The centre for indigenous medicines. Ikhaya lemithi yesintu. Lehae lameriane yasethu.

Technical investigation

All materials are selected to consume the least energy and occur like if any spontaneous changes in their production or manufacture. The buildings are designed to reflect the local energy consumption and its components that are of a standard construction technology.

The areas requiring a high technical precision and places of crafted elements will be outsourced to the buildings are designed to require the least energy consumption and to use components that are of a standard construction technique.

Materials and components of the construction and the materials should reflect both the 20th century technological achievements and Pethi’s indigenous responses. The buildings are designed to require the least energy consumption and to use components that are of a standard construction technique.

The areas requiring a high technical precision and places of crafted elements will be outsourced to the builder’s production or manufacture. The buildings are designed to require the least energy consumption and to use components that are of a standard construction technique.

All materials are selected to consume the least energy and cause little or any environmental damage in their production or manufacture. The buildings are designed to reflect the local energy consumption and its components that are of a standard construction technology.

The construction and the materials should reflect both the 20th century architectural aspirations of the people who live in the city and the uses of local crafts persons.

A robust building reflecting our times

"Using materials and building methods of this age. A building reflecting our times should reflect the cultural aspirations of the people who live in the city."

The building should be robust, and designed to weather gracefully. The construction and the materials should reflect both the 20th-century technological achievements and Pethi’s indigenous responses.
The building is designed to be lifted off the ground to allow movement through to the site below. A gateway to the development. Its access is via the same entrance to the building to mezzanine for offices and storage spaces. Its accessed via the same entrance to the building to

1. CHECK ALL DIMENSIONS ON SITE PRIOR TO COMMENCEMENT OF WORK.

2. ALL GLAZING TO SABS 0400

3. ALL SUSPENDED CONCRETE SLABS, CONCRETE FINISHES CEILING

4. ALL BALUSTRADING TO SABS 0400.

5. ALL MILD STEEL TO BE HOT DIPPED GALVANISED

6. ALL SOFTWOOD TO BE TREATED.

7. U.F.'S TO ALL BENDS AND JUNCTIONS IN DRAINS WITH PERMISSION.

8. D.P.C. AT BASE OF ALL WALLS AND UNDER ALL EXTERNAL SURFACES OF VISIBLE WALLS. POSITION OF

9. I.E.'S TO ALL OVERFLOW GULLIES TO BE EXPOSED.

10. WHEN COMMENCING CONSTRUCTION RED ONLY FIGURED

11. F.R.D.'S DISCHARGE ONTO SITE BELOW GROUND

12. ALL SOIL UNDER BUILT AREA TO BE POISONED IN ACCORDANCE WITH SABS 0124.

13. ALL OVERFLOW GULLIES TO BE EXPOSED.

14. 1000MM DIA S.V.P. HEAD OF DRAINS TO HAVE 1000MM DIA S.V.P.

15. HEAD OF DRAINS TO HAVE 1000MM DIA S.V.P.

16. ALL SOIL UNDER BUILT AREA TO BE POISONED IN EXTERNAL SURFACES OF VISIBLE WALLS. POSITION OF

17. D.P.C. AT BASE OF ALL WALLS AND UNDER ALL EXTERNAL SURFACES OF VISIBLE WALLS. POSITION OF

18. D.P.C. AT BASE OF ALL WALLS AND UNDER ALL EXTERNAL SURFACES OF VISIBLE WALLS. POSITION OF

19. R.W.P.D.'S DISCHARGE ONTO SITE BELOW GROUND

20. ALL SOIL UNDER BUILT AREA TO BE POISONED IN EXTERNAL SURFACES OF VISIBLE WALLS. POSITION OF

21. D.P.C. AT BASE OF ALL WALLS AND UNDER ALL EXTERNAL SURFACES OF VISIBLE WALLS. POSITION OF

22. D.P.C. AT BASE OF ALL WALLS AND UNDER ALL EXTERNAL SURFACES OF VISIBLE WALLS. POSITION OF

23. D.P.C. AT BASE OF ALL WALLS AND UNDER ALL EXTERNAL SURFACES OF VISIBLE WALLS. POSITION OF

24. D.P.C. AT BASE OF ALL WALLS AND UNDER ALL EXTERNAL SURFACES OF VISIBLE WALLS. POSITION OF

25. D.P.C. AT BASE OF ALL WALLS AND UNDER ALL EXTERNAL SURFACES OF VISIBLE WALLS. POSITION OF

26. D.P.C. AT BASE OF ALL WALLS AND UNDER ALL EXTERNAL SURFACES OF VISIBLE WALLS. POSITION OF

27. D.P.C. AT BASE OF ALL WALLS AND UNDER ALL EXTERNAL SURFACES OF VISIBLE WALLS. POSITION OF

28. D.P.C. AT BASE OF ALL WALLS AND UNDER ALL EXTERNAL SURFACES OF VISIBLE WALLS. POSITION OF

29. D.P.C. AT BASE OF ALL WALLS AND UNDER ALL EXTERNAL SURFACES OF VISIBLE WALLS. POSITION OF

30. D.P.C. AT BASE OF ALL WALLS AND UNDER ALL EXTERNAL SURFACES OF VISIBLE WALLS. POSITION OF
natural environment

Comfort being the primary influence on productivity

The building is divided into 3 climatic zones namely:

i. Mechanical ventilation, air-conditioning to primary use spaces and offices.

ii. Passive climatic control to central circulation space and collective zones.

iii. Ambient air temperature.

Offices internal climate modification is through cross ventilation, by allowing the air to flow through one opening to another cools down the interior of the space. Ideally by placing the openings opposite the other and the height is from floor to the highest point in the room, cross ventilation will occur. If the humidity is high in the room, mechanical ventilation will be applied.

Light into the central courtyard will be the main working element for transmission of radiant heat. Use of split air-conditioning system to cool down the spaces if the passive ventilation is not sufficient.

Under calm conditions warmer air within a space moves upwards to the ceiling, leaving the cooler air below, the idea with creating the central courtyard is to have open circulation space, also working as a cooling stack effect drawing hot air from the building, in-turn cooling the spaces within the courtyard.