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Abstract The Thomas-Fermi and Hartree-Fock calculations of non-hydrogenatomic
structure rely on complicated numerical computations without a simple visualizable
physical model. A new approach, based on a spherical wave structure of the extranu-
clear electron density on atoms, self-similar to prominentastronomical structures,
simplifies the problem by orders of magnitude. It yields a normalized density dis-
tribution which is indistinguishable from the TF function and produces radial dis-
tributions, equivalent to HF results. Extended to calculate atomic ionization radii it
yields more reliable values than SCF simulation of atomic compression. All empir-
ical parameters used in the calculation are shown to be consistent with the spherical
standing-wave model of atomic electron density.
Keywords: atomic wave model, electron density, golden-spiral optimization, ion-
ization radius, self-similarity

1 Introduction

The true meaning of both quantum and relativity theories, which has been demon-
strated [1] to emerge only in four-dimensional formalism, has serious implica-
tions for the three-dimensional theories of atomic and molecular structure. Non-
classical attributes of atomic matter, such as electron spin, are associated with
four-dimensional hypercomplex functions, known as quaternions, and cannot be ac-
counted for by classical three-dimensional models, which include wave mechanics
as traditionally formulated. The notorious failure of quantum chemistry to model
the structure of non-hydrogen atoms and molecules is a manifestation of the same
problem. The awareness that atomic and molecular structureare classical three-
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dimensional concepts, dictates the use of classical, rather than four-dimensional
quantum models, for their characterization.

It is readily demonstrated [2] that a convergence angle of 4π/(2n−1), with in-
tegern, generates a set of points on a golden spiral at increasing distances from the
origin, reminiscent of the radii,n2a0 that occur in the Bohr model of the hydrogen
atom. In a related study of satellites in the solar system [3]orbits were found to
correspond with divergence angles that optimize the two-dimensional accretion of
matter from a rotating uniform cloud, along logarithmic spirals. This consilience
can hardly be accidental and accounts for the successful atomic models, indepen-
dently proposed by Nagaoka and Bohr, based on the structure of Saturnian rings and
planets in the solar system, respectively.

Although spectacularly successful at the time, these earlyatomic models failed,
because they followed the two-dimensional astronomical analogues, which are char-
acterized by three-dimensional angular-momentum vectors, directed along fixed ro-
tation axes, too closely. Electronic rotation, by contrast, occurs in spherical mode,
correctly described by quaternions, that give rise to the quantum-mechanical spin
function. The resulting distribution of extranuclear negative charge occurs in shells
around the atomic nucleus, in the form of a standing spherical wave. Although the
total charge is an integral multiple of the elementary electronic charge, individual
electrons cannot be distinguished within the undulating electric fluid. There are,
in particular, no such things as electronic particles in this model. The elementary
charge is associated with an elementary wave packet, which on further sub-division,
through interaction with a positron, disperses into the vacuum.

The Bohr atomic model, which describes an electron as an orbiting particle, is
well known to fail for all atoms other than hydrogen. Maxima in the optimization
function should therefore not be interpreted as orbits, butrather as the nodes of a
spherical standing wave in line with the periodic table of the elements.

2 The Periodicity of Matter

It was first noted by William Harkins [4] that the ratio(A− Z)/A for the known
nuclides never exceeded 0.62, later identified more accurately as the golden ra-
tio, τ = 0.61803· · · = Φ−1 [5]. A plot of Z/N vs A of non-radioactive nuclides are
shown in Fig. 1 with convergence curves as inferred by Harkins.

The region of stability is mapped more precisely by two sets of straight-line
segments with inflection points at common values ofA. Through these inflection
points eleven hem lines divide the field of stability such that each block contains
24 nuclides. Although there is no general agreement on half lives that definestable
nuclides, the set of nuclides identified by different schemes never deviates seriously
from the 264 selected in Fig. 1.

Replotting the data on axes ofZ/N vs Z (Fig. 2) does not affect the general shape
of the straight-line profiles, but the hem lines, because of their modified slopes, no
longer intercept all lines of constantZ/N at the sameZ.
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Fig. 1 Distribution of stable nuclides as a function of mass number
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Fig. 2 Periodic functions defined by nuclide distribution

Intersection with the linesZ/N = 0.58, 0.62, 1.0 and 1.04 is of special interest.
The points of intersection alongZ/N = τ all coincide with atomic numbers com-
monly interpreted to signal the completion of an electronicsubshell according to the
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periodic table of the elements:

10(2p),18(3p),28(3d),36(4p),38(5s),46(4d),48(5s),56(6s),62(4 f : 6/8),70(4 f ),80(5d)

The points at 0.58 define the periodicity implied by the wave-mechanical solution
of the H electron:

10(2p),18(3p),28(3d),36(4p),46(4d),52(4 f : 6/8),60(4 f ),68(5p),78(5d)

The relationship with the points of intersection atN/Z = 1.0 and atN/Z = 1.04
is clarified by noting how these points represent an inversion of energy levels. The
points at 1.04:

14(4 f ),24(3d),32(1s),38(5 f : 6/8),56(4d),62(3p),78(6 f ),88(5d),96(3s)

represent the completely inverted wave-mechanical spectrum 4f < 3d < 2p <
1s . . .etc. The points at 1.0 define the inverted observed periodic table of the ele-
ments.

