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ABSTRACT

Agricultural technological improvements are crucial to increase on farm production and thereby

reduce poverty. However the use of improper identification strategies on the impacts of improved

technologies on farmer welfare could potentially pose a threat to good practice agricultural policy

making. In this paper, propensity matching strategies and endogenous switching regression were

used to test whether an improved fallow, a soil fertility improving technology that passed the

requirements for a high impact intervention based on non randomised impact assessment

methodologies could still pass this test. Using data from 324 randomly surveyed households in

Chongwe district of Zambia, the rigorous econometric methods confirmed the positive impact of

improved fallows on household maize yields, maize productivity, per capita maize yield and maize

income. Conflicting results were obtained when a broader welfare indicator – per capita crop

income, was considered. Whereas the non-randomised and kernel matching methods showed that

per capita crop incomes were significantly higher for the adopters than for the non adopters, the

causal effect of improved fallows on this variable was non significant when nearest neighbour

matching strategy and the more robust endogenous switching regression were used. It was

concluded that the technology improves welfare through increased maize and hence increased food

security, and through incomes from the maize crop. The maize income derived from improved

fallows were however not sufficient enough to drive the general crop income to significantly higher
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levels. The need to diversify the use of improved fallows on high valued crops was recommended

while the importance of using better and more robust methodologies in evaluating impact of

interventions was emphasised.
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1. INTRODUCTION

Soil fertility problems are widely spread throughout sub-Saharan Africa. Several studies (Sanchez

and Jama, 2002; Vanlauwe and Giller, 2006) have noted that a fundamental impediment to

agricultural growth and a major negative social externality in sub-Saharan Africa is declining soil

fertility and low macro-nutrient levels. In the past, the region’s small scale farmers who could not

afford inorganic fertilisers used traditional methods of farming such as shifting cultivation in order

to sustain land productivity. However, the decrease in high potential land and the increase in human

population have added pressure to farming extending into more fragile lands, thus undermining the

soil resource capital base (Ajayi et al. 2007).

In an effort to contribute towards bridging the gap posed by soil fertility problems, limited use of

external inputs and acute poverty among small scale farmers, the improved fallow technology was

developed for use in Zambia and elsewhere in sub-Saharan Africa (Mafongoya et al. 2006). The

improved fallow, an ecologically robust approach to soil fertility improvement, is a product of

many years of agroforestry research and development by the World Agroforestry Centre (WAC).

The technology is composed of fast growing mostly nitrogen fixing trees of Fhaiderbia albida

Sesbania sesban, Gliricidia sepium, Teprosia vogelii and Cajanus cajan, that ensure the shortest

soil regeneration period of 2 to 3 years. Farmers can grow their crop on previously improved fallow

plots for the next 3 to 4 years without applying any external inputs. The technology also enhances

environmental quality through the generation of several ecosystem services such as carbon

sequestration (Makumba et al. 2007), conservation of biodiversity (Sileshi et al. 2007), protection

of natural forests by providing an alternative source of fuel wood supply, and prevention of soil

erosion (Mafongoya and Kuntashula, 2005).

The financial profitability of improved fallows in Zambia and sub-Saharan Africa has been

demonstrated by several studies including those conducted by Ajayi et al. (2007), Ajayi et al.
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(2009), Franzel (2004) and Place et al. (2002). These studies demonstrate that improved fallows are

more profitable than the non-use of any external inputs, a practise prevalent among resource poor

farmers (Mafongoya et al. 2006). Several studies (Akinnifesi et al. 2006; Ajayi et al. 2007, Phiri et

al. 2004; Quinion et al. 2010) also indicate that farmers who take up the technology have higher

welfare, measured in terms of outcome parameters such as increased maize yields, household

incomes, and assets among others. Despite all these demonstrated benefits, only a few resource

constrained farmers have taken up the technology (Akinnifesi et al. 2006; Ajayi et al. 2007).

A critical literature review of the methodologies used to estimate welfare impact in the above cited

studies show that they failed to move beyond estimating incremental maize yields, crop incomes

and assets that adopters supposedly gain. For instance in the study done in Zambia, Ajayi et al

(2007) used two indicators: farmer perceptions of yields and number of months per year when the

household had enough food to feed family members, to measure impact. The study’s findings were

that the technology positively impacts on welfare. When analysing the number of months per year

when households have enough food, the study only controlled for household size. However,

including the number of months the household has enough food without necessarily controlling for

other variables may produce misleading estimates about causality. Both biophysical variables as

well as socioeconomic characteristics of farmers could be important in so far as increasing the

availability of food on-farm is concerned.

Franzel, (2004) and Ajayi et al. (2009) used enterprise budgets through farm modelling to assess the

impact of adopting improved fallows in Zambia. The technology was found to have a positive effect

on household annual maize incomes. These studies used net present value and cost benefit ratio

criteria to arrive at this conclusion. While these criteria are indeed important and beneficial in

estimating profitability, they fail short of measuring causality since covariates that equally would

have led to an increase in maize yields (hence maize income) were not controlled for. A more

recent and detailed study on agroforestry and improvement in resource poor farmers’ livelihoods

was conducted in Malawi by Quinion et al. (2010). The study used sign and signed rank non-

parametric analysis to test for a change in crop yield and asset variables between pre- and post-

adoption.  These  tests  were  complemented  with  a  test  for  equality  of  proportions  to  examine  the

probability of an increase in income, the number and type of income sources, and maize yield as a

result of adopting agroforestry. While this study analysed the effects of agroforestry on poverty
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reduction in far more details than the earlier ones, it specifically notes that the methodologies used

are based on analysing pre- and post-adoption only. The control of other factors in influencing

welfare changes was not considered. We can thus conclude from the above studies on welfare

impact estimation of improved fallows that they did not follow proper identification strategies in

isolating the causal effect of the technology. Several biophysical as well as socioeconomic factors

(including unobservable factors) that could equally have an influence on farmer welfare were never

controlled for.

The purpose of this study was to estimate the impact of improved fallows on farmer welfare using

more robust cause effects identification strategies. The above literature review clearly shows that

the technology is not only affordable to resource constrained farmers but also improves their

welfare, which leads to a number of questions: why are resource constrained farmers not adopting it

in the interest of maximizing private profits as economic theory would predict? In measuring

impact, have economists been measuring the right construct? Assuming economists have been

measuring the right construct, are they doing the measurement correctly? It is our contention that

when it comes to impact evaluation, approaches that do not encompass more robust identification

strategies of the treatment technology on the outcome variables could produce misleading cause-

effect estimates. Over or under estimation of impact could occur if a clear identification strategy is

not  used.   It  is  well  recognized  that  the  estimate  of  a  causal  effect  obtained  by  comparing  a

treatment group with a non-experimental group could be biased because of selection bias problems

(Dehejia and Wahba, 2002). There could have been selection bias in the assignment of farmers

taking up the improved fallow technology. Over time, selection bias could have manifested in the

difference in average outcome or welfare between those who adopted and those who did not adopt

regardless of the effect of the technology. Angrist and Pischke (2009) noted that the selection bias

could be so large in absolute terms that it completely masks a treatment effect. It follows that to

attribute a technology as causing impact, selection bias has to be overcome. This is the goal of most

empirical economic research (Angrist and Pischke 2009).

We used farm-level data collected in 2011 from a random cross-section sample of 324 small-scale

farmers in Zambia to estimate the impact of improved fallows. Since the improved fallow is mainly

used to promote maize production, the staple food in most parts of Southern Africa, welfare

indicators used in this study included household total maize yield, per capita maize yield, maize
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productivity and per capita income emanating from the maize crop. In addition, we included income

from all crops grown on the farm to assess the technology’s impact on this broad variable. The

econometric methods’ estimates confirmed the positive impact of improved fallows on the chosen

welfare parameters. However, conflicting evidence was obtained on whether the technology

positively affects per capita crop income.

