Quality parameters for the prediction of mono- and polyunsaturated oil shelf-life

by

Gretel Henriette van der Merwe

Submitted in partial fulfilment of the requirements for the degree

PhD Food Science

Department of Food Science

Faculty of Natural and Agricultural Sciences

University of Pretoria

Pretoria

March 2003
I declare that the dissertation herewith submitted for the PhD Food Science degree at the University of Pretoria, has not previously been submitted by me for a degree at any other university.
ABSTRACT

QUALITY PARAMETERS FOR THE PREDICTION OF MONO- AND POLYUNSATURATED OIL SHELF-LIFE

by

Gretel Henriette van der Merwe

Supervisor: Prof JRN Taylor
Co-supervisor: Dr LM du Plessis
Department: Food Science
Degree: PhD Food Science

The primary objective of this investigation was to establish which oil quality parameters would be best suited in the generation of rapid predictive models to predict the shelf-life of mono- and polyunsaturated oils. A secondary objective was to establish if there is a relationship between accelerated oil stability tests (Rancimat) and shelf-life at ambient temperatures. A long-term storage trial was performed on palm-olein oil, representing monounsaturated oil and on sunflower seed oil, representing polyunsaturated oil. The pro-oxidant effect of copper was assessed by addition of copper acetate to palm-olein oil at three different levels. The synthetic antioxidant, tertiary butylhydroxyquinone (TBHQ), was evaluated by addition to sunflower seed oil at three different levels. Palm-olein was stored at 50°C and sunflower seed oil at 30°C for a period of one year. Nine oil quality parameters were measured at 11 time intervals.

Palm-olein oil parameters responded in the following ways: Free fatty acids (FFA) increased gradually for all the samples but remained within acceptable limits. However, surprisingly a slower rate of increase was found in the copper-containing samples, which could be because the FFAs formed in the copper-containing samples oxidised to further oxidation products. The peroxide values (PV) of copper-containing samples were, unexpectedly, much lower than the Control, which can be explained by the fact that in a long-term oxidation study such as this, the peroxide intermediates were probably converted to secondary, more stable oxidation products within a short time span. However, the increases in anisidine value (AV) and ultra violet absorption (UV) at 268
nm for copper-containing samples were higher than the Control as would be expected. Oxidative stability index (OSI, also known as Rancimat) and total tocopherol values for samples containing copper were significantly lower than those of the Control. Delta-tocotrienol was the most stable of the four homologues. The total volatile peak areas increased for all the samples. The pentanal peak areas particularly reflected the pro-oxidant effect of copper by their higher values in comparison to the Control. Hexanal showed higher levels in the Control than the copper-containing samples. In contrast, t,t-2,4-decadienal showed no increase in the Control, whereas the copper-containing samples showed significant increases. The t-2-hexenal values were unaffected. OSI and total tocopherols proved to be valuable indices for assessing monounsaturated oil quality, whereas PV and headspace volatiles can be misleading. AV is useful and small changes in FFA were found to be significant as indicated by its selection in the models. UV absorption is effective in the presence of pro-oxidants. Sensory evaluation confirmed the differences in shelf-life of the Control and copper-containing samples.

The important parameter changes for the sunflower oil were: FFA increased beyond acceptable limits in all the samples, which indicates that hydrolysis took place during storage. There was a lower rate of increase in samples containing TBHQ which could be because TBHQ would inhibit oxidation and thereby the contribution of intermediate secondary acids formed that would be titrated as FFA, would be lower. The protective effect of TBHQ was clearly reflected in PV and AV as the Control had higher values than the TBHQ-containing samples. Higher OSI values were found for the TBHQ-containing samples in comparison to the Control, which reflects the enhanced resistance to oxidation with increased TBHQ concentrations. The decrease in total tocopherols, as well as the homologues was slight, although the TBHQ-containing samples had consistently higher values than the Control. Marginal increases in UV 232 nm and 268 nm values were observed. The total volatiles, hexanal, and pentanal values reflected the protective effect of TBHQ as the Control generally had higher values than the TBHQ-containing samples. Changes in 2-hexenal and t,t-2,4-decadienal showed no trend. Sensory evaluation made no clear differentiation between the different treatments. OSI highlighted the effect of sample treatments correlating with PV, AV and hexanal content. The importance of small changes in FFA only became apparent during modeling.