The only known process which could invert atomic energy levels is the applica-
tion of relentless pressure [6]. It becomes logical to imagine that inverted period-
icity occurs where the environmental pressure on an atom approaches infinity, as
in a black hole. The reciprocal situation of zero pressure correlates with the wave-
mechanical assumption of nothing but the potential field of asingle proton. This
implies an empty universe and therefore flat space-time. By this argument the ar-
rangement atN/Z = τ occurs at the moderate curvature and pressure that prevails
in the solar system. AtZ/N = 1 an equilibrium between protons and neutrons is
interpreted as suitable conditions for high-pressure synthesis of all nuclides from
4He.

This interpretation implies a periodicity of 24 among stable nuclides, with the
periodic table of the elements as a subset. It confirms that the observed periodicity
is not predicted correctly by wave mechanics, but can be derived without the use of
higher mathematics. The prominent role ofZ/N = τ suggests a possible number-
theory model of elemental periodicity.

2.1 The Periodic Table

The importantZ/N ratio must by definition always be a rational fraction and an
ordered set of nuclides must therefore correspond to a Fareysequence. It is readily
demonstrated [7] that a set ofk−modular Simple Farey fractions

Sk =
n

n + k
,

not necessarily in reduced form, plotted against natural numbers, has the same ap-
pearance as Fig. 1, except for being of infinite extent. Convergence of nuclide com-
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position from unity toZ/N → τ implies that the limiting curves must be generated
by the intersection of the infinite Farey festoons with a converging series of Fi-
bonacci fractions. This way it could be demonstrated [6] that the points within the
resulting triangle of stability represent the naturally occurring stable isotopes.

The relationship between unimodular Farey sequences and Ford circles [8] en-
ables direct mapping of the periodic function by touching Ford circles, producing a
table of the form shown in Fig. 3 [8].
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Fig. 3 Mapping of the periodic table of the elements as the reciprocal radii of theF4 unimodular
Ford circles

The characteristic values ofZ/N = τ, and of 0.58 for observed and wave-
mechanical periodicities are the limits of converging Fibonacci fractions around
3/5. The segmentation of the table into groups of 2 and 8 and ofperiods 2, 8, 18, 32
summarizes the observed periodicity as a subset of nuclide periodicity. The sub-level
structure, despite formal resemblance to the wave-mechanical H solution, emerges
from number theory without reference to atomic structure.

We now consider the possibility of characterizing the electronic structure of
atoms as it relates to cosmic self-similarity and the periodicity of atomic matter.

3 The Golden Spiral

Casual interpretation of the local environment as three-dimensional space and uni-
versal time flow is not consistent with the known four-dimensional structure of
space-time on a cosmic scale. Local Euclidean space is said to be tangent to the
underlying four-dimensional curved space-time.

It has been argued [8] that the transformation from curved space-time to Eu-
clidean tangent space is described by the golden ratio. Thisis not an entirely unex-
pected conclusion, in view of the prominence ofτ in the operation of self-similar
symmetries, related to equiangular logarithmic spirals.

The complex number(a,b) = a + ib is represented in polar coordinates by
(r,θ ) = reiθ = r(cosθ + isinθ ) as in Fig. 4. Continuous rotation of the point(a,0),
which transforms each point(r,θ ) into (r,θ + t), has the locusr = a that describes
a circle. In the same way, when(a,0) is transformed by continuousdilatation (en-
largement), the locusθ = 0 of (a,0) describes the ray(r,0) for increasingr > 0.
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Fig. 4 The complex plane
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Combination of these two operations represents a continuous dilative rotation
that transforms the general point(r,θ ) into (αt r,θ + t), ast changes continuously.
The locus of the transform of(a,0) is the equiangular spiral

r = αta , θ = t

i.e. r = aµθ . Taking the derivative:

dr
dθ

=
d

dθ

(

aµθ
)

= aµθ ln µ = r ln µ .

The constantµ represents the dilatation on rotation of 1 radian. On rearrangement
into

dr
r

= d lnr = ln µdθ ,

the simplest equation of the logarithmic spiral follows asr = µ exp(cθ ), more fre-
quently given in the classical form

r = aeθ cotφ ,

wherea andφ are constants. It is common practice to seta = 1 to obtain a unit
spiral.