Our main contribution in this paper is to demonstrate the likelihood that the earlier studies

evaluating the impact of improved fallows on farmer welfare might not have succeeded in

analyzing adopters and non-adopters that were similar in terms of the distribution of covariates.

Stated otherwise, the earlier studies could have analyzed observations that were not necessarily

comparable, possibly leading to biased conclusions concerning impacts of the technology

(Heckman et al. 1998). We base this conclusion on the fact that as opposed to earlier studies, in this

study we controlled for selection bias through matching strategies, and endogeneity bias that may

potentially  arise  due  to  correlation  of  the  unobserved  heterogeneity  and  observed  explanatory

variables through use of endogenous switching regression model. In addition, to improve on the

quality of parameter estimates, only observations that were matched during the matching analysis

stage were used in the switching regression model.

The paper is structured as follows: theoretical frameworks on propensity matching and endogenous

switching regression immediately follow this introduction section. Discussions on the study area,

sampling design, survey instrument development and implementation, analysis and computational

methods in this order, complete the section on methodology. Immediately after the survey

implementation section, the paper gives the results that are discussed in the subsequent section.

Finally conclusions are drawn based on the findings of the study.

2. THEORETICAL FRAMEWORKS AND METHODS

2.1 Framework for propensity score matching

The potential outcome framework for causal inference discussed by Rubin (1974) estimates the

Average Treatment effect on the Treated (ATT) or adopters of improved fallows as:
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where E is the expectation in the difference in the outcome )( 01 YY -  between receiving treatment or

adopting, T =1 and the counter factual outcome if treatment or the technology had not been

received T = 0. One possible identification strategy is to impose the Conditional Independent

Assumption (CIA) that states that, given a set of observable covariates X, the potential outcome in

case of no treatment or not adopting is independent of treatment or technology assignment:

Y0 ╨ T \ (X) (2)

Besides the CIA, a further requirement for identification is the common support or overlap

condition,  which  ensures  that  for  each  treated  or  adopting  unit  there  are  control  or  non-adopting

units with the same observables (equation 5).

.1)\1( <= XTrP (3)

With the above two assumptions, within each cell defined by X, treatment or technology assignment

is random, and the outcome of control units can be used to estimate the counter factual outcome of

the treated in the case of no treatment (Nannicini, 2007).

Matching on every covariate is difficult to implement when the set of covariates is large. To

overcome the curse of dimensionality, Rosenbaum and Rubin (1983) show that matching on a

single index, the propensity score, rather than on a multimensional covariate vector is possible.

According to Heckman et al. (1998), the propensity score is defined as the conditional probability

of receiving treatment or in this case of adopting the improved fallow technology. Mathematically,

the propensity score can be expressed as:

(4)

Where Wi =1, for treated farmers, and Wi =  0,  for  untreated  farmers;  a = improved fallow

technology; and Xi is the vector of treatment covariates. The Propensity Score is usually unknown

and this study estimated it through a probit regression in which the dependent variable equaled one

if the household adopted improved fallows and zero otherwise. This was followed by checking the
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balancing properties of the propensity scores. The balancing procedure tests whether or not adopter

and non-adopter observations have the same distribution of propensity scores. Various

specifications of the probit model were attempted until the most complete and robust specification

that satisfied the balancing tests and establishment of the common support region was obtained.

Matching was implemented using nearest neighbour with replacement and Epanechnikov kernel

(bandwidth 0.06) matching techniques. For both techniques, the sample was bootstrapped 100

times.  With nearest neighbour matching, the individual from the comparison group is chosen as a

matching partner for a treated individual that is closest in terms of propensity score. With

replacement meant that an untreated individual could be used more than once as a match. Matching

with replacement increases the average quality of matching and decreases bias (Caliendo and

Kopeinig, 2005).

Unlike the nearest neighbour matching algorithm that ensures only a few observations from the

comparison group are used to construct the counterfactual outcome of a treated individual, Kernel

matching (KM) is a non-parametric matching estimator that uses weighted averages of all

individuals in the control group to construct the counterfactual outcome. KM is therefore associated

with lower variance because more information is used. One drawback of this approach is the

possibility of using bad matches. It is for this reason that the proper imposition of the common

support condition is of major importance for KM (Caliendo and Kopeinig, 2005).

2.2 Endogenous switching model

Matching strategies only control for heterogeneity effects due to observable covariates. To account

for endogeneity bias and the effects of unobservable covariates, the study employed endogenous

switching regression techniques. The study specified the model for technology adoption following

Loksin  and  Sajaia  (2004).  This  model  is  comprised  of  the  selection  equation  or  the  criterion

function and two continuous regressions that describes the behaviour of the farmer as he faces the

two regimes of adopting the improved fallows or not. The selection equation is defined as;

with*
iii ZI ma +=

î
í
ì >

=
otherwise

Iif
I i

i 0
11 *

(5)
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where *
iI is the unobservable variable for technology adoption and iI  is its observable

counterpart which is the dependent variable (adoption of improved fallow) which equals one, if the

farmer has adopted and zero otherwise. a is a vector of parameters while iZ  are non-stochastic

vectors of observed farm and non-farm characteristics determining adoption and im is random

disturbances associated with the adoption of improved fallows.

The two welfare regression equations where farmers face the regimes of adopting or not to adopt

improved fallows are defined as follows:

Regime 1: iii Xy 111 eb += if 1=iI (6)

Regime 2: iii Xy 222 eb += if 0=iI (7)

where jiY are the dependent variables or outcome variables (such as maize yield, crop income etc)

in the continuous equations; iX 1 and iX 2 are vectors of exogenous variables; β1 and β2 are vectors

of parameters; and i1e and i2e  are random disturbance terms.

The error terms are assumed to have a trivariate normal distribution with mean vector zero and

covariance matrix:
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where 2
ms  is a variance of the error term in the selection equation, and 2

1s and 2
2s are variances of

the error terms in the continuous equations. 21s is a covariance of im and i1e . 31s is a covariance of

im and i2e . Since iY1 and iY2  are never observed simultaneously the covariance between i1e and i2e

is not defined. According to Asfaw (2010), an important implication of the error structure is that

because the error term of the selection equation im is correlated with the error terms of the welfare
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outcome functions i1e and i2e , the expected values of i1e and i2e conditional on the sample selection

are nonzero:

[ ] ( )
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Where ( ).f is the standard normal probability density function, ( ).F the standard normal cumulative

function,
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12 . If the estimated covariances mes 1 and mes 2 are

statistically significant, then the decision to adopt and the welfare outcome variables are correlated,

that is we find evidence of endogenous switching and reject the null hypothesis of absence of

sample selectivity bias. According to Maddala and Nelson (1975), this model is defined as

‘switching regression model’.

There are several ways in which this model can be estimated. Maddala (1983) proposes a two step

procedure that however requires some adjustments to derive consistent standard errors and

according to Hartman (1991) and Nawata (1994) quoted in Asfaw (2010), this procedure shows

poor performance in case of high multicollinearity between the covariates of the selection equation

and the covariates of the welfare outcome equations. The endogenous switching regression models

can efficiently be estimated using the full information maximum likelihood (FIML) estimation

(Lokshin and Sajaia, 2004). The FIML method simultaneously estimates the probit criterion or

selection equation and the regression equations to yield consistent standard errors. The model is

identified by construction through non-linearities. Given the assumption of trivariate normal

distribution for the error terms, the logarithmic likelihood function for the system of equations 5, 6,

and 7 can be given as follows:

( ) ( )( ) ( ) ( )( ) ( )[ ]( )[ ]{ }å
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where iw is  an  optional  weight  for  observation i and
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The FIML estimates of the parameters of the endogenous switching regression model can be

obtained using the STATA command movestay proposed by Lokshin and Sajaia (2004).