Three types of prediction models were created by multiple regression analysis: i) Ideal
model including all the variables, ii) Practical model only including easily determined variables such as FFA, PV, OSI, UV absorbance at 232 nm and 268 nm and iii) OSI model used to correlate an accelerated test with shelf-life at ambient temperatures. OSI and FFA were important predictors as they were selected repeatedly by all models. Palm-olein models emphasised secondary oxidation products (AV and UV absorbance at 268 nm), whereas sunflower seed oil models selected primary oxidation products (PV). The preferential selection of secondary oxidation products in palm-olein oil was due to the considerable increase in oxidation reactions catalysed by copper. Antioxidant content emerged as an important predictor of sunflower seed oil shelf-life. OSI did not correlate well with shelf-life for both oil types and cannot be used on its own to predict shelf-life at ambient temperatures. It needs to be complemented by other parameters. The models developed will be applicable for practical implementation in industry to predict the shelf-life of mono- and polyunsaturated oils once additional research and refining have been done. The Practical models would be the easiest to implement, giving a useful indication of shelf-life, although the Ideal models should be more accurate.
UITTREKSEL

KWALITEITS PARAMETERS VIR DIE VOORSPELLING VAN MONO- EN POLI-ONVERSADIGDE Olie RAKLEEFTYD
deur
Gretel Henriette van der Merwe

Studieleier: Prof JRN Taylor
Mede-studieleier: Dr LM du Plessis
Departement: Voedselwetenskap
Graad: PhD Voedselwetenskap

Die hoofdoel van hierdie ondersoek was om te bepaal watter oliekwaliteitsparameters geskik sou wees om vinnige voorspellingsmodelle te geneereer om die rakleeftyd van mono- en poli-onversadigde olies te beraam. ‘n Sekondêre doelwit was om te bepaal of daar ‘n verwantskap tussen die versnelde stabiliteitstoets (Rancimat) en rakleeftyd van olie by kamertemperatuur bestaan. ‘n Langtermyn opbergingsstoets met palm-olieën, as mono-onversadigde olie en sonneblomolie as poli-onversadigde olie, is onderneem. Die pro-oksidantieffek van koper is bepaal deur drie vlakke van koperasetaat by palm-olieën te voeg. Sintetiese anti-oksideermiddel, tersiêre butielhidroksiekinoon (TBHQ), se uitwerking is nagegaan deur drie vlakke by sonneblomolie te voeg. Palm-olieën is by 50°C en sonneblomolie by 30°C vir een jaar opgeberg en nege kwaliteitsparameters oor elf intervalle ontleed.

Palm-olieën se parameters het as volg gereageer: Vryvetsuurvlakke van alle monsters het geleidelik toegeneem, maar het binne aanvaarbare grense gebly. ‘n Onverwagte waarneming was die stadiger toenemtempo by die koperbevattende monsters. ‘n Moontlike verklaring is dat die vryvetsure in die koperbevattende monsters verdere oksidasie ondergaan het. Peroksiedwaardes van koperbevattende monsters was heelwat laer as die Kontrole waardes. Hierdie onverwagte tendens kan toegeskryf word aan die feit dat tydens ‘n langtermynstudie soos hierdie die peroksiedtussenprodukte moontlik vinnig na sekondêre stabiele, produkte omgeskakel word. Daarteenoor was die anisidienwaardes en ultravioletabsorpsie by 268 nm vir die koperbevattende monsters...
hoër as vir die Kontrole en bevestig dus die voorafgaande waarneming. Oksidatiewe stabiliteitsindeks (OSI, ook bekend as Rancimat) en totale tokoferolwaardes van koperbevattende monsters was betekenisvol laer as die van die Kontrole en delta-tokotriënel was die stabielste van die vier homoloë. Die totale vlugtige komponente en pentanal piekareas het die pro-oksidanteffek van koper weerspieël. Heksanal het hoër waarden getoon in die Kontrole as in die koperbevattende monsters. Dit is in teenstelling met die t,t-2,4-dekadiënal waar die Kontrole nie meetbare vlakke getoon het nie en die koperbevattende monsters beduidende toenames getoon het. Die t-2-heksenalwaarde het geen verandering ondergaan nie. OSI en totale tokoferole se waardes was waardevolle kwaliteitsindekse vir toepassing op mono-onversadigde olies, terwyl peroksiedwaarde en dampruim vlugtige komponente misleidend kan wees. Anisidenwaardes was bruikbaar en klein veranderinge in vryvetsuurvlakke was betekenisvol soos bevestig deur hulle seleksie in die modelle. Ultravioletabsorpsie analises was nuttig wanneer daar pro-oksident teenwoordig was. Sensoriese beoordeling het die verskil in rakleeftyd van die Kontrole en koperbevattende monsters bevestig.