In the special case whereφ ≃ 73◦, cotφ = τ/2, the spiralr = aexp(θτ/2),
equivalent tor = a/τ2θ/π , corresponds almost exactly to the golden spiral [9], as
constructed in a golden rectangle, and shown in Fig. 5. The constanta is related to
the overall dimensions of the spiral [10]. More generally, in terms of the complex
numbera + ib:

r = Ae(a/b)θ , b 6= 0. (1)

The distinctive property of logarithmic spirals is the constant dilatation for equal
rotations. A dilative rotation of 2π transforms any point on the spiral into ahomoth-
etic point, which is similarly placed and directed. The spiral, said to be homothetic
to itself, therefore has the property of self-similarity atall scales. We note that the
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Fig. 5 The approximate
golden logarithmic spiral.
tanα = τ . Note that φ ≃ 2π/5
radians, emphasizing the re-
lationship of τ to a regular
pentagon: cos(2π/5) = τ/2

α
α

origin (r,θ = 0) transforms into the homothetic pointsenπτ aftern rotations. We pro-
pose that this property, described by the three fundamentalconstants:e, π andτ, is
related to the general curvature of space-time, which is responsible for the observed
cosmic self-similarity:e for growth,π for rotation andτ for dilatation.

3.1 Self-similarity

The demonstration [1] that both Lorentz transformation andquantum spin are the
direct result of quaternion rotation implies that all relativistic and quantum struc-
tures must have the same symmetry. This is the basis of cosmicself-similarity. The
observation that the golden mean features in many known self-similarities confirms
that τ represents a fundamental characteristic of space-time curvature. The exis-
tence of antimatter and the implied CPT1 symmetry of space-time favours closed
metric-free projective geometry with involution; the onlytopology that automati-
cally generates the gauge invariance that links quantum mechanics to the electro-
magnetic field [11]. This topology is consistent with constant space-time curvature,
locally distorted by large gravitating masses. It seems reasonable to assume that the
logarithmic spiral (1) follows the general curvature in two-dimensional projection,
characteristic of stable structures and growth patterns intangent Euclidean space.
In four-dimensional space-time the curvature is more appropriately described by a
formula such as

ρ(xµ) = Ae(a/
√

b2+c2+d2)θ ,

which describes spherical rotation in quaternion notation.
The spacing of planetary orbits and of moons orbiting a planet have been shown

[3] to obey simple whole number rules, not unlike the quantumrules of wave me-
chanics. Orbital radii, in particular, correspond to positions separated by a constant
divergence angle along a golden spiral. We now demonstrate that the spacing of
atomic electron shells are also related by a divergence angle, according to the same
procedure.

1 Charge conjugation-parity-time
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4 Atomic Structure

Each electronic energy level is assumed to occur as a spherical shell at a distance
from the nucleus, determined by a positive integern and a minimum radiusa of
the innermost shell. Atomic size is wave-mechanically poorly defined. For principal
quantum numbern, the electronic radial distribution function has a single maximum
[13] when the angular momentum quantum numberl, has its largest value ofn−1.
The relative density is determined by the degeneracy of 2l +1 = 2n−1. Enhanced
nuclear attraction and increased charge density, imply that divergence angles for
optimal spacing will not be constant, but likely to decreaseby the factor(2n−1) for
each quantum level. The first shell is assumed to occur at a rotation of 4π from the
origin2. Successive divergence angles for higher levels then follow asφn = 4π/(2n−
1).

1

9

25

4

16

Fig. 6 A sequence of Fibonacci squares on a scale of 1:2 serves to generate the 21×13 cm golden
rectangle with its inscribed spiral. Directly measurable radii of n2a (a = 6.7 mm) at convergence
angles of 4π/(2n−1) terminate at the labeled points.

Using this as a guide the distribution of charge density, optimized by a golden
spiral at a divergence angle of 4π/(2n−1), for principal quantum numbern, was

2 This generates spin of̄h/2.
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Table 1 The Schrödinger Table

n Configuration Electrons Total
1 1s2 2 2
2 2s22p6 8 10
3 3s23p63d10 18 28
4 4s24p64d104 f 14 32 50
5 5s25p65d105 f 145g18 50 100

calculated before [2]. The simplest demonstration of such electron-density optimiza-
tion is in terms of a Fibonacci spiral [8] that converges to a golden spiral with in-
creasing Fibonacci number. Graphical derivation of orbital radii, according to this
model, is shown in Fig. 6, predictingr/a = 1,4,9,16,etc., for unit radiusa, in agree-
ment with the Bohr radii ofrn = n2a0. The labeled points in Fig. 6 lie progressively
closer to the spiral and predict to good approximation the volumes and charge den-
sities of al atoms withZ = 1 → 118. On a virtually identical logarithmic spiral,
r = 1.164exp(θ · τ/2), when sampled atθn = ∑n 4π/(2n−1), thern round off to
n2.

According to Schrödinger’s solution for the hydrogen atomand the exclusion
principle, successive energy levels can accommodate 2n2 electrons, as in Table 1.
This arrangement cannot account for either the periodic table of the elements, the
electronic structure of non-hydrogen atoms or the predicted orbital radii.

Fig. 7 Self-similar distribution of atomic electron density. ForZ = 1 the unit of radial distance is
assumed asa = a0, the Bohr radius
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The Thomas-Fermi (TF)[14] and Hartree-Fock (HF) schemes model atomic
structure empirically, by assuming spectroscopically determined electron configu-
rations. On the other hand, the correct form of the periodic table emerges from
elementary number theory, which suggests an alternative interpretation of the Bohr
radii.

