INVESTIGATION INTO THE SOUTH AFRICAN APPLICATION OF CERTAIN ALTERNATIVE TECHNOLOGIES FOR DISPOSAL OF SANITATION SYSTEM WASTES

Author: Lorimer Mark Austin

Dissertation submitted in partial fulfilment of the requirements for the degree of

MASTER OF ENGINEERING (WATER RESOURCES ENGINEERING)

in the Faculty of ENGINEERING, BUILT ENVIRONMENT AND INFORMATION TECHNOLOGY

UNIVERSITY OF PRETORIA

August 2000
SUMMARY

INVESTIGATION INTO THE SOUTH AFRICAN APPLICATION OF CERTAIN ALTERNATIVE TECHNOLOGIES FOR DISPOSAL OF SANITATION SYSTEM WASTES

Lorimer Mark Austin

Supervisor: Prof S J van Vuuren
Department: Civil Engineering
University: University of Pretoria
Degree: Master of Engineering (Water resources engineering)
SUMMARY

INTRODUCTION

The essence of the dissertation is as follows:

1. A broad introduction is given to the general sanitation situation in South Africa and some other developing countries, particularly among the poorer sections of the population. It is argued that there is a need for other appropriate technologies to address specific problems.

2. The development of a new type of interceptor tank for use in settled sewage sanitation systems is described. This tank is able to desludge itself automatically by means of a siphonic-type outlet mechanism.

3. The research, development and current status of urine diversion sanitation technology in the world is set out. The implementation of South Africa’s first project utilising this concept is also described.

SANITATION: GENERAL ASPECTS DISCUSSED

A background to the general sanitation situation in South Africa and the developing world is presented in this dissertation, with particular emphasis on the poorer population groups. It is shown that existing systems and available resources are inadequate to deal with the serious problems which exist, and that the situation will not improve unless there is a significant change in the manner in which sanitation systems are chosen, designed and implemented. Vast amounts of improperly-managed faeces and untreated sewage contaminate the living environments of millions of people worldwide. These environmental problems, in turn, undermine the process of development.

Sanitation approaches based on flush toilets, sewers and central treatment plants cannot solve this problem. Pit toilets or septic tanks with soakpits are also not the solution in high-density urban areas. Sanitation systems must be appropriate for a particular project and circumstances. It is therefore important to look beyond the current restrictions for innovative ways and means of bringing adequate sanitation to the millions of people currently without access to proper facilities. Research and development for a wide range of cultural and environmental conditions is required, a demand for systems which reuse or recycle human excreta should be created, dependence on systems which use large amounts of potable water should be reduced, and systems should be promoted which are simple, reliable and easily maintained.
THE "SLUDGE SIPHON" SELF-CLEANSING INTERCEPTOR TANK FOR SETTLED SEWAGE SYSTEMS

Interceptor tanks in a settled sewage system must be designed to cater for various functions, namely solids interception, digestion of settled solids, and storage of digested solids.Interceptor tanks are usually designed so that up to two-thirds of the volume may be taken up by settleable solids (sludge), so the longer the anticipated interval between desludgings, the larger the tank has to be to cater for this. This is associated with an increase in capital costs, not only for the tank itself but also for labour and excavation. Desludging of tanks is also an expensive process.

The "sludge siphon" system eliminates the need for vacuum tankers and maintenance crews to physically empty an interceptor tank. The accumulated sludge is automatically siphoned out of the tank and flushed, together with the normal effluent, into the settled sewage reticulation system. Once it has entered the pipeline, the sludge from a whole suburb or village can be hydraulically transported to a single easily-accessible settling tank for uncomplicated collection, or perhaps even be transported all the way to a treatment works, where the sludge can be handled in the conventional manner.

URINE DIVERSION SANITATION SYSTEMS

The shortcomings of VIP toilets, particularly in high-density urban areas, are explained. To address these shortcomings, it is necessary to think beyond the limitations imposed by traditional methods of providing dry sanitation. This need is substantiated by increasing awareness worldwide of the environmental issues associated with sanitation. Furthermore, pressure on land to produce more food to feed the ever-growing populations of developing countries has made it imperative to utilise natural resources, including human excreta, wherever possible. The concept of ecological sanitation, or "eco-san" as it is also known, is seen as an alternative solution to some of the problems associated with pit toilets, environmental degradation and food shortages.

