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Predator–prey interactions are fundamental in the evolution and structure of

ecological communities. Our understanding, however, of the strategies used in

pursuit and evasion remains limited. Here, we report on the hunting dynamics

of theworld’s fastest land animal, the cheetah, Acinonyx jubatus. Using miniaturi-

zed data loggers, we recorded fine-scale movement, speed and acceleration of

free-ranging cheetahs to measure how hunting dynamics relate to chasing differ-

ent sized prey. Cheetahs attained hunting speeds of up to 18.94 m s21 and

accelerated up to 7.5 m s22 with greatest angular velocities achieved during

the terminal phase of the hunt. The interplay between forward and lateral accel-

eration during chases showed that the total forces involved in speed changes and

turning were approximately constant over time but varied with prey type. Thus,

rather than a simple maximum speed chase, cheetahs first accelerate to decrease

the distance to their prey, before reducing speed 5–8 s from the end of the hunt,

so as to facilitate rapid turns to match prey escape tactics, varying the precise

strategy according to prey species. Predator and prey thus pit a fine balance of

speed against manoeuvring capability in a race for survival.
The interactions between predators and prey are fundamental for the evolution

and structure of ecological communities [1]. Our understanding, however, of the

strategies adopted by predators and prey during pursuit and evasion remains lim-

ited. Recent advances in the miniaturization of animal-borne sensors now enable

us to measure the fine-scale movements of free-ranging animals with hitherto

unparalleled accuracy. Here, we use miniaturized data loggers to document hunt-

ing strategies of the cheetah Acinonyx jubatus. We report that, besides the oft-cited

power costs for forward acceleration [2], turning costs to follow ‘jinking’ prey may

also play a critical role in hunting strategy, necessitating speed modulation. To our

knowledge, this is the first time that fine-scale hunting strategies of any terrestrial

predator have been documented (but cf. [3] for marine predators).

Cheetahs are morphologically [4,5] and physiologically [6,7] adapted to run-

ning, being capable of attaining speeds in excess of 28 m s21 [2,8–10]. Such high

speeds should enable them to run down slower prey, with failed hunts attributed
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to exhaustion [7] or overheating [11]. However, prey escape tac- 2(a)
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tics can involve sudden directional changes [9,12,13], which are

more difficult to accommodate with increasing velocity [2].

Moreover, turns at higher speeds lead to greater forces on

animals’ limbs and muscles, particularly when turn angles

are acute [14,15], as well as higher energetic costs [16]. Thus,

while the ability to hunt at high speed may enable cheetahs

to outrun prey, they may not always choose to use maximum

speed, especially when chasing prey that attempts evasion by

sudden changes in direction.

To examine the interplay of speed and turning, we

deployed GPS and accelerometer loggers on six free-ranging

cheetahs in Kgalagadi Transfrontier Park, southern Africa, to

measure how hunt trajectory, speed and acceleration related

to different prey species chased.
was 7.5 m s22, while the highest (accelerometer-derived)

Figure 1. (a) Mean VeDBA (g, 9.81 m s22) and angular velocity (rad s21)
against time (n ¼ 35, 30 Hz) during the last 15 s of cheetah chases. Error
bars represent standard errors; (b) Speed (km h21) against time (s)
(n ¼ 6, 1.0 Hz) across the last 15 s of cheetah chases for ostrich (O), steen-
bok (ST1, ST2 and ST3) and springbok (SP1 and SP2). Hunts O, ST2 and ST3
were successful.

20
2. Material and methods
Speed, position and acceleration estimates were obtained using

MiniGPS devices (earth&OCEAN Technologies, Germany) and

accelerometer loggers (Cefas G6A, UK) attached to drop-off col-

lars (SIRTRACK, New Zealand). Two or three GPS units and two

accelerometers were deployed per animal. GPS devices, each last-

ing 9–12 h, were programmed to obtain positional fixes at 1.0 Hz

over consecutive days. Accelerometers recorded at 30 Hz in each

of the three orthogonal axes over 5.5 days.

We calculated linear acceleration as the change in speed and

angular velocity, as the change in geometrically calculated angle

between sequential GPS fixes. Raw accelerometer data were

converted to static body acceleration (SBA) by smoothing each

channel using a running mean of 2 s; axis-specific dynamic

body acceleration (DBA) was then derived by subtracting

axis-specific static acceleration from the raw data [17].

Vectorial dynamic body acceleration (VeDBA) and vectorial

static body acceleration (VeSBA) were calculated as the vectorial

sum of the three DBA and SBA axes, respectively [18]. Under

conditions of constant velocity, VeSBA ¼ 1.0g, whereas a depar-

ture from 1.0g (DS) indicates the g-force derived from forward

and sideways acceleration produced by the cheetahs during

their chases, independent of gravity [19]. From Newton’s law,

where force ¼mass � acceleration, any deviation from 1.0g indi-

cates that the (terrestrial) animal is exerting a force, which will

vary with speed and turn radius [14,15], with a consequent

energetic cost [16] (For a detailed description of accelerometer

and GPS devices, and analyses, see electronic supplementary

material, S1).
4. Discussion
3. Results
We recorded movements using GPS devices for six chases

during a total logger-active period of 124 h. From visual

observations, prey species comprised one large ostrich chick

(Struthio camelus) which was captured, three adult steenbok

(Raphicerus campestris), two of which were captured, and two

springbok (Antidorcas marsupialis) which were not captured.