Table 2 Screening factors(ν) and comparison of the calculated maxima at alkali-metal wave
crests(r̄n), scaled against Hartree-Fock [16] radial expectation values, in units ofa0.

n r′n/a0 Li Na K Rb Cs Fr Key

1 1.5 1 1 1 1 1 1 νi

0.50 0.136 0.079 0.041 0.027 0.017 r̄n

0.57 0.143 0.081 0.041 0.028 0.017 HF
2 3 3 2 2 2 2

4.05 0.818 0.316 0.162 0.109 0.069
3.87 0.779 0.386 0.169 0.110 0.068

3 5 5 4 3 3
4.50 1.315 0.540 0.273 0.172
4.21 1.357 0.520 0.297 0.168

4 7.5 7.5 5 5
5.07 1.620 0.682 0.431
5.24 1.617 0.768 0.392

5 10.5 10.5 7.5
5.67 2.005 0.905
5.63 1.975 0.916

6 14 14
6.31 2.253
6.31 2.168

7 18
6.95
6.63

Interpreted in terms of the symmetrical form of the periodictable (Fig. 3) the
quantum numbers that define the radial distances ofr = n2a specify the nodal sur-
faces of spherical waves that define the electronic shell structure. Knowing the num-
ber of electrons in each shell, the density at the crests of the spherical waves that
represent periodic shells,i.e. at 1.5, 3,etc. (a), can be calculated. This density dis-
tribution, shown in Fig. 7, decreases exponentially withZ and, like the TF central-
field potential, is valid for all atoms and also requires characteristic scale factors to
generate the density functions for specific atoms. The Bohr-Schrödinger model, rep-
resented by the stippled curve in Fig. 7, breaks down completely for non-hydrogen
atoms.

The TF potential is shown as a solid curve [14] in Fig. 8, with our calculated
points on the same scale (Numerical factor=55). The curve instippled outline is an
approximate simulation of the Hartree-Fock electron density for unit atoms. A few
simple assumptions allow more detailed simulation of HF results for any atom:
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Fig. 8 Simulation of Thomas-Fermi and Hartree-Fock electron densities for unit atoms

(i) An electron at the innermost level is not screened against attraction by the nu-
clear charge of+Ze. The one-electron radiusr′ = 1.5a0 is thereby contracted to
r1 = r′/Z [15].

(ii) The radii of intermediate shells contract to

ri =
νir′n
Z

whereν is a screening constant.

(iii) The radius of the outer shell is modelled as

r′′n =
r′n
ns

.

Using the HF results of Mann [16] for the alkali metals as a benchmark, this screen-
ing factor could be fixed ats = 0.37. Appropriate values ofνi are summarized in
Table 2.

In this calculation the calculated maxima ¯rn are scaled against the radial expecta-
tion values of Mann3. The multiplet level structure of the HF analysis is reproduced
in detail. The fundamental assumption underlying this simple simulation is the indis-
tinguishability of individual electrons in a collective, as emphasized by Schrödinger
[17], Madelung [18] and Pauli [19]. This calculation has notbeen done for other

3 SCF multiplet structure is empirically based on spectroscopic results
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elements, but once outer-level radial expectation values had been obtained, the pro-
cedure of Table 2 applies.

The highest radial maxima for non-alkali atoms in the same period must decrease
uniformly from the alkali valuesr′′n , depending on the number of electrons at each
sub-level. For elements of thep-block correct values of these radial maxima are
predicted as

r̄ =
r′′n ·σ

µ p

from characteristic values ofσ andµ for a numberp of electrons. The results are
summarized in Table 3.

Table 3 Calculated radii ¯r/a0 of highest electron-density maxima ofp-block and alkaline-earth
elements, compared to the corresponding HF values [16]

µ σ r′′n r̄

1.17 Li Be B C N O F Ne
0.59 4.05 3.27 2.04 1.75 1.49 1.27 1.09 0.93
(HF) 3.87 2.65 2.20 1.74 1.45 1.24 1.08 0.97

1.14 Na Mg Al Si P S Cl Ar
0.8 4.50 3.62 3.16 2.77 2.43 2.13 1.87 1.64

(HF) 4.21 3.25 3.43 2.79 2.37 2.07 1.84 1.66
1.11 K Ca Ga Ge As Se Br Kr

0.7 5.07 4.09 3.20 2.88 2.59 2.34 2.11 1.90
(HF) 5.24 4.21 3.42 2.90 2.56 2.31 2.11 1.95

1.11 Rb Sr In Sn Sb Te I Xe
0.73 5.67 4.57 3.73 3.36 3.03 2.73 2.45 2.21
(HF) 5.63 4.63 3.78 3.29 2.95 2.70 2.50 2.34

1.10 Cs Ba Tl Pb Bi Po At Rn
0.68 6.31 5.09 3.90 3.54 3.22 2.93 2.67 2.42
(HF) 6.31 5.26 3.93 3.45 3.14 2.89 2.70 2.54

Fr Ra
6.95 5.60
6.63 5.64

The parametersσ and 1/µ are empirical estimates which describe the stepwise
radial decrease ofs− andp−density maxima within a periodic group. The expected
periodic increase ofσ with increasing period number is interrupted by atomic con-
traction due to the first appearance ofd and f levels. It will be shown that these
parameters depend on the periodic variation of angular momentum and spin, and
hence the exclusion principle.