Sonneblomolie het die volgende parameterveranderinge ondergaan: Vryvetsuurwaardes van al die monsters het toegeneem tot onaanvaarbare vlakke en bevestig dus hidrolietiese agteruitgang tydens opberging. Die beskermende invloed van TBHQ was opvallend en word heelwaarskynlik verklaar deur die vermindering in vorming van tussenproduktsure. Hierdie beskerming word ook weerspieël deur die vertraagde toename in peroksied- en anisidenwaardes teenoor die Kontrole. Hoër OSI waardes is met die TBHQ-behandeling verkry wat TBHQ se vermoë as antioksidant demonstreer. Tokoferolwaardes van olies het klein afinitye getoon en slegs marginale toename in ultravioletabsorpsie by 232 en 268 nm is waargeneem. Die totale vlugtige komponente, heksanal- en pentanalwaardes was weereens 'n weerspieëling van die anti-oksideermiddel se beskerming. Veranderinge in 2-heksenal en t,t-2,4-dekadiënal het geen patroon gevolg nie. Sensoriese beoordeling kon nie duidelike verskille tussen behandeling bevestig nie. OSI data en behandeling het goed ooreengestem en korrelasie met peroksied-, anisiden- en heksenalwaarde was positief. Die betekenis van die klein vryvetsuurwaarde veranderinge is eers tydens modellering besef.

Drie voorspellingsmodelle kon deur meerveranderlike regressie analises geskep word: i) Ideale model wat alle veranderlikes ingesluit het; ii) Praktiese model wat deur die maklik
bepaalbare veranderlikes, vryvetsuur-, peroksied-, OSI- en ultravioletabsorpsie-analises by 232 en 268 nm verkry is en iii) OSI model wat versnelde rakleeftydbepaling met rakleeftyd by kamertemperatuur gekorrelear het. OSI en vryvetsuurwaardes was uitstaande voorspellers want hulle is herhaaldelik deur deur alle modelle geselekteer. Palm-oleïen modelle het sekondêre oksidasieprodukte benadruk (anisidien- en ultravioletabsorpsie 268-waardes), terwyl sonneblomolie-modelle primêre oksidasieprodukte (peroksiedwaarde) geselekteer het. Die voorkeur seleksie van sekondêre oksidasieprodukte is as gevolg van die aansienlike toename in kopergekataliseerde reaksies. Anti-oksидеermiddelvlakke is ook as belangrike voorspeller van rakleeftyd geïdentifiseer. OSI het nie goed met rakleeftyd van beide tipe olies gekorrelear nie en dien dus nie as goeie voorspeller op sy eie, van rakleeftyd by kamertemperatuur, nie. Dit moet deur bykomende parameters ondersteun word. Die modelle wat ontwikkeld is kan prakties in die industri toegepas word om die rakleeftyd van mono- en poli-onversadigde olies te voorspel. Die Praktiese modelle kan maklik toegepas word om 'n goeie voorspelling van rakleeftyd te gee terwyl die Ideale modelle moontlik meer akkuraat sal wees.
“Challenges make you discover things about yourself that you never really knew”

(Cecily Tyson)
ACKNOWLEDGEMENTS

The author would like to express her sincere gratitude and appreciation to the people and organisations that provided assistance and encouragement during this study:

I would like to thank my supervisor Prof JRN Taylor for his constructive criticism, ongoing encouragement and faith shown in me, along with his kind persistence in seeing this study reach its conclusion.

To my co-supervisor, Dr LM du Plessis, without whose encouragement I would not have attempted this. Thank you for your hours of discussion, calmness and constant support.

Dr PJ van Niekerk for invaluable help and advice on the statistical analysis and modelling.

CSIR Bio/Chemtek’s Director and Programme Managers for the funding provided, time awarded and encouragement during this project.

Friends and colleagues at CSIR Bio/Chemtek that always listened, remained patient and gave valuable advice and support.

Michélle Enslin for all the help and patience in putting it together into this format.

To my family along with all my friends that remained positive and supportive towards me during this challenging period of my life.

My fiancée, Fergus, for always being there with encouragement, understanding, loads of patience and love (and endless cups of tea!).