The basic requirement of a urine diversion sanitation system is a toilet pedestal which prevents urine and faeces from being mixed together. It is essential that the faeces remain as dry as possible and that moisture is prevented from entering the collection chamber. The urine can be collected in any suitable sealed container if its reuse for agricultural fertilizer is desired. Alternatively, it can be led into a soakpit. The desiccated faeces is, furthermore, a good soil conditioner.
CONCLUDING REMARKS

The research and development of alternative on-site sanitation technologies described in this dissertation was aimed principally at tackling the most common operational problem associated with these systems, namely sludge disposal. Other benefits which accrue due to the application of these new technologies, for example certain environmental improvements, easy and safe reuse of excreta, or lower capital and operational costs, are additional advantages. By offering improved sanitation methods which reduce the operation and maintenance burdens on both users and local authorities, it is believed that a significant contribution has been made to improving the quality of human life across all sectors of society.

KEY WORDS

Dehydration
Desiccation
Dry toilets
Ecological sanitation
Fertiliser
Health
Interceptor tanks
Recycling
Sediment transport
Septic tanks
Settled sewage
Sludge
Small bore systems
Solids-free sewers
STED systems
Urine diversion
SAMEVATTING

INLEIDING

Die verhandeling bestaan hoofsaklik uit die volgende:

1. 'n Bree inleiding tot die huidige algemene sanitasie toestand in Suid-Afrika asook sommige ander ontwikkelende lande, veral onder die arm bevolkingsdele, word uiteengesit. Daar word aangevoer dat ander toepaslike tegnologiee benodig word om spesifieke probleme aan te spreek.

2. Die ontwikkeling van 'n nuwe soort septiese tenk vir gebruik in besinkte-riool sanitasiestelsels word beskryf. Die tenk word outomaties ontslyk deur middel van 'n hewel-tipe uitlaat meganisme.

3. Die navorsing, ontwikkeling en huidige status van urine-wegwending sanitasie tegnologie in die wêreld word uiteengesit. Die implementering van Suid-Afrika se eerste projek wat van hierdie tegnologie gebruik maak word ook beskryf.

SANITASIE: ALGEMENE ASPEKTE BESPREEK

'n Agtergrond tot die algemene sanitasie toestand in Suid-Afrika en die ontwikkelende wêreld word in hierdie verhandeling uiteengesit, met spesifieke verwysing na die arm bevolkingsdele. Daar word getoon dat huidige sisteme en beskikbare hulpbronne onvoldoende is om die ernstige probleme wat bestaan aan te pak, en dat, alvorens daar 'n betekenisvolle verandering intree in die manier waarop sanitasie stelsels gekies, ontwerp en implementeer word, hierdie toestand nie sal verbeter nie. Die omgewing van miljoene mense wêreldwyd word deur groot hoeveelhede fekale materiaal en riool besoedel. Hierdie omgewingsprobleme ondermyn weer op hulle beurt die ontwikkelingsproses.

Sanitasie benaderings wat op spoeltoilette, riol en sentrale suweringswerke gebaseer word kan hierdie probleem nie oplos nie. Puttoilette of septiese tenks met sypelriole is ook nie 'n oplossing in dig-bewoonde stedelike gebiede nie. Sanitasie-sisteme moet vir sekere projek en omstandighede toepaslik wees. Dit is daarom belangrik dat daar verder as die huidige beperkinge gesoek word vir maniere en middel om voldoende sanitasie ewe vir die miljoene mense wat daarsonder is te verskaf. Navorsing en ontwikkeling vir 'n wye reeks kulturele en omgewingstoestande word benodig, 'n aanvraag vir sisteme wat menslike uitskeiding hersirkuleer behoort geskep te word, afhanklikheid van sisteme wat groot volumes drinkbare water gebruik moet verminder word, en sisteme wat eenvoudig, betroubaar en maklik ondernou kan word behoort bevorder te word.
DIE "SLYKHEWEL" SELF-REINIGENDE SEPTIESE TENK VIR BESINKTE-RIOOL SANITASIESTELSELS

Septiese tenks in 'n besinkte-riool stelsel moet vir verskeie funksies ontwerp word, naamlik opvang van vaste stowwe, vertering van vaste stowwe asook opgaring van vaste stowwe. Septiese tenks word gewoonlik ontwerp om tot soveel as twee-derdes van die volume vir slykopbuiging te reservere; dus, hoe groter die ontslykings tussenposes, hoe groter moet die tenk wees. Dit gaan gepaard met 'n toename in kapitaalkoste, nie alleen vir die tenk self nie maar ook vir arbeid en uitgrawing. Die ontslyking van tenks is ook 'n duur proses.