The decrease ofµ with periodic number refers to the relative weight of a single
electron in shells of different size. At ans level, consisting of only two electrons,
we estimateµ = 2τ, decreasing smoothly and converging toµ = 1 with increasing
electron count. Accordingly we calculate ¯r = r′′/2τ for the alkaline-earth metals,
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also shown in Table 3. The decrease ofµ(s) > µ(p) > µ(d) > µ( f ) → 1, reflects
the same trend.

All atoms, except for those of thep-block and of the element palladium, have an
outer shell ofs electrons. Atoms of the so-calledd-block have a penultimated-shell.
Variation of atomic radius, within such a series with a uniform outer shell, is almost
continuous. Discontinuity occurs where the number of electrons in the outer shell
differs from the generals2.

Thed-block, consisting of the 3×8 transition elements and the coinage group,
has radial expectation values described correctly as

r̄ =
r′′n σ

(1.03)d , and r̄ =
r′′n σ

(1.01) f

describes inner-transition elements with an incompletef -shell. The results are in
Tables 4 and 5.

Table 4 Radial distances of highest maxima of d-block elements

σ r′′n Sc Ti V Cr ∗ Mn Fe Co Ni Cu∗ Zn

0.78 5.07 3.84 3.73 3.62 3.41 3.31 3.22 3.12 2.94
0.88 3.85 3.32

(HF) 3.96 3.77 3.69 3.84 3.35 3.24 3.16 3.06 3.33 2.90
5.67 Y Zr Nb∗ Mo∗ Tc Ru∗ Rh∗ Pd∗∗ Ag∗ Cd

0.76 4.18 4.06 3.72 3.21
0.85 4.28 4.16 3.92 3.80 (4.2) 3.59

(HF) 4.30 4.08 4.21 4.08 3.65 3.88 3.80 1.53 3.66 3.24
6.31 Lu Hf Ta W Re Os Ir Pt∗ Au∗ Hg

0.69 4.23 4.10 3.98 3.87 3.76 3.65 3.54 3.24
0.78 3.77 3.66

(HF) 4.26 4.07 3.92 3.80 3.69 3.60 3.52 3.76 3.70 3.33
∗ = s1 ∗∗ = s0

No attempt was made to calculate HF wave functions from our results, but the
correspondence betweenns alkali expectation values [16],P(r)/r̄, with

√ρ , mea-
sured at the wave crests, demonstrates the feasibility of such a simulation, in Table
6.

5 Ionization Radii

The effect of applied pressure on the electronic structure of the hydrogen atom has
been studied many times [20, 21] by changing the boundary condition in wave-
mechanical simulation of the energy-level structure. The general effect is an increase
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Table 5 Radial distances of highest inner-transition element maxima

Cs σ La∗ Ce Pr Nd Pm Sm
r′′n 0.825 5.10 5.05 5.00 4.95 4.90

6.31 0.775 4.89
(HF) 4.93 5.11 5.05 4.99 4.93 4.88

Eu Gd∗ Tb Dy Ho Er Tm Yb
4.86 4.76 4.71 4.67 4.62 4.57 4.53

4.56
4.83 4.55 4.74 4.70 4.66 4.62 4.58 4.54

Fr Ac∗ Th∗∗ Pa∗ U∗ Np∗ Pu
r′n 0.75 5.11 5.06 5.01

6.95 0.795 5.21
(HF) 5.23 4.98 5.11 5.05 5.00 5.18

Am Cm∗ Bk Cf Es Fm Md No
4.86

5.15 5.05 5.00 4.95 4.91 4.86 4.81
5.13 4.86 5.05 5.01 4.97 4.93 4.90 4.86

∗ = d1 ∗∗ = d2

Table 6 Simulated wave functions
Li Na K Rb Cs

|ψ(HF)| 0.1352 0.1140 0.0840 0.0782 0.0666√ρ 0.1844 0.1122 0.0917 0.0656 0.0566

of all energy levels with pressure, until the point is reached where the ground-state
level reaches the ionization limit on compression to a radius of r0 = 1.835a0.

Such a calculation for non-hydrogen atoms was carried out numerically by a
modified Hartree-Fock-Slater procedure [22]. The boundarycondition for each
wave function was introduced on defining a cut-off radius by the step function:

S = e−(r/r0)
p

, p >> 1.

The value ofp determines the sharpness of the cut-off and it may vary from atom to
atom.