2.2.1 Conditional expectations, treatment and heterogeneity effects

After estimating the model’s parameters the following conditional expectations can be used to

compare the various expected outcomes of the farm households:

(a) that adopted the improved fallows

( ) iiiii xxIyE 111111 ,1/ lsb me+== (11a

(b), that did not adopt the improved fallows

( ) iiiii xxIyE 222222 ,0/ lsb me+== (11b)

(c) that the adopted farm households did not adopt, and

( ) iiiii xxIyE 121222 ,1/ lsb me+== (11c)

(d) that the non-adopters farm households adopted.

( ) iiiii xxIyE 212111 ,0/ lsb me+== (11d)
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Cases (a) and (b) represent the actual expectations observed in the sample while cases (c) and (d)

represent the counterfactual expected outcomes. The effect of the treatment on the treated (TT)

(effect of improved fallows on the adopters) is the difference between (a) and (c) while the effect of

the treatment on the untreated (TU) for the farm households that actually did not adopt improved

fallows is the difference between (d) and (b).

According to Asfaw (2010), heterogeneity effects due to unobservable factors such as management

skills can also be estimated. These include; the difference in the expected outcomes of the adopters

of improved fallows (a) and that of the non-adopters had they adopted (d). Similarly for the group

of farm households that decided not to adopt, this is the difference between (c) that the adopters did

not adopt and (b) the non-adopters. Finally, the difference between TT and TU can be estimated.

This effect called “transitional heterogeneity” (TH), estimates whether the impact of adopting

improved fallows is larger or smaller for the farm households that actually adopted the technologies

or for the farm household that actually did not adopt in the counterfactual case that they did adopt.

2.3 Study area

The study was conducted in Chongwe district of Lusaka province of Zambia in November and

December 2011. Agroforestry research and development in Zambia has mainly been conducted in

the Eastern province with Chipata district being the main hub and in Lusaka province, with

Chongwe district housing the Kasisi Agricultural Training Centre (KATC) that promotes

agroforestry among its other activities. Since the scaling down of agroforestry activities by WAC in

eastern Zambia in late 2000, farmer enthusiasm towards the agroforestry in Eastern Province has

been on the decline. Chongwe district was purposively chosen for this case study since KATC is

still very active in the area. Informal interviews specifically designed to plan for the study and to

identify areas where agroforestry is most concentrated in the district were held with extension

officers from KATC. Three agricultural (out of 28) camps namely Nyangwena, Chinkuli and

Katoba were identified as the main catchment areas with farmers practising improved fallows.

These camps were targeted for the study. The farmers in the study area are mostly subsistence who

grow mainly the staple maize crop for food and the surplus for sale. The common cash crops grown

in the area include groundnuts, cotton, beans and garden vegetables such as rape, cabbage, tomato

and onion. The most common animals reared include cattle, chickens and goats.
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2.4 Sampling

The study used agricultural camp lists compiled in consultation with Ministry of Agriculture camp

extension officers to devise a sampling frame. To ensure a complete listing of the households in the

study area, agricultural camp extension officers who stay with the local communities were initially

requested to thoroughly go through existing lists and update accordingly if there were any

households that they had omitted within their catchment areas. The resulting lists from the three

camps were then consolidated into one sampling frame, which was then stratified into adopters and

non-adopters of improved fallows. The sampling frame had a total of 7,081 households of which

approximately 20 percent were adopters.  Due to limited logistics, the study aimed at interviewing

around 5 percent (335 households) from this sampling frame. Since matching strategies require

treatment units to have a larger pool of control units from which matches can be obtained (Caliendo

and Kopeinig, 2005), the sample was stratified into 2:3 ratios for the adopters and non-adopters

respectively. Therefore from a stratum of 1,416 listed improved fallow adopting households, 134

were selected randomly using stata (Stata version 11.2, 2009). Similarly, from 5,665 listed

households, 201 non-adopters of improved fallows were randomly selected using stata. Eventually,

due to non-responses, 130 adopters and 194 non-adopters respectively were finally interviewed.

This study defined an adopter of improved fallows as one who has been using the technology for at

least the last six years (since 2006 and before) and has been growing at least a quarter of a hectare

using this technology. The minimum six year period of use criterion was meant to exclude farmers

who just tested the technology with the influence of KATC but decided to abandon it after the first

cycle or before they could even experience a post fallow crop. We noted in the introduction that it

takes 2 -3 years for improved fallows to mature. This is followed by up to 3 rounds of post fallow

cropping before the cycle starts again. It follows that it takes a minimum of 5-6 years for a farmer to

reap  maximum  benefits  from  planting  improved  fallows.  Key  informant  interviews  with  KATC

officers revealed that farmers who do not adopt after testing the technology would have started

using other forms of external inputs on former improved fallow plots before this five to six year full

cycle is completed. Although some farmers would plant the subsequent improved fallow before the

residual effect from the preceding fallow is completely exhausted, the six year minimum period

would ensure that they had benefitted in terms of post fallow crop production even after the initial

testing of the technology. This condition mainly knocked out the households who had improved
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fallows  at  the  time  of  the  study  but  had  not  experienced  a  post  fallow  crop  (17  farmers).  The

criterion  on  area  was  meant  to  exclude  households  who  had  planted  just  a  few  improved  fallow

trees  for  ornamental  purposes.  Only  two  farmers  who  had  just  planted  a  few  scattered  improved

fallow trees were affected by this condition. Therefore in total, 19 households dropped out from the

adoption category. These were added to the non-adopters at the results analytical stage on grounds

that  whatever  fallows  they  may  have  had  on  their  farms  had  no  impact  on  post-fallow  crop

production. As a result the final sample used in analysis was composed of 111 adopters and 213

non-adopters of improved fallows.

2.5 Survey instrument development and pre-testing

Considerable time and effort was expended in designing the survey instrument. The first author

informally interviewed officers at KATC, agricultural camp extension officers and some lead

farmers (defined as farmers who are the entry points to villages and work closely with agricultural

extension officers in their areas) in the catchment areas.  The informal interviews covered a wide

range of issues including the general agricultural practices and agroforestry activities in the area.

Factors affecting the farmers’ up take of the improved fallows were also discussed. Using findings

from these discussions and a review of literature, a structured formal questionnaire was drafted. The

questionnaire went through several refinements following the interactions between the authors. The

final version of the questionnaire particularly useful for this specific study covered three main

sections. The first section covered the basic households’ demographic and socioeconomic

characteristics. The second section explored the wealth status of households and use of improved

fallows.  The final section assessed the general agricultural practices such as agricultural related

challenges; type and amounts of inputs used and crop production levels for the different inputs

including improved fallows.

We also included questions on whether the current demographic and socioeconomic characteristics,

and agricultural related challenges where the same at technology adoption (for adopters) or six

years before the survey period (for non adopters). This was important for assessing impact of the

technology using pre-adoption covariates.
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2.6 Survey implementation

Before the formal survey a pre-test study comprising 16 households was carried out in the study

area. The pre-test survey served two purposes; first, the study wanted to ensure that the

questionnaire had questions that were well understood by the farmers and were flowing in a logical

way. Secondly, the pre-testing provided the opportunity to practically train the research assistants

(who have had a day of theoretical training) on the survey implementation. Only a few

modifications were made on the questionnaire after the pre-testing. The finalised questionnaire was

used to interview the 324 households selected for this study. The first author, the three camp

extension officers from the catchment areas and an officer from KATC were involved in both the

pre-testing and final implementation of the survey.