Met 'n "slykhewel" sisteem word suigtenkwaens en onderhoudspanne nie benodig om septiese tenks te ontslyk nie. Die opgehoopde slyk word outomaties uit die tenk gesuig en, tesame met die normale uitvloeisel, in die besinkte riool retikulasiesisteem weggespoel. Sodra dit die pyplyn binnegegaan, kan die slyk vanaf 'n hele voorstad of dorpie na 'n maklik bereikbare besinkingstenk hidroulies vervoerword, waarvandaan dit sonder enige probleme verwyder kan word. Die slyk kan dikwels ook hidroulies na 'n suiweringswerke vir konvensionele behandeling vervoer word.

URINE-WEGWENDING SANITASIESTELSELS

Die tekortkominge van VIP ("Ventilated Improved Pit")-toilette, veral in digbewoonde stedelike gebiede, word uiteengesit. Om hierdie tekortkominge aan te spreek is dit nodig om verby die beperkings wat deur tradisionele droë sanitasie metodes gestel word te kyk. Die stelling word gestaaf deur toenemende wereldwyse bewuswording van omgewingsaspekte rondom sanitasie. Daarbenewens, die druk wat in ontwikkelende lande op grond uitgeoefen word om meer voedsel vir die steeds toenemende bevolkingsgroei te produseer het dit noodsaaklik gemaak om natuurlike hulpbronne, insluitende menslike uitskeiding, sover moontlik vir hierdie doel aan te wend. Die konsep van ekologiese sanitasie, ook bekend as "eco-san", word as 'n alternatiewe oplossing vir die probleme wat met puttoilette, omgewingsdegenerasie en voedseltekorte gepaard gaan, beskou.

Die basiese vereiste van 'n urine-wegwending sanitasiestelsel is 'n toiletpan wat vermenging van urine en fekaliee verhoed. Dit is noodsaaklik dat die fekale materiaal so droog as moontlik bly, en dat vog nie die stoorkompartement binnedring nie. Die urine kan in enige geskikte verseide houer versamel word vir hergebruik as landboubemesting, indien verlang. Dit kan alternatiewelik na 'n sypelput geleë word. Die uitgedroogde fekale materiaal is ook 'n goeie grondopknapper.
SLOTSOM

Die navorsing en ontwikkeling van alternatiewe "op-erf" sanitasiestelsels, soos in hierdie verhandeling beskryf, is hoofsaaklik daarop gemik om die mees algemene operasionele probleem wat met hierdie sisteme gepaard gaan, naamlik slykwegdoening, aan te spreek. Verder waarde wat deur die gebruik van hierdie steisels verkry word, soos byvoorbeeld sekere omgewingsverbeteringe, maklike en veilige hergebruik van uitskeiding, of laer kapitaal- en gebruikskostes, word as addisionele voordele beskou. Deur verbeterde sanitasiestelsels wat die operationele las op beide gebruikers en plaaslike overhede verminder aan te bied, word geglo dat 'n betekenisvolle bydrae tot die verbetering van mense se lewenskwaliteit in alle aspekte van die samelewing gemaak is.

SLEUTELWOORDE

Dehydration
Desiccation
Dry toilets
Ecological sanitation
Fertiliser
Health
Interceptor tanks
Recycling
Sediment transport
Septic tanks
Settled sewage
Sludge
Small bore systems
Solids-free sewers
STED systems
Urine diversion
ACKNOWLEDGEMENTS

I wish to express my grateful appreciation to the following, without whom the research projects and writing of this dissertation would not have been possible:

- Almighty God, whose divine grace gave me the required courage, strength and perseverance to overcome certain obstacles which stood in my way.
- My wife and family, who supported me through some difficult times and put up with my frequent non-availability for a period of more than two years.
- The management of CSIR Building and Construction Technology, for a considerable measure of financial support and encouragement during the course of the research projects and other studies.
- My technician, Andy Murdoch, whose unfailing support, enthusiasm and inventiveness, as well as specialised plumbing skills, considerably facilitated the development of the sludge siphon.
- Louiza Duncker, anthropologist, who ensured the success of the urine diversion sanitation project, and for making me aware that not all problems can be solved by the application of engineering principles.
- The CEO and staff of the Eastern Cape Appropriate Technology Unit (ECATU), for financing the construction of the urine diversion toilet units and for invaluable assistance with the community work.
- Isabel Ringel and Michael Mavuso of the Boutek Information Centre, for vital assistance in obtaining a myriad of reference documents, which they always did with remarkable efficiency and friendliness.
- Professor S J van Vuuren, my supervisor, for his valuable guidance, constructive criticism, support and patience.
- Jurgen Hartel and Jack Wijd, directors of Pioneer Plastics (Pty) Ltd, for their enthusiastic support of the sludge siphon research and for providing the experimental tanks free of charge.
- Ronnie Böhmer, Issie Oberholzer and Lineke Slump of the Boutek drawing office, for production of illustrations and friendly service, even when asked to revise various drawings a number of times.
- Pauline Coubrough and Martella du Preez of CSIR Environmentek, for laboratory analysis of various materials originating in the urine diversion toilets, and especially for their time and patience in explaining some of the finer points of microbiology and parasitology to me.