Without all the encouragement and support, this would have been so much harder.
TABLE OF CONTENTS

LIST OF TABLES...v
LIST OF FIGURES..viii
LIST OF ABBREVIATIONS..xiv

CHAPTER 1: INTRODUCTION...1
 1.1 STATEMENT OF THE PROBLEM ...1
 1.2 OBJECTIVES ..3

CHAPTER 2: LITERATURE REVIEW...4
 2.1 OXIDATION AND RANCIDITY OF FATS AND OILS4
 2.1.1 Primary and secondary oxidation products ..4
 2.1.2 Factors influencing oxidative stability ...6
 2.1.2.1 Fatty acid composition ...6
 2.1.2.2 Antioxidants ..7
 2.1.2.3 Pro-oxidants ...9
 2.1.2.4 Oxygen availability ...10
 2.1.2.5 Temperature ...11
 2.1.2.6 Light ..11
 2.1.3 Effects of rancidity on the food use of fats and oils12
 2.2 ASSESSING THE QUALITY OF FATS AND OILS15
 2.2.1 Quick tests ..15
 2.2.2 Specialised tests ..19
 2.2.3 Accelerated stability tests ..25
 2.3 STABILITY OF SPECIFIC OILS ..30
 2.3.1 Palm-olein oil and similar oils ...31
 2.3.2 Sunflower oil and similar oils ...35
 2.4 SHELF-LIFE PREDICTION AND MODELLING METHODS37
 2.4.1 Value of predictive tests ..37
 2.4.2 Chemometric techniques ..39
 2.4.2.1 Multiple regression analysis ...40
 2.4.2.2 Principal component analysis ...41
2.4.2.3 Factor analysis .. 42
2.4.2.4 Other multivariate techniques 42

2.5 SUMMARY ... 43

CHAPTER 3: MATERIALS AND METHODS ... 45

3.1 MATERIALS ... 46
3.1.1 Palm-olein oil ... 46
3.1.1.1 Preparation of oil samples containing copper 46
3.1.2 Sunflower seed oil .. 47
3.1.2.1 Preparation of sunflower seed oil samples containing tertiary butylhydroquinone (TBHQ) 47

3.2 SHELF-LIFE METHODOLOGY ... 48

3.3 ANALYSES .. 48
3.3.1 Chemical methods .. 48
3.3.1.1 Free fatty acid value .. 48
3.3.1.2 Peroxide value ... 48
3.3.1.3 Anisidine value .. 49
3.3.1.4 Oxidative Stability Index (Rancimat) 49
3.3.1.5 Tocopherols ... 50
3.3.1.6 Volatile compounds .. 50
3.3.1.7 Fatty acid composition ... 50
3.3.1.8 Tertiary butylhydroquinone 51
3.3.1.9 Conjugated diene and triene values 51
3.3.1.10 Moisture ... 51
3.3.1.11 Iron and copper ... 52

3.3.2 Sensory evaluation ... 52

3.4 MODELLING ... 54

CHAPTER 4: RESULTS .. 56

4.1 PALM-OLEIN OIL ... 56
4.1.1 Composition of oils ... 56
4.1.2 Shelf-life tests ... 57
4.1.2.1 Free fatty acids ... 57
4.1.2.2 Peroxide value .. 59
4.1.2.3 Anisidine value 61
4.1.2.4 Totox value 63
4.1.2.5 Oxidative Stability Index 65
4.1.2.6 Tocopherols 67
4.1.2.7 Conjugated diene and triene values 77
4.1.2.8 Iodine value 80
4.1.2.9 Headspace volatile components 82
4.1.2.10 Sensory evaluation 89

4.1.3 Modelling .. 93
 4.1.3.1 Models 93
 4.1.3.2 Jackknifing 106

4.2 SUNFLOWER SEED OIL 111
 4.2.1 Composition of oils 111
 4.2.2 Shelf-life tests 112
 4.2.2.1 Free fatty acids 112
 4.2.2.2 Peroxide value 114
 4.2.2.3 Anisidine value 116
 4.2.2.4 Totox value 118
 4.2.2.5 Oxidative Stability Index 120
 4.2.2.6 Tocopherols 122
 4.2.2.7 Conjugated diene and triene values 130
 4.2.2.8 Iodine value 133
 4.2.2.9 Headspace volatile components 135
 4.2.2.10 Sensory evaluation 142
 4.2.3 Modelling .. 145
 4.2.3.1 Models 145
 4.2.3.2 Jackknifing 160

4.3 STATISTICAL ANALYSIS 165
 4.3.1 Palm-olein oil 165
 4.3.2 Sunflower seed oil 168

CHAPTER 5: DISCUSSION 172
 5.1 PALM-OLEIN OIL 172
 5.2 SUNFLOWER SEED OIL 185
5.3 MONOUNSATURATED VERSUS POLYUNSATURATED OIL 195