2.7 Analysis and computational methods

We used Stata version 11.2, 2009 to randomly select the households discussed in section 2.4 and to

perform several analytical procedures in estimating the impact of improved fallows. First, we

analysed means and proportions for the whole sample and then compared the characteristics

between adopters and non-adopters of improved fallows using the t-distribution (continuous

variables) and chi-square distribution (discrete variables) at P = 0.05 significance level. These

characteristics (and other variables) were later used as explanatory variables in the estimation of the

propensity score (appendix 1), and treatment and outcome models that are presented under the

matching and endogenous switching regression models. A combination of improved fallow

adoption literature, economic theory and the outcome of informal meetings with KATC staff and

lead farmers were helpful in selecting the explanatory variables used.

To estimate the propensity score (PS), we used probit regression in which the dependent variable

equalled 1 if the household had adopted the improved fallow technology and zero otherwise.

Various specifications of the probit model were attempted until the most complete and robust

specification that satisfied the balancing tests was obtained. Using the estimated propensity score,

the estimation of the Average Treatment effect on the Treated (ATT) on several outcome variables

was implemented. As is common practise, we weighted the non- adopters propensity scores by the
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propensity score divided by one minus the propensity score (PS/(1-PS)). During matching we

bootstrapped the sample 100 times to obtain standard errors. We then used the nearest neighbour

matching (ATTn) and kernel matching (ATTk) stata commands (Stata version 11.2, 2009) to

estimate the average treatment effect of the improved fallows on welfare.

To test for matching results robustness and account for unobservable selection bias, the welfare

outcome variables were subjected to endogenous switching regression analyses. Switching

regression was used to predict and compute welfare outcomes in the mean differences between a)

adopters having adopted and had they not adopted, and b) non-adopters having not adopted and had

they adopted. The differences in (a) and (b) gave the treatment effect  on the treated (TT) and the

treatment effect on the untreated (TU); the differences in outcome variables between the adopters

and the non-adopters called base heterogeneity (BH), and the difference in TT and TU called

transitional heterogeneity (TH). The computations were performed using the movestay command in

stata (Stata version 11.2, 2009).

3. RESULTS

3.1 Descriptive statistics

The first section of results provides a description of the socioeconomic characteristics of the sample

households with a special focus on the comparison between the adopters and non-adopters of

improved  fallows.  A description  of  socioeconomic  characteristics  of  the  households’  heads  in  the

surveyed area is shown in Table 1. The table only shows the characteristics whose differences

between the adopters and non adopters were significant. There was no significant difference in the

average age of the adopters and non-adopters. Overall, the average age of the surveyed household

heads was about 46.7 years. The average active family labor force was 4.6 persons for adopters and

3.8 for non-adopters and the difference was statistically significant supporting the importance of

effective  family  labor  for  adoption  of  improved  fallows.  Both  farm  size  and  cropped  land  in

2010/2011 season were statistically higher for the adopters than the non-adopters of improved

fallows.
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The sample was dominated by male headed households with no distinguishable differences in

gender between the adopters and non-adopters. More adopters of improved fallows were educated

compared to non-adopters. About 40% of the adopters had been to secondary school compared to

about 30% of the non-adopters. No significant difference was observable in the marital status of

household heads. For both categories more than 80% of households were from married homesteads.

Adopters had large farm sizes, cropped land as well as land put to maize production in 2010/2011

season (Table 1).

Table 1: Households socioeconomic characteristics of sample farmers in Chongwe district, Zambia1

Adopters (N = 111) Non-adopters (N = 213) Over all (N = 324)

Household size (MEU) 4.6 (0.181) 3.8 (0.124)*** 4.1 (0.104)

Farmland size (ha) 5.2 (0.279) 3.25 (0.133)*** 3.90 (0.139)

Cropped land(ha) 3.4 (0.175) 2.2 (0.089)*** 2.6 (0.089)

Cropped maize area (ha) 2.3 (0.132) 1.4 (0.071)*** 1.7 (0.069)

Improved fallow area (ha) 0.86 (0.049) 0.04 (0.021)*** 0.29 (0.028)

Education (% households heads)
Never been to school 3.6 10.3** 8
Attended primary 23.4 35.7** 31.5
Completed secondary 11.7 3.3*** 6.2

Marital status (% households)
Divorced (= 1,  otherwise = 0) 0 3.8* 2.8

Farming group membership (%
households)
(Yes = 1, otherwise =0) 96.4 66.4*** 76.6

*, **, *** significant difference between adopters and non-adopters means at 90%, 95% and 99% confidence levels.
Figures in parentheses are standard errors of the mean
1 Variables showing non-significant differences between adopters and non-adopters are not included in the Table.
Man equivalent units (meu) were calculated following Runge-Metzger (1988) as: < 9years = 0; 9 to 15 and over 49
years = 0.7; 16 to 49 = 1. Using meu is important since not all household members would provide farming labour.
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3.2 Adoption of improved fallows and distribution of wealth assets

Among the improved fallow technologies, pigeon pea (Cajanus cajan) was found to be the most

popular in the study area. Seventy eight percent of the adopters had pigeon pea growing in their

fields at the time of the survey. The average area under pigeon pea was 0.56ha. Thirty percent of the

adopters had Fhaiderbia albida covering an area of 0.89 ha on average while 18.9% of the adopters

had Tephrosia vogelii on an area of = 0.48ha. Some insignificant number of adopters (0.05%) had

Sesbania sesban growing in their field and one household had Gliricidia sepium.

The adopters of improved fallows had more cattle, goats, poultry and bicycles than the non-adopters

(Table 2). However, the average number of oxen, pigs, donkeys, oxen implements, sprayers, radios,

television sets and iron roofed houses were not statistically different between the adopters and non-

adopters of improved fallows.

Table 2: Proportions of households owning various levels of assets in Chongwe district, Zambia 1

Adopters (N =111) Non-adopters (N = 213) Over all (N = 324)

%

households

Mean (std.

error) % households

Mean (std. error)

% households

Mean (std.

error)

Cattle 56.8 11.1 (0.929) 30.0 6.9 (0.904)*** 39.2 9.0 (0.673)

Goat 48.6 9.6 (0.973) 49.8 7.4 (0.654)* 49.4 8.1 (0.547)

Poultry 91.9 20.3 (1.049) 88.3 17.9 (0.925)* 89.5 18.8 (0.706)

Bicycles 82.9 1.5 (0.078) 74.2 1.3 (0.044)** 77.2 1.4 (0.041)

*, **, *** significant difference between adopters and non-adopters means at 90%, 95% and 99% confidence levels
1 Variables showing non-significant differences between adopters and non-adopters are not included in the Table.

The adopters of improved fallows were well off in most of the outcome or welfare variables (Table

3). They had significantly higher income from crop sales and income from the staple maize crop.

The adopters of improved fallows also had significantly higher maize yields than the non-adopters.

The adopters also recorded a high number of months per year when they had their own home grown

food.  The non-adopters had significantly higher off farm income than the adopters (Table 3).
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Table 3: Average differences in several outcome variables between adopters and non-adopters of improved fallows in

Chongwe district, Zambia

Adopters

 (N = 111)

Non-adopters (N

= 213)

Mean

difference t  stat1

Crop Income per MEU2 (ZK, 000) 888 (99) 366 (51) 522 (112) 4.670

Maize Income per MEU (ZK, 000) 811 (96) 279 (44) 532 (105) 5.055

Off farm Income3 per MEU (ZK,000) 247 (43) 470 (49) -223 (65) -3.446

Total Maize yield (ton) 4.61 (0.302) 2.10 (0.150) 2.52 (0.337) 7.488

Maize yield (ton/ha) 2.21 (0.119) 1.50 (0.070) 0.72 (0.138) 5.175

Months per year with enough grown food 10.9 (0.145) 9.8 (0.136) 1.10 (0.199) 5.519
1Equal variance not assumed, figures in parentheses are standard errors of the means
2Man Equivalent Units (MEU) were calculated following Runge-Metzger (1988) as: < 9years = 0; 9 to 15 and over 49
years = 0.7; 16 to 49 = 1.
3Off farm activities included remittances, sale of charcoal and petty trading.