A set of ionization radii withp = 20 was found to correspond fairly well with
the characteristic atomic radii [7] that generate chemicalbond dissociation energies
in either point-charge or Heitler-London simulation. The value of these character-
istic radii are plagued by uncertainties in thermochemicalquantities and in their
relationship with spectroscopic measurements.

The rationale behind this identification lies therein that the energy simulations
assume uniform one-electron density within the characteristic volume, whereas an
electron, decoupled from the nucleus by hydrostatic compression, is likewise con-
fined to a sphere of radiusr0 at constant density. By exploiting this property, ioniza-
tion radii were also calculated from the maxima of HFS wave functions normalized
over spheres of constant density [23]. The same procedure now suggests itself for
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the calculation of such radii, directly from the calculatedcharge densities (ρ) and
radial expectation values ¯r, in Fig. 7.

Normalization of the radial wave function in the ionizationsphere requires

4π
3

r3
0

(

u2(r)
4π

)

= 1.

The density at the radial maximum is given by:ρ = (r̄/r′′)[1/u2(r̄)], and hence, in
Å units,

r0 = S

(

r̄
r′′n

· 3
ρ

) 1
3

a0.

The scale factor increases with the size of the excluded coreregion. In general

S =
(

1− rc

r′′

)

for a core of radiusrc. For group 2,rc = 0 andS = 1. For higher groupsrc = 2r̄n−2.
For the Na group only the 1s level is inaccessible, henceS = 1−0.272/4.5= 0.94.
In period 4 the appearance of ad−level between Ca and Ga results in contraction
of the core, compensated for by settingrc = r̄n−2, i.e. S = 0.93 for the 4p level. The
results for representative elements of thes andp blocks are shown in Table 7.

Table 7 Ionization radii of representative elements

n r′′ ρn Atom

2 4.05 0.034 Li Be B C N O F Ne
r0/Å 2.36 2.20 1.88 1.78 1.69 1.60 1.52 1.44
remp 2.70 1.70 1.85 1.85 1.62 1.51 1.37

r0(HF) 1.25 1.09 1.62 1.60 1.56 1.45 1.36 1.20
3 4.50 0.0126 Na Mg Al Si P S Cl Ar

r0/Å 3.09 2.87 2.74 2.62 2.51 2.47 2.30 2.21
remp 3.00 2.10 2.60 2.90 2.81 2.66 2.30

r0(HF) 2.73 2.35 2.61 2.40 2.20 2.05 1.89 1.81
4 5.07 0.0084 K Ca Ga Ge As Se Br Kr

r0/Å 3.50 3.08 3.00 2.89 2.80 2.71 2.61 2.52
remp 3.74 2.90 2.10 3.00 2.92 2.90 2.59

r0(HF) 3.74 3.26 3.29 2.94 2.62 2.40 2.28 2.12
5 5.67 0.0043 Rb Sr In Sn Sb Te I Xe

r0/Å 3.81 3.54 3.31 3.20 3.09 2.98 2.88 2.75
remp 4.10 3.43 2.90 2.80 3.40 3.30 2.92

r0(HF) 4.31 3.83 3.55 3.26 3.01 2.81 2.60 2.49
6 6.31 0.00323 Cs Ba Tl Pb Bi Po At Rn

r0/Å 4.03 3.75 3.43 3.32 3.22 3.12 3.03 2.93
remp 4.30 3.74 2.80 3.10 3.19 3.50

r0(HF) 4.96 4.48 3.82 3.47 3.19 3.14 3.12 3.82
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Ionization radii calculated with the same formula and scalefactorsS(4) = 0.88,
S(5) = 0.81 andS(6) = 0.78 correspond well with the values calculated by atomic
compression,r0(HFS), for the threed-series, as tabulated in Table 8.

Table 8 Ionization radii ofd-block elements
r0 Sc Ti V Cr Mn Fe Co Ni Cu Zn

r0/Å 3.02 2.99 2.96 3.02 2.90 2.87 2.85 2.81 2.88 2.76
r0(HF) 3.13 3.01 2.95 2.98 2.94 2.87 2.85 2.86 2.85 2.78

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
r0/Å 3.27 3.24 3.30 3.26 3.14 3.20 3.16 2.29 3.11 3.00

r0(HF) 3.55 3.32 3.30 3.21 3.16 3.13 3.08 2.49 3.04 3.02
Lu Hf Ta W Re Os Ir Pt Au Hg

r0/Å 3.54 3.50 3.47 3.44 3.40 3.37 3.34 3.41 3.38 3.24
r0(HF) 4.24 3.83 3.57 3.42 3.38 3.37 3.23 3.16 3.14 3.12

Ionization radii for the lanthanides are in Table 9,(S = 0.97).