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 196

CHAPTER 7: REFERENCES ... 199

PUBLICATIONS AND POSTERS .. 215
LIST OF TABLES

Table 1: Characteristics of individual volatiles (Malcolmson et al, 1996) 13
Table 2: Types and characteristics of sensory panels (Warner, 1995) 24
Table 3: Fractionated palm oil characteristics (adapted from O’Brien, 1998) 32
Table 4: Rancimat values of oils at 100°C (personal communication, Malaysian Palm Oil Board, 2000) .. 33
Table 5: Composition of tocopherols and tocotrienols in crude palm oil (% of total) (Lin, 1999) ... 34
Table 6: Characteristics of sunflower oil (adapted from O’Brien, 1998) 36
Table 7: Fatty acid composition (g/100 g fatty acids) of the two palm-olein oils used and that of typical palm-olein oil (Codex Alimentarius Commission, 1997) ... 56
Table 8: Moisture and TBHQ content of composite palm-olein oil 57
Table 9: Total and individual tocopherols (mg/100 g) content of palm-olein at Day 0 and after 52 week storage period at 50°C. 67
Table 10: Estimation of rancidity onset time by means of sensory evaluation and chemical parameters .. 93
Table 11: Regression summary for dependant variable: shelf-life of Model 1 94
Table 12: Regression summary for dependant variable: shelf-life of Model 2 95
Table 13: Regression summary for dependant variable: shelf-life of Model 3 97
Table 14: Regression summary for dependant variable: shelf-life of Model 4 98
Table 15: Regression summary for dependant variable: shelf-life of Model 5 99
Table 16: Regression summary for dependant variable: shelf-life of Model 6 101
Table 17: Regression summary for dependant variable: shelf-life of Model 7 102
Table 18: Regression summary for dependant variable: shelf-life of Model 8 103
Table 19: Regression summary for dependant variable: shelf-life of Model 9 104
Table 20: Regression summary for dependant variable: shelf-life of Model 10 105
Table 21: Jackknifing results of three selected predictive models of palm-olein oil that was stored for a period of 52 weeks at 50 °C where the shelf-life of the samples was based on the PV and AV values 107
Table 22: Jackknifing results of three selected models that were based on the sensory evaluation ... 109
Table 23: Fatty acid composition (g/100 g fatty acids) of the sunflower seed oil used and that of a typical sunflower seed oil (Codex Alimentarius Commission, 1997) ... 111

Table 24: Copper, iron, moisture and TBHQ content of the sunflower seed oil 112

Table 25: Total and individual tocopherols (mg/100 g) of sunflower seed oil after 52-week storage period at 30°C. ... 122

Table 26: Estimation of onset of rancidity time by sensory evaluation and chemical parameters ... 145

Table 27: Regression summary for dependant variable: shelf-life of Model 1 145
Table 28: Regression summary for dependant variable: shelf-life of Model 2 147
Table 29: Regression summary for dependant variable: shelf-life of Model 3 148
Table 30: Regression summary for dependant variable: shelf-life of Model 4 149
Table 31: Regression summary for dependant variable: shelf-life of Model 5 150
Table 32: Regression summary for dependant variable: shelf-life of Model 6 152
Table 33: Regression summary for dependant variable: shelf-life of Model 7 153
Table 34: Regression summary for dependant variable: shelf-life of Model 8 154
Table 35: Regression summary for dependant variable: shelf-life of Model 9 155
Table 36: Regression summary for dependant variable: shelf-life of Model 10 156
Table 37: Regression summary for dependant variable: shelf-life of Model 11 158
Table 38: Regression summary for dependant variable: shelf-life of Model 12 159
Table 39: Jackknifing results of four selected models that were based on the PV and AV values ... 161
Table 40: Jackknifing results of four selected models that were based on the sensory evaluation ... 163
Table 41: t-test results at 99% test level of intercepts (a) for each comparison of the different treatments of palm-olein oil ... 166
Table 42: t-test results at 99% test level of the slopes (b) for each comparison of the different treatments that has been subjected to linear regression curves of palm-olein oil ... 167
Table 43: t-test results of comparisons of b and c quadratic coefficients of the treatments of palm-olein oil ... 168
Table 44: t-test results at 99% test level of intercepts (a) for each comparison of the different treatments of sunflower seed oil 169
Table 45: t-test results at 99 % test level of the slopes (b) for each comparison of the different treatments that has been subjected to linear regression curves of sunflower seed oil .. 170