3.3 Estimating the causal impact of improved fallows using matching approaches

The results of the propensity score used in estimating the matching algorithms are shown in

appendix I. The explanatory variables used in estimating the propensity score are shown and

described in Table 4 that only include variables showing significant differences between adopters

and non adopters. The other variables that did not show any significant differences between the

adopters and non adopters included age of household age, whether married, single, widowed or not,

whether households experienced soil fertiliser challenges or not, and the camp area dummies

(Nyagwena, Katoba and Chainda).
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Table 4: Descriptive statistics of significant variables used in estimating the propensity score and outcome models

Variable Definition
Adopters
 (N = 111)

Non-adopters
(N = 213)

Over all
(N = 324)

Education Years of formal education of household head 3.25 (0.103)*** 2.75 (0.075) 2.95 (0.062)

Marital status 1 if divorced, 0 otherwise 0.01 (0.009)* 0.04 (0.013) 0.03 (0.009)

Totfertuse Total Fertiliser Use (tons) 0.44 (0.039)* 0.31 (0.034) 0.35 (0.026)

SandySoil 1 if farm has sandy soils, 0 otherwise 0.32 (0.045)*** 0.15 (0.025) 0.32 (0.045)

Farmsi Size of farm in hectares 5.16 (0.279)*** 3.25 (0.133) 3.90 (0.139)

AreaFa Size of fallowed land in hectares 1.78 (0.199)*** 1.02 (0.094) 1.28 (0.094)

HsizeE2 Number of MEU in a household 4.55 (0.181)*** 3.81 (0.124) 4.06 (0.104)

Group
1 if household belongs to agricultural group, 0
otherwise 0.96 (0.018)*** 0.66(0.033) 0.77 (0.024)

Windex3 Household wealth index 0.605*** -0.257 0.0386

*, **, *** significant difference between adopters and non-adopters means at 90%, 95% and 99% confidence levels,1

see Table 1 for the definition of categories.
2 Man Equivalent Units (MEU) calculated following Runge-Metzger (1988) as: < 9years = 0; 9 to 15 and over 49 years
= 0.7; 16 to 49 = 1 were used to MEU in households.
3 computed for household assets using principal component analysis following Langyintuo (2008)

Matching results are reported in Table 5 for the nearest neighbour method and Table 6 for the

kernel matching approach. The nearest neighbour strategy used 43 households among the control

units to match against 110 adopting households. Using the nearest neighbor matching strategy, the

improved fallow technology showed positive impact in some but not all of the welfare indicators

considered. For the 2010/2011 season, the technology had a significant impact on per capita maize

income, total maize yields, per capita maize yields, maize yields per hectare and the number of

months in a year the household had enough own grown food for consumption. The technology did

not have a significant impact on per capita crop income (Table 5).
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Table 5: ATT estimation of various outcome variables using Nearest Neighbour Method

Average Treatment on
Treated(ATT) Standard Error t value

Crop Income per MEU (ZK, 000) 180 219 0.825
Maize Income per MEU (ZK, 000) 509 130 3.914
Total Maize yield (tons) 1.99 0.533 3.737
Maize yield per MEU (tons) 0.532 0.160 3.323
Maize yield (ton/ha) 0.568 0.242 2.345
Months per year with enough grown food 1.264 0.465 2.720

Number of treated units used =110 and number of control units used = 43
1Man Equivalent Units (MEU) were calculated following Runge-Metzger (1988) as: < 9years = 0; 9 to 15 and over 49
years = 0.7; 16 to 49 = 1.

The kernel matching strategy used more control units (192) to match against the 110 adopting

households. Unlike the nearest neighbour approach, the kernel matching strategy results showed

that the technology had positive and significant impacts on all the welfare variables considered. It

had a positive impact on per capita maize income, total maize yield, per capita maize yield, maize

productivity and months per year a household has enough food. In addition the technology had

positive and significant effect on per capita crop income (Table 6).

Table 6: ATT estimation of various outcome variables using Kernel Matching

Average Treatment on
Treated (ATT) Standard Error t value

Crop Income per MEU (ZK, 000) 331 165 1.999
Maize Income per MEU (ZK, 000) 487 127 3.824
Total Maize yield (tons) 1.776 0.371 4.793
Maize yield per MEU (tons) 0.483 0.119 4.070
Maize yield (ton/ha) 0.718 0.182 3.941
Months per year with enough grown food 1.069 0.323 3.311

Number of treated units used = 110 and number control units used = 195
1Man Equivalent Units (MEU) were calculated following Runge-Metzger (1988) as: < 9years = 0; 9 to 15 and over 49
years = 0.7; 16 to 49 = 1.
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3.4 Estimating the causal impact of improved fallows using endogenous switching regression

models

The full information maximum likelihood estimates of the endogenous switching regression model

are shown in Tables IIa to IIe in the appendix. The first and second columns in these tables present

the welfare functions for households that did and did not adopt the improved fallow technology

while  the  last  column  represent  the  selection  equation  on  adopting  improved  fallows  or  not.  The

correlation  coefficient  (rho)  between  the  adopter’s  regime  and  the  selection  equation  in  the  total

maize yields model is negative and significantly different from zero. This suggests that farmers who

adopted  improved  fallows  get  higher  maize  yields  than  a  random  farmer  from  the  sample  would

have obtained. There exist both observed and unobserved factors influencing the decision to adopt

improved fallows and this welfare outcome given the adoption decision.

The  switching  regression  model’s  results  on  the  expected  welfare  outcomes  under  actual  and

counter factual conditions are shown in Table 7. The results still indicates that the technology has a

positive impact on maize income per capita, total maize yields, maize yield per capita and maize

yield per hectare. The mean values of these outcome variables were significantly higher for

adopters than had they not adopted. The gap in the mean crop income value was however not

significant (Table 7). The switching regression model also predicted a positive and significant effect

of  the  technology  on  all  the  welfare  variables  on  the  non-adopters  had  they  adopted.  In  fact  the

effect of the technology on the non-adopters could have been much higher than on the adopters in

all outcome variables except maize yield per hectare.

The treatment effects on the adopters from switching regression were generally lower than those

from the matching strategies. For instance while the per capita maize income ATT was estimated at

ZK509, 000 and ZK 487, 000 using the nearest neighbour and kernel matching strategies, the

switching regression model gave an estimate of about ZK300, 000.
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Table 7: Endogenous switching regression model results

Decision stage Treatment effect
Adopted Not to adopt Difference (TT or TU)

a) Crop income per meu (ZK)
Adopters 1,160,054 (57580) 1,087,408 (56176) 72,645 (64445)
Non-adopters 1,484,130 (57211) 648,600 (34577) 835,530(63611)***
Heterogeneity effects BH1 = -324,076 BH2 = 438,808 TH = -762,885

b) Maize income per meu (ZK)

Adopters 812,108 (48408) 511,903 (35473) 300,205 (41500)***
Non-adopters 902,821 (40306) 304,951 (20519) 597,871 (32714)***
Heterogeneity effects BH1 = -90,713 BH2 = 206,952 TH = -297,665

c) Maize yield (ton)

Adopters 5.94 (0.281) 4.62 (0.230) 1.32 (0.170)***
Non-adopters 6.59 (0.146) 2.12 (0.104) 4.46 (0.121)***
Heterogeneity effects BH1 =-0.65 BH2 = 2.5 TH = -3.15

d) Maize yield per meu (ton)