SOLI DEO GLORIA
CONTENTS

SUMMARY

Page S-1

SAMEVATTING

Page S-5

ACKNOWLEDGEMENTS

Page a-1

CONTENTS

Page c-1

CHAPTER 1: INTRODUCTION

1.1 Structure of the dissertation

Page 1-1

1.2 Hydraulic disposal of interceptor tank sludge in a settled sewage reticulation system

Page 1-2

1.3 Urine diversion technology as an alternative to VIP toilets

Page 1-3

CHAPTER 2: THE IMPORTANCE OF SANITATION

2.1 Sanitation and the environment

Page 2-1

2.2 Sanitation and disease

Page 2-2

2.3 The current situation in developing countries

Page 2-3

2.4 The South African experience

Page 2-7

2.5 The way forward

Page 2-11

CHAPTER 3: THE NEED FOR ALTERNATIVE SANITATION TECHNOLOGIES IN SOUTH AFRICA

3.1 Background

Page 3-1

3.2 Culture and sanitation

Page 3-2

3.3 Community empowerment and institutional capacity

Page 3-3

3.4 Treatment and disposal: categories of sanitation technology

Page 3-4

3.5 Operation and maintenance aspects

Page 3-5

CHAPTER 4: BACKGROUND TO THE "SLUDGE SIPHON" CONCEPT

4.1 Basic principles of settled sewage sanitation technology

Page 4-1

4.2 Effluent drainage pipes

Page 4-2

4.3 Interceptor (septic) tanks

Page 4-4

4.4 The "sludge siphon" hypothesis

Page 4-5

CHAPTER 5: PRINCIPLES OF SIPHONS AND SEDIMENT TRANSPORT

Page 5-1

5.1 Siphonic theory

Page 5-2

5.2 Hydraulic transport of sediment

Page 5-4
<table>
<thead>
<tr>
<th>CHAPTER 6: METHODOLOGY FOR DEVELOPING THE SLUDGE SIPHON</th>
<th>Page 6-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Initial experimentation</td>
<td>6-2</td>
</tr>
<tr>
<td>6.2 Experimentation with “simulated sludge”</td>
<td>6-6</td>
</tr>
<tr>
<td>6.3 Experimental equipment and procedure</td>
<td>6-9</td>
</tr>
<tr>
<td>6.4 Obtaining true septic tank sludge</td>
<td>6-11</td>
</tr>
<tr>
<td>6.5 Properties of domestic septic tank sludge</td>
<td>6-15</td>
</tr>
<tr>
<td>6.6 Experimentation with septic tank sludge</td>
<td>6-20</td>
</tr>
<tr>
<td>6.7 Development and testing of first prototype under actual field operating conditions</td>
<td>6-25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 7: BACKGROUND TO URINE DIVERSION TECHNOLOGY</th>
<th>Page 7-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 The need for an alternative to VIP toilets</td>
<td>7-2</td>
</tr>
<tr>
<td>7.2 Human excreta – waste product or valuable resource?</td>
<td>7-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 8: REVIEW OF URINE DIVERSION EXPERIENCE AND APPLICATION</th>
<th>Page 8-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Urine diversion theory and practice in the world</td>
<td>8-2</td>
</tr>
<tr>
<td>8.2 Agricultural prospects: some examples</td>
<td>8-10</td>
</tr>
<tr>
<td>8.3 Health aspects of excreta reuse</td>
<td>8-15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 9: THE SOUTH AFRICAN PILOT PROJECT</th>
<th>Page 9-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Identification of communities</td>
<td>9-2</td>
</tr>
<tr>
<td>9.2 The community workshopbing process</td>
<td>9-4</td>
</tr>
<tr>
<td>9.3 Design of the toilet units</td>
<td>9-9</td>
</tr>
<tr>
<td>9.4 Hygiene education in the communities</td>
<td>9-13</td>
</tr>
<tr>
<td>9.5 Construction and hand-over</td>
<td>9-15</td>
</tr>
<tr>
<td>9.6 Monitoring of pathogen destruction</td>
<td>9-19</td>
</tr>
<tr>
<td>9.7 Research currently in progress</td>
<td>9-23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 10: SUMMARY AND CONCLUSIONS</th>
<th>Page 10-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Sanitation – general aspects discussed</td>
<td>10-2</td>
</tr>
<tr>
<td>10.2 The “sludge siphon” self-cleansing interceptor tank for settled sewage systems</td>
<td>10-5</td>
</tr>
<tr>
<td>10.3 Urine diversion sanitation systems</td>
<td>10-8</td>
</tr>
<tr>
<td>10.4 Concluding remarks</td>
<td>10-12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 11: RECOMMENDATIONS FOR FURTHER RESEARCH</th>
<th>Page 11-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Introduction</td>
<td>11-2</td>
</tr>
<tr>
<td>11.2 Further research on sludge siphon technology</td>
<td>11-2</td>
</tr>
<tr>
<td>11.3 Further research on urin e diversion systems</td>
<td>11-3</td>
</tr>
</tbody>
</table>