With accelerometers, we recorded an additional 35 chases

over 1375 h; additional prey species included hare (Lepus
spp.), common duiker (Sylvicapra grimmia), blue wildebeest

(Connochaetes taurinus) calf and gemsbok (Oryx gazella) calf.

All chases were brief, with the longest run lasting 59 s and the

greatest period of continuous running in excess of 13.9 m s21

lasting 23 s and covering 379 m. The fastest speed was

18.94 m s21 and the fastest (GPS-derived) linear acceleration
VeDBA was 4.70g.

Overall, the faster cheetahs ran, the less tortuous route

they took (F1,176 ¼ 4.32, p ¼ 0.039; figure 1) with angular vel-

ocity differing in response to prey (x2 ¼ 12.25, p ¼ 0.032). The

mean of the greatest speeds attained in individual hunts was

12.90 m s21, and occurred 5 s prior to the end of the chase

(figure 1). Thereafter, there was a significant decrease in

speed (x2 ¼ 44.04, p , 0.001) but a significant increase

in angular velocity (x2 ¼ 4.28, p ¼ 0.039). Angular velocity

differed with prey (x2 ¼ 27.58, p , 0.001) and, while chase

speed was not related to hunt success (x2 ¼ 1.15, p ¼ 0.284),

angular velocity during the last 5 s was significantly greater

when hunts were successful (x2 ¼ 13.44, p , 0.001). By com-

parison, the greatest mean VeDBA was 1.71+1.10g and

occurred 8 s prior to the end of the chase (figure 1). Thereafter,

VeDBA decreased significantly (x2 ¼ 158.41, p , 0.001) and

differed with prey species (x2 ¼ 40.96, p ¼ 0.045).

The linear relationships of cumulative DS over time were

significant (figure 2), indicating that forces exerted by the

cheetahs resulted in approximately constant overall (lateral

and forward) accelerations during chases. Over all chases,

cheetahs were subject to an average DS of 0.27+ 0.077g
(max 0.45g). We observed significant three-way interactions

between cheetah identity, hunt success and time as well as

between prey species, hunt success and time on cumula-

tive DS (x2 ¼ 1694.54, p , 0.001, figure 2a and x2 ¼ 358.29,

p , 0.001, figure 2b). These results indicate that chase behaviour

is both cheetah-specific and prey-specific (see electronic

supplementary information, S2 and S3).
Our results concur broadly with previous studies [2] in that,

although the maximum speeds and acceleration values

observed were impressive, and faster than racing greyhounds

Canis familiaris (17.61 m s21) [20], the values observed were

http://rsbl.royalsocietypublishing.org/
http://rsbl.royalsocietypublishing.org/


slower than racehorses Equus ferus (19 m s21) [21]. Thus, the

require as much energy as 5.5 m straight-line travel. These lat-
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widely held belief that cheetah hunts consist of simple high-

speed chases seems an oversimplification. Rather, we suggest

that cheetah chases comprise two primary phases: (i) an initial

rapid acceleration resulting in high speed to quickly catch up

with prey, followed by (ii) a prey-specific slowing period that

enables the cheetah to match turns instigated by prey as the

distance between them closes.

Mass-specific power of cheetahs during pursuit was

recently estimated to reach 120 W kg21 [2], astonishingly

high compared with 30 W kg21 of racehorses or 60 W kg21

of greyhounds [22]. However, this formulation only considered

forward acceleration and speed, ignoring lateral acceleration.

In fact, Wilson et al. [16] demonstrated empirically that the lat-

eral forces necessary for terrestrial animals to turn require

considerable energy; walking humans executing a 1808 turn
References
eral acceleration costs should be added to those derived from

velocity and forward acceleration to obtain comprehensive

power consumption figures. We thus suggest that a more

likely reason why high turning angles and speeds do not co-

occur ([2], figure 1) is at least partially power-based rather

than being related to the capacity of limbs to withstand the

forces generated [2] or environment conditions impeding

the speeds seen in captive cheetahs running on a straight

course [10]. A similar argument might suggest why in

humans [23], as well as polo horses Equus caballus [15], maxi-

mum speed is limited by turn capability. In general,

therefore, there is a trade-off between speed versus manoeuvr-

ability in biological systems of which predator–prey hunting

dynamics is one such pertinent example.

The varying amounts of force developed by the cheetahs

chasing different prey, as shown in the cumulative DS plots

(figure 2b), clearly illustrate species-specific chase strategies.

If force generation is considered a major driver of power,

this implies species-specific capture costs. Certainly, speed

is only a part of the tactic; the ability to change direction

rapidly to catch prey, such as small antelopes and ostriches

that are adept at turning quickly, is also essential [9,13].

This critical capacity to turn, generally occurring during the

final stages of the hunt, is at odds with high speeds, explain-

ing the need for cheetahs to slow down. Indeed, this study

shows that rapid turning during the final stages of the

chase may be just as important and just as costly as accelerat-

ing rapidly at the beginning. Much of a cheetah’s pursuit thus

appears less of a high-speed rush, and more of a carefully

played out life-or-death duel between predator and prey, in

which opposing qualities of speed and manoeuvrability are

pitted against each other.
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