Table 9 Ionization radii of the lanthanides
Atom La Ce Pr Nd Pm Sm
r0/Å 4.62 4.69 4.68 4.66 4.64 4.63

r0(HF) 4.13 4.48 4.53 4.60 4.56 4.56
Atom Eu Gd Tb Dy Ho Er Tm Yb
r0/Å 4.61 4.51 4.58 4.57 4.55 4.54 4.52 4.50

r0(HF) 4.60 4.22 4.59 4.56 4.63 4.63 4.62 4.66

Ionization radii are of fundamental importance in chemistry. By definition they
represent the volume to which activated valence electrons are confined, and hence
the quantum-potential energy of the valence state. This quantity is the same as the
classical concept of electronegativity [24]. Not only is the entire theory of chemical
reactivity entangled with electronegativity, but the ionization sphere also features di-
rectly in the simulation of interatomic interactions. Previous efforts to model ioniza-
tion radii theoretically invariably involved some unsubstantiated assumptions. The
present calculation proceeds without such assumptions, from derived extranuclear
electronic arrangements.

6 Discussion

The calculation of atomic structure presented here assumesa wave structure of ex-
tranuclear electronic charge,distributed in a way self-similar to prominent objects
such as planetary, solar and galactic systems, as observed in local three-dimensional
space. Experience shows that all structures of this type arecorrectly simulated as
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a process of optimization based on golden spirals. For atomsa divergence angle of
φ = 4π/(2n−1) predicts a spherical wave structure of periodn2a, as derived be-
fore with the Bohr model of the hydrogen atom. To be consistent with the observed
symmetry of the periodic table a well-defined shell structure that allows direct cal-
culation of charge density is inferred. The remarkable result, for a unitary atom,
is a charge distribution that scales linearly to the famous Thomas-Fermi statistical
distribution, considered valid for all atoms. Whereas a TF calculation involves a so-
phisticated numerical procedure that depends on a criticalselection of initial slope
for the density curve [14], the new calculation amounts to a simple computation
performed directly with a pocket calculator.

On superposition of the implied wave structure the TF-like arrangement is trans-
formed into a periodic curve that now resembles a distribution with the same peri-
odic structure as a typical HF simulation of a many-electronunitary atom. To bring
this result into register with actual HF models only needs a set of screening constants
that regulates contraction of the density function in the field of a nuclear charge of
+Ze. Rather than random variables, these screening constants are small numbers
that reflect a variability commensurate with the periodic table.

From a chemical point of view the outer maximum in charge density, which rep-
resents the valence density, is the most important aspect ofthe entire charge distri-
bution. Having simulated the effect of compression on the valence density by HFS
SCF methods myself, I am aware of the effort involved. Being able to perform, what
is clearly a superior simulation, with only a pocket calculator and no further assump-
tions, convinced me that the heavy computations of modern quantum chemistry are
not needed.

The simple reason for this is now well established: Quantum mechanics, like
relativity, is the non-classical theory of motion in four-dimensional space-time. All
theories, formulated in three-dimensional space, which include Newtonian and wave
mechanics, are to be considered classical by this criterion. Wave mechanics largely
because it interprets elementary matter, such as electrons, as point particles, forget-
ting that the motion of particulate matter needs to be described by particle (Newto-
nian) dynamics. TF and HF simulations attempt to perform a wave-like analysis and
end up with an intractable probability function.

On assuming an electronic wave structure the problem is simplified by orders
of magnitude, using elementary wave mechanics. Calculations of this type are well
within the ability of any chemist without expertise in higher mathematics. It has
already been shown [25] that the results reported here definea covalence function
that predicts, without further assumption, interatomic distances, bond dissociation
energies, and harmonic force constants of all purely covalent interactions, irrespec-
tive of bond order. In line with the philosophy that molecular shape, as a classical
concept, should be modelled classically, the ultimate aim is to derive the principles
that underlie molecular structure and to outline a fundamental system of molecular
mechanics.

Perhaps the most important result of the calculation is the way in which it con-
firms the number-theoretic structure of the periodic table,shown in Fig. 3, and the
wave structure of the electron. From the atomic model shown in Fig. 7, the volume
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of each segment of Fig. 3 is calculated directly in units ofa3. The results are shown
in Table 10.

Table 10 Relative volumes,Ve (in units ofa3 ≡ a3
0 on theH-scale) of unit-electron wave packets

at various atomic sub-levels.VT is the calculated volume of periodic standing waves confinedto
spherical annuli. All(Ve) are conveniently expressed as 100τm, within rounding-off errors

P s2 rs f 14 d10 p6 rp VT ∑e Legend

29.3 29.3 Vsub
1 (15) 1.52 (15) 2 (Ve)

