that all structures of this typea@rectly simulated as
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a process of optimization based on golden spirals. For atodigergence angle of
@ = 41/(2n — 1) predicts a spherical wave structure of perigd, as derived be-
fore with the Bohr model of the hydrogen atom. To be conststéth the observed
symmetry of the periodic table a well-defined shell struetivat allows direct cal-
culation of charge density is inferred. The remarkable Itefor a unitary atom,

is a charge distribution that scales linearly to the famoligriias-Fermi statistical
distribution, considered valid for all atoms. Whereas a &lewation involves a so-
phisticated numerical procedure that depends on a cri&lattion of initial slope
for the density curve [14], the new calculation amounts tangpke computation

performed directly with a pocket calculator.

On superposition of the implied wave structure the TF-likmagement is trans-
formed into a periodic curve that now resembles a distriloutiith the same peri-
odic structure as a typical HF simulation of a many-electroitary atom. To bring
this result into register with actual HF models only needstatscreening constants
that regulates contraction of the density function in thielfad a nuclear charge of
+Ze. Rather than random variables, these screening constanssreall numbers
that reflect a variability commensurate with the periodidd¢a

From a chemical point of view the outer maximum in charge dgnshich rep-
resents the valence density, is the most important aspélceantire charge distri-
bution. Having simulated the effect of compression on tHenee density by HFS
SCF methods myself, | am aware of the effort involved. Beiplg o perform, what
is clearly a superior simulation, with only a pocket caltoiand no further assump-
tions, convinced me that the heavy computations of modeantyum chemistry are
not needed.

The simple reason for this is now well established: Quantuechmanics, like
relativity, is the non-classical theory of motion in fourrgensional space-time. All
theories, formulated in three-dimensional space, whiclughe Newtonian and wave
mechanics, are to be considered classical by this critevilaye mechanics largely
because it interprets elementary matter, such as elecasm®int particles, forget-
ting that the motion of particulate matter needs to be diesdrby particle (Newto-
nian) dynamics. TF and HF simulations attempt to performealike analysis and
end up with an intractable probability function.

On assuming an electronic wave structure the problem isldietbby orders
of magnitude, using elementary wave mechanics. Calculgitid this type are well
within the ability of any chemist without expertise in highmathematics. It has
already been shown [25] that the results reported here defoowalence function
that predicts, without further assumption, interatomgtalices, bond dissociation
energies, and harmonic force constants of all purely cové@ieractions, irrespec-
tive of bond order. In line with the philosophy that moleaudhape, as a classical
concept, should be modelled classically, the ultimate agito iderive the principles
that underlie molecular structure and to outline a fundaalesystem of molecular
mechanics.

Perhaps the most important result of the calculation is thg w which it con-
firms the number-theoretic structure of the periodic tasth@wn in Fig. 3, and the
wave structure of the electron. From the atomic model showkig. 7, the volume
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of each segment of Fig. 3 is calculated directly in unitabfThe results are shown
in Table 10.

Table 10 Relative volumesy, (in units ofa3 = ag on theH-scale) of unit-electron wave packets
at various atomic sub-level¥y is the calculated volume of periodic standing waves confioed
spherical annuli. Al(Ve) are conveniently expressed as t00within rounding-off errors

P & rs f14 do p? o Vi ye |Legend
293 29.3 Vai
1 (15) 1.52 as) | 2 (Vo)
™ [ Ve/100
x CDZ (Dl33
77 166 735
2 (38) | 2.09 (28) | 1.88| 30) | 8
12 13 15
X 2 @? @7
201 436 637
3 | (100) | 2.88 (73) | 259 | 80) | 8
70 13 13
X ()] [} ¢,52
326 1120 | 705 2151
4 | (162) | 3.38 (112) | (118) | 3.04 | (120)| 18
o) <®3 | o3 o3
X ® @>/3 ® @3/2
577 2517 | 1141 4185
5 | (262) | 3.97 (252) | (190) | 3.56 | (233)| 18
@2 <®?2 | @3 o4
X ® @?/3 ® /4
853 3668 | 3552 | 1846 9919
6 | (424) | 466 | (252) | (355) | (308)| 4.19 | (310)| 32
@3 »2 | of | of ok

All results derive from the volume of the inner shell of twaeekons,V; =
29.375a°. Higher 2-electron sub-levels (callsfland p—levels increase in size by
factors of®* with x =1 or 2, as shown in the multiplication rows. The factors that
relate thed—level volumes are fractional powers @, due to the irregular occupa-
tion numbers at these levels. The volume of a sirsgéectron at the second level
follows as 38= 100r?/a°. To generate the complete table from this value we only
have to assume a volume of ch%(ya3 for a second periog—electron. The average
one-electron volume increases steadily from#@0@r period 1 to 10@? for period
6. The factor 100 is consistent with the identification of h@@ural elements [6].