Table 46: t-test results of comparisons of b and c quadratic coefficients of the treatments of sunflower seed oil... 171

Table 47: Summary of predictive models obtained for the palm-olein oil (monounsaturated type) and sunflower seed oil (polyunsaturated type).. 194
LIST OF FIGURES

Figure 1: Course of oxidation measured by conductivity of organic volatile compounds trapped in water versus time as determined by OSI. (Wan, 1995) .. 26

Figure 2: Summary of research methodology for development of prediction models to predict shelf-life of monounsaturated oil (palm–olein oil) and polyunsaturated oil (sunflower seed oil). ... 45

Figure 3: The effect of storage on the FFA content (% oleic acid) of palm-olein stored at 50°C for a period of 52 weeks with different concentrations of copper added to the oil. .. 58

Figure 4: The effect of storage on the peroxide value (meq/kg) of palm-olein stored at 50°C for a period of 52 weeks with different concentrations of copper added to the oil .. 60

Figure 5: The effect of storage on the anisidine value of palm-olein stored at 50°C for a period of 52 weeks with different concentrations of copper added to the oil ... 62

Figure 6: The effect of storage on the Totox value of palm-olein stored at 50°C for a period of 52 weeks with different concentrations of copper added to the oil ... 64

Figure 7: The effect of storage at 50°C for 52 weeks on the oxidative stability (hours) conducted at 120° of palm-olein with different concentrations of copper added to the oil. ... 66

Figure 8: The effect of storage on the total tocopherol content (mg/100g) of palm-olein stored at 50°C for a period of 52 weeks with different concentrations of copper added to the oil .. 68

Figure 9: The effect of storage on the alpha-tocopherol content (mg/100g) of palm-olein stored at 50°C for a period of 52 weeks with different concentrations of copper added to the oil ... 70

Figure 10: The effect of storage on the alpha-tocotrienol content (mg/100g) of palm-olein stored at 50°C for a period of 52 weeks with different concentrations of copper added to the oil 72
Figure 11: The effect of storage on the gamma-tocotrienol content (mg/100g) of palm-olein stored at 50°C for a period of 52 weeks with different concentrations of copper added to the oil. ...74

Figure 12: The effect of storage on the delta-tocotrienol content (mg/100g) of palm-olein stored at 50°C for a period of 52 weeks with different concentrations of copper added to the oil. ...76

Figure 13: The effect of storage on the conjugated diene value (%) of palm-olein stored at 50°C for a period of 52 weeks with different concentrations of copper added to the oil. ...78

Figure 14: The effect of storage on the conjugated triene value (%) of palm-olein stored at 50°C for a period of 52 weeks with different concentrations of copper added to the oil. ...79

Figure 15: The effect of storage on the iodine value value of palm-olein stored at 50°C for a period of 52 weeks with different concentrations of copper added to the oil. ...81

Figure 16: The effect of storage on the total volatile peak area of palm-olein stored at 50°C for a period of 52 weeks with different concentrations of copper added to the oil. ...83

Figure 17: The effect of storage on the trans-2-hexenal content (mg/kg) of palm-olein stored at 50°C for a period of 52 weeks with different concentrations of copper added to the oil. ...84

Figure 18: The effect of storage on the hexanal content (mg/kg) of palm-olein stored at 50°C for a period of 52 weeks with different concentrations of copper added to the oil. ...85

Figure 19: The effect of storage on the trans, trans-2,4-decadial content (mg/kg) of palm-olein stored at 50°C for a period of 52 weeks with different concentrations of copper added to the oil. ...86

Figure 20: The effect of storage on the pentanal peak area of palm-olein stored at 50°C for a period of 52 weeks with different concentrations of copper added to the oil. ...88

Figure 21: The effect of storage on the sensory evaluation of palm-olein oil stored at 50°C for a period of 52 weeks. (Option 1). ..91

Figure 22: The effect of storage on the sensory evaluation of palm-olein oil stored at 50°C for a period of 52 weeks. (Option 2). ..92
Figure 23: Predicted versus observed shelf-life values in weeks for palm-olein oil as determined by Model 1. The dependant variable is the shelf-life.

Figure 24: Predicted versus observed shelf-life values in weeks for palm-olein oil as determined by Model 2. The dependant variable is the shelf-life.