τ4 τ4 Ve/100
× Φ2 Φ13/3

77 166 235
2 (38) 2.09 (28) 1.88 (30) 8

τ2 τ
8
3 τ

8
3

× Φ2 Φ2 Φ2

201 436 637
3 (100) 2.88 (73) 2.59 (80) 8

τ0 τ
2
3 τ

1
2

× Φ Φ Φ5/2

326 1120 705 2151
4 (162) 3.38 (112) (118) 3.04 (120) 18

Φ < Φ
1
3 Φ

1
3 Φ

1
3

× Φ Φ5/3 Φ Φ3/2

527 2517 1141 4185
5 (262) 3.97 (252) (190) 3.56 (233) 18

Φ2 < Φ2 Φ
4
3 Φ

7
4

× Φ Φ2/3 Φ Φ7/4

853 3668 3552 1846 9919
6 (424) 4.66 (252) (355) (308) 4.19 (310) 32

Φ3 Φ2 Φ
8
3 Φ

7
3 Φ

7
3

All results derive from the volume of the inner shell of two electrons,V1 =
29.375a3. Higher 2-electron sub-levels (calleds) and p−levels increase in size by
factors ofΦx with x = 1 or 2, as shown in the multiplication rows. The factors that
relate thed−level volumes are fractional powers ofΦ, due to the irregular occupa-
tion numbers at these levels. The volume of a singles electron at the second level
follows as 38= 100τ2/a3. To generate the complete table from this value we only
have to assume a volume of 100τ 8

3 /a3 for a second periodp−electron. The average
one-electron volume increases steadily from 100τ4 for period 1 to 100Φ3 for period
6. The factor 100 is consistent with the identification of 100natural elements [6].

We notice two further potentially meaningful trends. To good approximation the
average volume per electron(Ve) increases in even multiples ofV1/6, with increas-
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ing periodic levelP, from 3V1/6 to 32V1/3 atV6 ≃V1×Φ12≃ 1002. Also, a regular
decrease atP = 6 of Ve/100 fromΦ3(≡ Φ 9

3 ) to Φ2 in the sequences > d > p > f .
These results can only be rationalized by considering an electron as a flexible

wave packet, rather than a point particle. In particular, asshown in Table 2, the
volume of a given annular shell is reduced as the nuclear charge increases, which
means that an electronic unit is compressed into less space.However, the effective
dimensionless electronic radius ofr/a remains constant asa decreases and defines
the fine-structure constant asα =

√

r/a. The dimensionless volume of the two-
electron(1s) annulus therefore remains constant and so does the effective separation
of electrons in units ofa.

Table 11 Mean empirical radii (from Table 3) of p-electrons at different levels, compared to cal-
culated electronic radii (re) of the electrons, considered to be spherical waves(Table 10). All radii
in units of a.

P 2 3 4 5 6

r̄emp 1.43 2.33 2.50 2.92 3.11

re =
(

3Ve
4π

)
1
3

1.88 2.59 3.04 3.56 4.19
3
4 (r̄/re) 0.58 0.67 0.64 0.67 0.68

σ 0.59 0.8 0.7 0.73 0.68
µ 1.17 1.14 1.11 1.11 1.10

(

4π
re

)
1
12

1.17 1.14 1.13 1.11 1.10

The effect of atomic compression is now also better understood in view of the
different unit volumes at different sub-levels, which correlate with orbital angular
momentum. To resist compression the larges electrons are forced into higher levels
relative top, d and f electrons. By comparison, anf electron absorbs compressive
energy by spinning more rapidly in confined space. Total inversion of relative energy
towardsf < d < p < s must result at high pressure.

As shown in Table 11, mean electronic radii at variousp−levels correlate rea-
sonably well with the mean empirically estimated radii and the parametersσ andµ
of Table 3. The estimate ofµ = (4π/re)

1
12 derives from spherical contraction due to

increased nuclear charge, proportional to 1/r2, over 6 steps. These estimates only
serve to show that the empirical parameters do not vary randomly.

7 Concluding Summary

Nucleogenesis in the interior of massive stellar objects yields 100 natural elements
of compositionZ/(A−Z) = 1. Because of radioactive decay at reduced pressure in
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intergalactic space the stability ratio converges as a function of mass number to a
value ofτ atA = 267= (A−Z)Φ = ZΦ2. As a result only 81 stable elements survive
in the solar system as a periodic array conditioned byτ. The observed periodicity
corresponds to a Ford-circle mapping of the fourth order unimodular Farey sequence
of rational fractions.

The same periodic function results from optimization on a golden spiral with a
variable convergence angle of 4π/(2n− 1), which describes a spherical standing
wave with nodes atn2. Analysis of the wave structure shows that it correctly models
the atomic electron distribution for all elements as a function of the golden ratio and
the Bohr radius,a0. Normalization of the wave structure into uniform spherical units
simulates atomic activation, readily interpreted as the basis of electronegativity and
chemical affinity.

The same model is shown to fit the electronic structure of all atoms when de-
scribed in dimensionless units. The scaling symmetry observed here obeys the sym-
metry law of Haüy (1815), quoted by Janner [26]:

Symmetry consists in a repeated decreasing of an object in such a way that by changing the
visual distance it looks the same.

It is also known as self-similarity, a concept which is intimately related to the golden
ratio, and known to operate on a cosmic scale. Our observations may therefore be ra-
tionalized by considering elementary matter as the productof large-scale space-time
curvature, as described by the golden ratio. We reach the provocative conclusion
that a construct, which is entirely governed by the properties of the golden ratio and
number theory, predicts the electronic configuration of allatoms, without reference
to any chemical know-how, as a basis of a chemical theory.
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