Adopters 1.24 (0.065) 1.16 (0.054) 0.0794 (0.051)*
Non-adopters 1.72 (0.045) 0.63 (0.031) 1.093 (0.038)***
Heterogeneity effects BH1 = -0.48 BH2 = 0.53 TH = -1.01

e) Maize yield per hectare (ton)

Adopters 2.214 (0.049) 1.40 (0.033) 0.81 (0.053)***
Non-adopters 2.209 (0.043) 1.46 (0.023) 0.747 (0.050)***
Heterogeneity effects BH1 = 0.005 BH2 = -0.06 TH = 0.065

TT = treatment effect on the treated (adopting – had not adopted), TU = treatment effect on the untreated (had they
adopted – not adopted), BH = Base heterogeneity (adopted – had they adopted), TH = Transitory heterogeneity (TT –
TU)

4. DISCUSSION

The evaluation of impact of adoption of a technology requires meaningful estimation so that over or

under  estimation  is  avoided.  This  study  was  concerned  with  the  estimation  of  the  impact  of

improved fallows on farmer welfare. The study used data from 324 households surveyed in

Chongwe district of Zambia to demonstrate the causal effect of the improved fallow technology by
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using well established identification strategies. Our findings showed that without randomization

there is a tendency to over estimate the impact of improved fallows on farmer welfare variables. By

simply using ‘the conventional t test approaches’ in analyzing the differences in various outcome

variables, adopters were found to be well off than the non-adopters. The adopters had significantly

higher levels of per capita incomes, crop incomes and incomes from maize. In addition, the maize

yields and maize productivity were higher than those of non-adopters. The adopters also had more

months in which they were sufficient in home grown food and were wealthier in terms of assets

than the non-adopters. On the other hand the non-adopters had more off farm incomes than the

adopters.

Without rigorous analyses, the mean differences in the outcome variables considered were so

significantly  high  that  an  attempt  to  infer  to  improved  fallows  as  the  cause  of  these  differences

cannot be ruled out. Evaluating impact of improved fallows using more rigorous econometric

analytical tools confirmed the positive impact of improved fallows on per capita income, maize

income, maize yield, maize yield per hectare and number of months per year the household has

enough home grown food. Estimations from both the matching strategies (nearest neighbour and

kernel) and endogenous switching regression model indicated that the technology has a positive and

significant impact on the welfare variables noted above. Notably, the technology’s positive impacts

appear to be more pronounced with outcome variables that are closely related with the maize crop.

This is not surprising since the most common crop grown after the improved fallows is maize

(Sileshi et al. 2008). Maize being the staple food in Zambia and most parts of sub Saharan Africa,

the contribution of the improved fallows in ensuring food security and hence alleviating food

poverty cannot be over emphasized.

There however was a contrast in the findings from kernel and nearest neighbour matching strategies

on the impact of the technology on crop income per capita. The former method showed a positive

and  significant  impact  of  the  technology on  crop  income while  the  latter  method showed that  the

effect was insignificant. The insignificance of the technology to influence crop incomes was also

confirmed by the more robust endogenous switching regression which accounted for the

unobserved  bias.  There  are  two explanations  that  this  finding  seems to  suggest.  First,  it  might  be

that other soil improvement options are the ones driving the increases in crop income. A closer

scrutiny of our data showed that 89.2% of the adopters of improved fallows were also using
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inorganic fertilisers. The impact of fertiliser on crop income and other welfare indicators may need

to be investigated further. Second, this finding could reflect the fact that the improved fallow

technology is not necessarily being used on high value crops such as cotton and some horticultural

products that are common in the study area. Most farmers in the study area are aware that the

technology improves soil fertility. However there is little evidence to suggest that farmers are aware

that any crop can fairly do well  on the soils improved by the technology other than maize.  Maize

was the only crop planted after improved fallows by all the adopters. There might be need to

sensitize farmers on the need to grow high value crops on improved fallow plots as well.

Results from switching regression also showed that they would have been a significant positive

treatment effect if the non-adopters had adopted the technology. Although a detailed adoption study

would provide insights into the factors constraining adoption of the technology, more than 80% of

the non adopters cited the long waiting period (for accrual of benefits) as the main reason for not

taking  up  the  technology.  Research  at  KATC  is  actively  pursuing  the  issue  of  short  duration

improved fallows. Key informant interviews revealed that it is the more reason why pigeon pea is

the most common improved fallow specie in the study area. Compared to others such as Sesbania,

Tephrosia and Gliricidia improved fallows that require at least 2 years to reach fallow maturity,

some pigeon peas species have been known to reach maturity after only 1 year. There is need

therefore to promote such species among the small scale farmers in a much more vigorous way.

The matching techniques and the switching regression model accounted for observables and

unobservable factors such as differences in management skills between the adopters and non-

adopters. In essence we created a quasi experimental design in estimating the impact of the

improved fallow technology. We therefore expected the causal effect of the technology to

approximate the productivity yields from randomised experimental trials. The causal effect of the

improved fallows on maize productivity was estimated at about 800kg per hectare. Mafongoya et al

(2006) showed that improved fallows on randomised experimental plots in eastern part of Zambia

can give up to 3,000 – 4,000 kg of maize per hectare in the first year of fallow termination. In

subsequent years, the yields decline up to around 1,500 kg after 3 years or so. The 800kg of maize

per hectare estimated is far from these figures. This gives some evidence that the farmers’ skills in

the management of the improved fallows and probably the maize crop as well, may not be very



25

good. For the farmers to get optimum yields there is need to continuously train them in

management of new improved agricultural technologies such as improved fallows.

By analyzing crop income estimates from the robust econometric methods, one could easily dismiss

the positive impact of improved fallows. Conversely, assessing the outcome variables that are

closely associated with improved fallows such as maize yield, one could quickly conclude that

improved fallows have a positive effect on household welfare. This suggests that the measurement

of welfare needs to be contextualized. Household welfare may have different meaning to different

stakeholders. This study deliberately used a broad list of these welfare variables so that an

assessment of the stage at which improved fallows cease to have impact on the household well

being may be established. This is important so that policy makers know exactly were to target in the

promotion of technologies. For instance, general agricultural developmental support might not

necessarily boost the uptake of improved fallows. This is because some technologies that are used

on high value crops such as inorganic fertilizer might have a significant influence on broader

variables such as crop income. In this case price support policies that directly impact on maize

production and exchange could be more meaningful in having a ‘pull effect’ on the adoption of

improved fallows.

5. CONCLUSION

We estimated the causal effect of improved fallows on several outcome variables among resource

poor small scale farmers in Chongwe district of Zambia. We used propensity score matching

techniques complemented with endogenous switching regression models to ensure results

robustness.  The  estimates  from  these  methodologies  show  that  there  is  a  causal  effect  of  the

technology on maize production, productivity, per capita maize yield and maize income. Maize

productivity from these quasi-experimental designs was lower than that from randomized

experimental trials suggesting the need for continuous training of famers in management of

improved fallows. The maize income from the technology was also not observed to have had a

significant influence on overall crop income.  This highlights the importance of diversifying the use

of the technology on other high valued crops. Estimates from the econometric methods were

generally lower than those from the conventional evaluation without randomization suggesting the



26

need for researchers to adopt more robust evaluation methodologies in impact assessment of

technologies.

ACKNOWLEDGEMENTS

Resources for this research were provided by the Collaborative Masters in Applied Agricultural

Economics  (CMAAE),  PhD  Fellowship  programme.  The  Centre  for  Environmental  Economics

Policy in Africa (CEEPA) provided PhD tuition and living expenses to the first author during his

studies at University of Pretoria. We are highly indebted to these two institutions. We would also

like to acknowledge Kasisi Agricultural Training Centre (KATC) for allowing us to interview the

farmers in their catchment areas and the farmers themselves for the cooperation during the

interviews. Finally, we would like to thank John Phiri, Kenthern Banda and Fridah Chipambala for

assisting during data collection.