Figure 25: Predicted versus observed shelf-life values in weeks for palm-olein oil as determined by Model 3. The dependant variable is the shelf-life.

Figure 26: Predicted versus observed shelf-life values in weeks for palm-olein oil as determined by Model 4. The dependant variable is the shelf-life.

Figure 27: Predicted versus observed shelf-life values in weeks for palm-olein oil as determined by Model 5. The dependant variable is the shelf-life.

Figure 28: Predicted versus observed shelf-life values in weeks for palm-olein oil as determined by Model 6. The dependant variable is the shelf-life.

Figure 29: Predicted versus observed shelf-life values in weeks for palm-olein oil as determined by Model 7. The dependant variable is the shelf-life.

Figure 30: Predicted versus observed shelf-life values in weeks for palm-olein oil as determined by Model 8. The dependant variable is the shelf-life.

Figure 31: Predicted versus observed shelf-life values in weeks for palm-olein oil as determined by Model 9. The dependant variable is the shelf-life.

Figure 32: Predicted versus observed shelf-life values in weeks for palm-olein oil as determined by Model 10. The dependant variable is the shelf-life.

Figure 33: The percentage cases that fall within < - 4, - 2 to - 4, 0 to ± 2, 2 to + 4 and > +4 weeks when the jackknifing procedure had been applied.
on the Ideal, Practical and OSI models where the shelf-life was based on PV and AV values.

Figure 34: The percentage cases that fall within < - 4, - 2 to - 4, 0 to ± 2, 2 to + 4 and > + 4 weeks when the jackknifing procedure had been applied on the Ideal, Practical and OSI models where the shelf-life was based on the sensory evaluation.

Figure 35: The effect of storage at 30°C for 52 weeks on the free fatty acid (% oleic acid) content of the sunflower seed.

Figure 36: The effect of storage at 30°C for 52 weeks on the peroxide value (meq/kg) of the sunflower seed oil samples.

Figure 37: The effect of storage at 30°C for 52 weeks on the anisidine value of the sunflower seed oil samples.

Figure 38: The effect of storage at 30°C for 52 weeks on the Totox value of the sunflower seed oil samples.

Figure 39: The effect of storage at 30°C for 52 weeks on the oxidative stability (hrs) conducted at 100°C of the sunflower seed oil samples.

Figure 40: The effect of storage at 30°C for 52 weeks on the total tocopherol content (mg/100 g) of the sunflower seed oil samples.

Figure 41: The effect of storage at 30°C for 52 weeks on the alpha-tocopherol content (mg/100 g) of the sunflower seed oil samples.

Figure 42: The effect of storage at 30°C for 52 weeks on the beta-tocopherol content (mg/100 g) of the sunflower seed oil samples.

Figure 43: The effect of storage at 30°C for 52 weeks on the gamma-tocopherol content (mg/100 g) of the sunflower seed oil samples.

Figure 44: The effect of storage at 30°C for 52 weeks on the conjugated diene value (%) of the sunflower seed oil samples.

Figure 45: The effect of storage at 30°C for 52 weeks on the conjugated triene value (%) of the sunflower seed oil samples.

Figure 46: The effect of storage at 30°C for 52 weeks on the iodine value of the sunflower seed oil samples.

Figure 47: The effect of storage at 30°C for 52 weeks on the total volatile peak area of the sunflower seed oil samples.
Figure 48: The effect of storage at 30°C for 52 weeks on the hexanal content of the sunflower seed oil samples.

Figure 49: The effect of storage at 30°C for 52 weeks on the trans-2-hexenal content of the sunflower seed oil samples.

Figure 50: The effect of storage at 30°C for 52 weeks on the trans, trans-2,4-decadienal content of the sunflower seed oil samples.

Figure 51: The effect of storage at 30°C for 52 weeks on the pentanal peak area of the sunflower seed oil samples.

Figure 52: The effect of storage on the sensory evaluation of sunflower seed oil stored at 30°C for a period of 52 weeks (Option 1).

Figure 53: The effect of storage on the sensory evaluation of sunflower seed oil stored at 30°C for a period of 52 weeks. (Option 2).

Figure 54: Predicted versus observed shelf-life values in weeks for sunflower seed oil as determined by Model 1. The dependant variable is the shelf-life.

Figure 55: Predicted versus observed shelf-life values in weeks for sunflower seed oil as determined by Model 2. The dependant variable is the shelf-life.

Figure 56: Predicted versus observed shelf-life values in weeks for sunflower seed oil as determined by Model 3. The dependant variable is the shelf-life.