We notice two further potentially meaningful trends. To d@pproximation the
average volume per electrd¥) increases in even multiples Wf /6, with increas-
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ing periodic leveP, from 3V, /6 to 32/ /3 atVe ~ V3 x ®1?~ 100" Also, a regular
decrease & = 6 0f Vs/100 from®3(= ®3) to @2 in the sequence>d > p > f.

These results can only be rationalized by considering actrele as a flexible
wave packet, rather than a point particle. In particularstaswn in Table 2, the
volume of a given annular shell is reduced as the nucleagehiacreases, which
means that an electronic unit is compressed into less spaeever, the effective
dimensionless electronic radiusigfa remains constant asdecreases and defines
the fine-structure constant as= /r/a. The dimensionless volume of the two-
electron(1s) annulus therefore remains constant and so does the effseparation
of electrons in units o&.

Table 11 Mean empirical radii (from Table 3) of p-electrons at different levels, compared to cal-
culated electronic radii (re) of the electrons, considered to be spherical waves(Table 10). All radii
in units of a.

P 2 3 4 5 6

Famp 143 | 233 | 250 | 2.92 | 311
T
re=(3%)° | 188 | 259 | 304 | 356 | 419
3 /re) 058 | 067 | 064 | 067 | 068
o 059 | 08 | 07 | 073 | 068
M 117 | 114 | 111 | 111 | 110
T

(4)" 117 | 114 | 113 | 111 | 1.10

The effect of atomic compression is now also better undedsto view of the
different unit volumes at different sub-levels, which @ate with orbital angular
momentum. To resist compression the lasgdectrons are forced into higher levels
relative top, d and f electrons. By comparison, dnelectron absorbs compressive
energy by spinning more rapidly in confined space. Totalisiea of relative energy
towardsf < d < p < smustresult at high pressure.

As shown in Table 11, mean electronic radii at varigudevels correlate rea-
sonably well with the mean empirically estimated radii amel parameterg andu

of Table 3. The estimate @f = (47T/re)%2 derives from spherical contraction due to
increased nuclear charge, proportional fo? over 6 steps. These estimates only
serve to show that the empirical parameters do not vary rahdo

7 Concluding Summary

Nucleogenesis in the interior of massive stellar objeattdgi 100 natural elements
of compositionZ/(A—Z) = 1. Because of radioactive decay at reduced pressure in
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intergalactic space the stability ratio converges as atfomof mass number to a
value oft atA=267= (A—Z)® = Z®?. As aresult only 81 stable elements survive
in the solar system as a periodic array conditioned byhe observed periodicity
corresponds to a Ford-circle mapping of the fourth ordemaaiular Farey sequence
of rational fractions.

The same periodic function results from optimization on &lgo spiral with a
variable convergence angle oft4(2n— 1), which describes a spherical standing
wave with nodes at?. Analysis of the wave structure shows that it correctly mede
the atomic electron distribution for all elements as a fiomcof the golden ratio and
the Bohr radiusay. Normalization of the wave structure into uniform sphelrigats
simulates atomic activation, readily interpreted as treaf electronegativity and
chemical affinity.

The same model is shown to fit the electronic structure oftalina when de-
scribed in dimensionless units. The scaling symmetry ofesknere obeys the sym-
metry law of Hatly (1815), quoted by Janner [26]:

Symmetry consists in a repeated decreasing of an objectinaway that by changing the
visual distance it looks the same.

Itis also known as self-similarity, a concept which is inditaly related to the golden
ratio, and known to operate on a cosmic scale. Our obsenstiay therefore be ra-
tionalized by considering elementary matter as the prooflatge-scale space-time
curvature, as described by the golden ratio. We reach theopadive conclusion
that a construct, which is entirely governed by the propsif the golden ratio and
number theory, predicts the electronic configuration oatims, without reference
to any chemical know-how, as a basis of a chemical theory.
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