REFERENCES

Ajayi OC, Akinnifesi FK, Sileshi G, Chakeredza S, Matakala P (2007) Economic framework for
integrating environmental stewardship into food security strategies in low-income countries: case of
agroforestry in southern African region. African Journal of Environmental Science and Technology,
1 (4): 059-067

Akinnifesi FK, Makumba W, Kwesiga F (2006) Sustainable Maize Production using
Gliricidia/maize intercropping in Southern Malawi. Experimental Agriculture, 42: 441-457

Angrist JD, Pischke JS (2009) Mostly harmless econometrics: An empiricist companion. Princeton
University Press, Princeton, New Jersey UK

Asfaw S (2010) Estimating welfare effect of modern agriculture technologies: a micro-perspective
from Tanzania and Ethiopia. Chronic Poverty Research Centre Publications

Caliendo M, Kopeinig S (2005) Some practical guidance for implementation of propensity score
matching. Discussion paper series No. 1588, Institute for the Study of Labour, Bonn, Gremany

Dehejia RH, Wahba S (2002) Propensity score-matching methods for nonexperimental causal
studies.  The Review of Economics and Statistics, 84(1): 151–161

Franzel S (2004) Financial analysis of agroforestry practices. In: Alavalapati JRR, Mercer DE
(eds.), Valuing Agroforestry Systems. Kluwer Academic Publishers, Netherlands, pp. 9-37



27

Heckman J, Ichimura H, Smith J, Todd P (1998). Characterizing selection bias using experimental
data. Econometrica 66 (5), 1017-1098

Lokshin M, Sajaia Z (2004) Maximum Likelihood Estimation of Endogenous Switching Regression
Models. Stata Journal 4(3): 282-289

Maddala GS (1983) Limited dependent and qualitative variables in econometrics. Cambridge, U.K.:
Cambridge University Press

Maddala GS, Nelson FD (1975) Switching regression models with exogenous and endogenous
switching. Proceeding of the American Statistical Association (Business and Economics Section),
pp. 423-426

Mafongoya PL, Kuntashula E (2005) Participatory evaluation of Tephrosia species and provenances
for soil fertility improvement and other uses using farmer criteria in eastern Zambia. Experimental
Agriculture, 14:69-80

Mafongoya PL, Kuntashula E, Sileshi G (2006) Managing soil fertility and nutrient cycles through
fertiliser trees in Southern Africa. In: Norman U, Ball SA, Fernandes CME, Herren H, Husson O,
Palm C,  Pretty  J,  Sanginga  N,  Thies  JE (eds.),  Biological  approaches  to  sustainable  soil  systems.
Taylor & Francis Group, Boca Raton, Florida, USA, pp 273-289

Makumba W, Akinnifesi FK, Janssen B, Oenema O (2007) Longterm impact of gliricidia-maize
intercropping system on carbon sequestration in southern Malawi. Agriculture, Ecosystem &
Environment 118, 237-243

Nannicini T (2007) Simulation based sensitivity analysis for matching estimators. UK Stata Group
Meeting, London, UK.

Phiri  D,  Franzel  S,  Mafongoya  P,  Jere  I,  Katanga  R,  Phiri  S  (2004)  Who  is  using  the  new
technology? The association of wealth status and gender with the planting of improved tree fallows
in eastern province, Zambia. Agricultural Systems 79:131–144

Place F, Franzel S, DeWolf J, Rommelse R, Kwesiga F, Niang A, Jama B (2002) Agroforestry for
soil fertility replenishment: evidence on adoption processes in Kenya and Zambia. In: Barrett CB,
Place F, Aboud AA (eds.), Natural Resources Management in African Agriculture: Understanding
and Improving Current Practices. CAB International, Wallingford, UK, pp. 155–168

Quinion A, Chirwa PW, Akinnifesi FK, Ajayi OC (2010) Do agroforestry technologies improve the
livelihoods of the resource poor farmers? Evidence from Kasungu and Machinga districts of
Malawi. Agroforestry Systems, 80:457–465

Rosenbaum PR, Rubin DB (1983) The central role of the propensity score in observational studies
for causal effects. Biometrika 70(1): 41-55



28

Rubin DB (1974) “Estimating Causal Effects of Treatments in Randomized and Nonrandomized
Studies.” Journal of Educational Psychology, 66, 688–701

Runge-Metzger A (1988) Variability in agronomic practices and allocative efficiency among farm
households in northern Ghana: A case study in on-farm research. Nyankpala Agricultural Research
Report No. 2. Nyankpala, Tamale, Ghana

Sanchez PA, Jama B (2002) Soil fertility replenishment takes off in East and Southern Africa. In:
Vanlauwe B, Diels J, Sanginga N, Merckx R (eds.). Integrated plant nutrient management in sub-
saharan Africa. CAB International. pp. 23-45

Sileshi G, Akinnifesi FK, Ajayi OC, Chakeredza S, Kaonga M, Matakala P (2007) Contribution of
agroforestry to ecosystem services in the miombo eco-region of eastern and southern African.
African Journal of Environmental Science Technology, 1(4): 068–080

Sileshi G, Akinnifesi FK, Ajayi OC, Place F (2008) Meta-analysis of maize yield response to
planted fallow and green manure legumes in sub-Saharan Africa. Plant Soil, 307:1–19

Vanlauwe B, Giller KE (2006) Popular myths around soil fertility management in sub-Saharan
Africa. Agricultural Ecosystem and Environment Journal, 116:34–46



29

Appendix

Table I: Estimated propensity score results

Variables Coefficient Standard error Z

HHage 0.125** 0.0541 2.30
HHedu 0.258 0.423 0.61
MaleHH -0.106 0.360 -0.30
HsizeE 0.0248 0.0526 0.47
Marr 0.845 0.768 1.10
Sing 1.825** 0.827 2.21
Wid 1.143 0.784 1.46
HHage2 -0.00138*** 0.000535 -2.58
HHedu2 -0.0267 0.0658 -0.41
SoilfertCH 0.169 0.178 0.95
SandySoil 0.349 0.213 1.64
Farmsi 0.238*** 0.0760 3.13
AreaFa -0.00439 0.0923 -0.05
Group 1.280*** 0.313 4.09
Totfertuse -0.388* 0.212 -1.83
Windex 0.285** 0.118 2.42
Chainda 0.391* 0.228 1.71
Nyangwena -0.798*** 0.268 -2.98
Constant -6.474*** 1.642 -3.94

Observations 321
LR Chi2 (18) 136.91
Prob > chi2 0.0000
Pseudo R2 0.33
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Table IIa: Full information maximum likelihood estimates of the switching regression model

Dependent variable: Crop income (ZK) per man equivalent during 2010/2011season for Chongwe

District

Variables CropIncper_1 CropIncper_0 IF2006

HHage -100,429 66,265* 0.191***
(92,703) (36,859) (0.0521)

HHedu -792,704 444,527 0.170
(514,335) (318,674) (0.416)

MaleHH 676,304 107,200 0.0284
(475,763) (234,029) (0.321)

HsizeE -206,852*** -175,521*** 0.0212
(62,469) (41,001) (0.0489)

Marr -2.471e+06** 467,810 0.745
(1.190e+06) (412,783) (0.693)

Sing -2.424e+06* 436,668 1.534**
(1.237e+06) (531,256) (0.755)

Wid -2.205e+06* 146,897 0.863
(1.155e+06) (444,508) (0.718)