Figure 57: Predicted versus observed shelf-life values in weeks for sunflower seed oil as determined by Model 4. The dependant variable is the shelf-life.

Figure 58: Predicted versus observed shelf-life values in weeks for sunflower seed oil as determined by Model 5. The dependant variable is the shelf-life.

Figure 59: Predicted versus observed shelf-life values in weeks for sunflower seed oil as determined by Model 6. The dependant variable is the shelf-life.

Figure 60: Predicted versus observed shelf-life values in weeks for sunflower seed oil as determined by Model 7. The dependant variable is the shelf-life.
Figure 61: Predicted versus observed shelf-life values in weeks for sunflower seed oil as determined by Model 8. The dependent variable is the shelf-life. 154

Figure 62: Predicted versus observed shelf-life values in weeks for sunflower seed oil as determined by Model 9. The dependent variable is the shelf-life. 156

Figure 63: Predicted versus observed shelf-life values in weeks for sunflower seed oil as determined by Model 10. The dependent variable is the shelf-life. 157

Figure 64: Predicted versus observed shelf-life values in weeks for sunflower seed oil as determined by Model 11. The dependent variable is the shelf-life. 158

Figure 65: Predicted versus observed shelf-life values in weeks for sunflower seed oil as determined by Model 12. The dependent variable is the shelf-life. 159

Figure 66: Percentage cases within each week category of the jackknifing results of the four models based on PV and AV values that was grouped into 3 categories namely: 0 to ±2 weeks, ±2 to ±4 weeks and more than +4 weeks and less than -4 weeks. 162

Figure 67: Percentage cases within each week category of the jackknifing results of the four models based on sensory evaluation that was grouped into 3 categories namely: 0 to ±2 weeks, ±2 to ±4 weeks and more than +4 weeks and less than -4 weeks. 164
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>Atomic absorption spectroscopy</td>
</tr>
<tr>
<td>ANNW</td>
<td>Artificial neural network systems</td>
</tr>
<tr>
<td>AOM</td>
<td>Active oxygen method</td>
</tr>
<tr>
<td>AV</td>
<td>Anisidine value</td>
</tr>
<tr>
<td>BHA</td>
<td>Butylated hydroxyanisole</td>
</tr>
<tr>
<td>BHT</td>
<td>Butylated hydroxytoluene</td>
</tr>
<tr>
<td>COP</td>
<td>Conjugable oxidation products</td>
</tr>
<tr>
<td>CV</td>
<td>Conjugated diene value</td>
</tr>
<tr>
<td>DFA</td>
<td>Discriminant function analysis</td>
</tr>
<tr>
<td>DSF</td>
<td>Differential scanning calorimetry</td>
</tr>
<tr>
<td>EVOO</td>
<td>Extra virgin olive oil</td>
</tr>
<tr>
<td>F</td>
<td>Test of significance between relationship between dependant variable and set of independent variables</td>
</tr>
<tr>
<td>FFA</td>
<td>Free fatty acids</td>
</tr>
<tr>
<td>FID</td>
<td>Flame ionisation detector</td>
</tr>
<tr>
<td>FS</td>
<td>Flavour sensory evaluation</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography</td>
</tr>
<tr>
<td>HCL</td>
<td>Hollow cathode lamp</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>IP</td>
<td>Induction period</td>
</tr>
<tr>
<td>IV</td>
<td>Iodine value</td>
</tr>
<tr>
<td>KNN</td>
<td>K-nearest neighbour</td>
</tr>
<tr>
<td>MHE</td>
<td>Multiple headspace extraction</td>
</tr>
<tr>
<td>MLR</td>
<td>Multiple linear regression</td>
</tr>
<tr>
<td>ND</td>
<td>Not detected</td>
</tr>
<tr>
<td>OSI</td>
<td>Oxidative Stability Index</td>
</tr>
<tr>
<td>OV</td>
<td>Oxodiene value</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal component analysis</td>
</tr>
<tr>
<td>PCR</td>
<td>Principal component regression</td>
</tr>
<tr>
<td>PCs</td>
<td>Principal components</td>
</tr>
<tr>
<td>PLS</td>
<td>Partial least squares</td>
</tr>
</tbody>
</table>
PV Peroxide value
R\(^2\) Square of the correlation coefficient
RBD Refined, bleached and deodorised
SIMCA Soft independent modelling of class analogy
TBHQ Tertiary butylhydroxyquinone
TV Totox value
UHT Ultra high temperature
UV Ultra violet absorption