HHage2 894.3 -516.4 -0.00195***
(903.7) (367.4) (0.000521)

HHedu2 117,004 -60,382 -0.0114
(76,970) (50,904) (0.0643)

SoilfertCH 380,288* 95,557 0.0993
(209,649) (137,800) (0.169)

SandySoil -586,476** 441,729** 0.371*
(256,032) (196,051) (0.204)

Farmsi 204,986*** 204,368*** 0.298***
(76,754) (68,108) (0.0657)

AreaFa -273,847*** -202,879*** -0.0558
(94,490) (73,330) (0.0857)

Chainda 148,341 -304,492* -0.0338
(269,528) (172,545) (0.202)

Nyangwena 487,729 -403,888* -0.883***
(392,562) (227,752) (0.258)

Constant 7.240e+06** -2.107e+06* -7.125***
(3.193e+06) (1.083e+06) (1.554)

Rho -0.0115 -0.135
(0.286) (0.362)

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table IIb: Full information maximum likelihood estimates of the switching regression model

Dependent variable: Maize income per man equivalent unit during 2010/2011 season for Chongwe

District

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Variables HhldPerMzIn_1 HhldPerMzIn_0 IF2006

HHedu -684,416 223,473 0.322
(443,003) (208,401) (0.390)

MaleHH 76,024 48,507 -0.0459
(398,474) (155,805) (0.314)

HsizeE -155,468*** -87,273*** 0.0463
(51,048) (26,417) (0.0450)

Marr -508,089 196,947 0.693
(1.009e+06) (273,885) (0.695)

Sing -1.066e+06 -4,070 1.418*
(1.053e+06) (356,897) (0.749)

Wid -698,277 184,381 0.822
(983,742) (296,736) (0.713)

HHedu2 115,339* -26,179 -0.0337
(65,674) (33,516) (0.0607)

SoilfertCH 213,111 -8,304 0.0833
(177,587) (91,319) (0.165)

SandySoil -524,066** 17,771 0.390**
(218,700) (131,878) (0.197)

Farmsi 175,694** 178,391*** 0.298***
(72,281) (47,626) (0.0618)

AreaFa -227,988*** -165,606*** -0.0641
(78,979) (48,878) (0.0821)

Chainda -178,659 -28,429 0.0415
(221,296) (110,038) (0.191)

Nyangwena 447,449 -82,714 -0.794***
(340,163) (147,392) (0.249)

Constant 2.457e+06 -352,301 -2.926***
(1.515e+06) (438,467) (0.912)

Rho -0.594 0.0848
(0.452) (0.250)
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Table IIc: Full information maximum likelihood estimates of the switching regression model

Dependent variable: Household maize production during 2010/2011 season for Chongwe District

Variables Totmzyield_1 Totmzyield_0 IF2006

HHage -0.440** 0.0284 0.163***
(0.207) (0.0637) (0.0539)

HHedu -2.636** 0.462 0.345
(1.207) (0.595) (0.404)

MaleHH -1.159 0.0866 0.00228
(1.105) (0.438) (0.316)

HsizeE -0.0789 -0.0469 0.0138
(0.148) (0.0772) (0.0488)

Marr -1.782 0.909 0.648
(2.602) (0.766) (0.713)

Sing -4.563* 0.170 1.432*
(2.758) (0.964) (0.773)

Wid -2.845 0.494 0.909
(2.528) (0.825) (0.730)

HHage2 0.00396* -1.27e-05 -0.00174***
(0.00203) (0.000633) (0.000539)

HHedu2 0.402** -0.0295 -0.0453
(0.184) (0.0951) (0.0627)

SoilfertCH -0.0874 0.0426 0.0415
(0.502) (0.256) (0.169)

SandySoil -0.655 0.0304 0.345*
(0.657) (0.359) (0.204)

Farmsi 0.370** 0.608*** 0.205***
(0.175) (0.127) (0.0693)

AreaFa -0.897*** -0.756*** 0.0307
(0.240) (0.145) (0.0842)

Windex 1.297*** 0.712*** 0.345***
(0.315) (0.193) (0.109)

Chainda -0.0713 -0.0814 0.188
(0.634) (0.329) (0.212)

Nyangwena 1.860* -0.108 -0.671***
(0.950) (0.402) (0.256)

Constant 24.16*** -1.889 -6.224***
(6.616) (1.921) (1.601)

Rho -1.312** 0.0782
(0.542) (0.220)

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table IId: Full information maximum likelihood estimates of the switching regression model

Dependent variable: Maize production per hectare during 2010/2011season for Chongwe District

Variables Mzydperha_1 Mzydperha_0 IF2006

HHage -0.133 0.0573* 0.187***
(0.105) (0.0345) (0.0505)

HHedu 0.119 0.279 0.239
(0.566) (0.309) (0.408)

MaleHH 1.135** 0.0117 0.0674
(0.517) (0.234) (0.312)

HsizeE -0.0616 -0.0405 0.0138
(0.0683) (0.0412) (0.0474)

Marr -0.956* 0.440* -0.245
(0.501) (0.245) (0.311)

HHage2 0.00114 -0.000494 -0.00194***
(0.00103) (0.000343) (0.000506)

HHedu2 -0.0297 -0.0321 -0.0217
(0.0843) (0.0500) (0.0635)

SoilfertCH -0.179 0.0392 0.146
(0.235) (0.138) (0.167)

SandySoil 0.00363 -0.226 0.372*
(0.283) (0.207) (0.203)

Farmsi 0.0509 0.0856 0.307***
(0.0881) (0.0714) (0.0649)

AreaFa -0.0563 -0.0827 -0.0521
(0.105) (0.0762) (0.0851)

Chainda -0.230 -0.355** -0.0615
(0.299) (0.176) (0.199)

Nyangwena -0.527 -0.624*** -0.911***
(0.443) (0.224) (0.253)

Constant 5.856* -0.585 -6.126***
(3.276) (0.857) (1.346)

rho -0.865 0.0781
(0.137) (0.219)

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table IIe: Full information maximum likelihood estimates of the switching regression model

Dependent variable: Maize yield per man equivalent unit during 2010/2011 season for Chongwe

District

Variables MzyldperMeu_1 MzyldperMeu_0 IF2006

HHage -0.0470 0.0262 0.194***
(0.0637) (0.0221) (0.0524)

HHedu -0.985*** 0.140 0.195
(0.341) (0.197) (0.414)

MaleHH 0.327 0.0538 0.0850
(0.315) (0.145) (0.326)

HsizeE -0.230*** -0.174*** 0.0215
(0.0422) (0.0253) (0.0477)

Marr -1.041 0.266 0.688
(0.807) (0.254) (0.692)

Sing -1.158 -0.131 1.528**
(0.854) (0.325) (0.752)

Wid -0.782 0.0566 0.903
(0.765) (0.274) (0.712)

HHage2 0.000477 -0.000125 -0.00198***
(0.000627) (0.000220) (0.000526)

HHedu2 0.142*** -0.00868 -0.0175
(0.0513) (0.0315) (0.0640)

SoilfertCH 0.0264 0.0810 0.0961
(0.139) (0.0852) (0.169)

SandySoil -0.212 0.110 0.341
(0.180) (0.120) (0.210)

Farmsi 0.168*** 0.232*** 0.309***
(0.0494) (0.0410) (0.0662)

AreaFa -0.277*** -0.240*** -0.0607
(0.0638) (0.0454) (0.0851)

Chainda 0.00675 -0.184* -0.0323
(0.178) (0.107) (0.202)

Nyangwena 0.387 -0.154 -0.888***
(0.277) (0.138) (0.256)

Constant 5.498** -0.635 -7.200***
(2.261) (0.653) (1.556)

Rho -0.594 0.0848
(0.452) (0.250)

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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