Contents Page c-2
APPENDIX A: PRELIMINARY GUIDELINES FOR THE INSTALLATION AND OPERATION OF "SLUDGE SIPHON" SYSTEMS

A1 Introduction
A2 Preliminary guidelines

APPENDIX B: PRELIMINARY GUIDELINES FOR THE DESIGN AND OPERATION OF URINE DIVERSION SANITATION SYSTEMS IN SOUTH AFRICA

B1 Introduction
B2 Preliminary guidelines

APPENDIX C: SEDIMENT TRANSPORT: BRIEF REVIEW OF LITERATURE

C1 General
C2 Incipient (threshold) motion
C3 Sediment transport in closed pipes

BIBLIOGRAPHY
LIST OF TABLES

Table 2.1: Occurrence of some pathogens in fresh urine, faeces and sullage Page 2-5
Table 3.1: Categories of sanitation systems Page 3-6
Table 4.1: Approximate average municipal wastewater characteristics for raw and settled wastewaters found in typical South African wastewater treatment facilities Page 4-3
Table 4.2: Estimated wastewater flow in lower-income areas for various levels of water supply Page 4-10
Table 4.3: Estimated wastewater flow in middle to high income areas Page 4-10
Table 4.4: Rate of sludge and scum accumulation for low-income areas Page 4-11
Table 4.5: Rate of sludge and scum accumulation for middle- to high-income areas with multiple sanitary fittings Page 4-11
Table 6.1: Properties of domestic septic tank sludge Page 6-15
Table 6.2: Summary of sludge analyses Page 6-16
Table 6.3: Average wastewater volume required to activate flush with various flow distances between washtub and tank Page 6-40
Table 7.1: Estimated Swedish averages for mass and distribution of plant nutrient content in urine and faeces Page 7-4
Table 7.2: Annual excretion of fertiliser by humans compared with fertiliser requirement of cereal Page 7-5
Table 9.1: Analytical results of laboratory testing Page 9-22
Table 9.2: Analysis of natural soil around toilet unit E Page 9-22
Table 9.3: Sun-dried sample from unit E Page 9-24
LIST OF FIGURES

Figure 1.1: Emptying a septic tank by means of a vacuum tanker Page 1-5
Figure 1.2: Schematic representation of a urine diversion ("dry-box") toilet 1-8
Figure 2.1: Transmission routes for pathogens found in excreta 2-6
Figure 2.2: A multi-level analysis of the sanitation problem in South Africa 2-13
Figure 4.1: Schematic representation of a settled sewage system layout 4-2
Figure 4.2: Typical interceptor (septic) tank .. 4-6
Figure 4.3: Typical relationship between solids separation and time of retention of sewage in a septic tank ... 4-7
Figure 4.4: Twin-chamber masonry septic tank ... 4-9
Figure 4.5: Definition sketch for the investigation: automatic desludging of an interceptor tank by siphonic action ... 4-14
Figure 4.6: Typical washtub attached to exterior toilet with outlet discharging directly into septic tank (aqua privy) ... 4-16
Figure 5.1: The simple siphon .. 5-2
Figure 5.2: Solids transport mechanisms in the upper reaches of a sewer network 5-5
Figure 5.3: Effect of pipe diameter on solids movement efficiency 5-6
Figure 6.1: 50 l container and 50 mm diameter prefabricated pipe system intended to simulate a siphonic-type outlet ... 6-2
Figure 6.2: Modified pipe configuration in order to negate effect of air bubbles on activation of siphon .. 6-3
Figure 6.3: Standard siphonic cistern valve forming outlet mechanism of container 6-4
Figure 6.4: Modified outlet arrangement to facilitate charging of the siphon 6-5
Figure 6.5: Multiple siphonic intake for withdrawing settled sawdust from tank 6-7

Contents Page c-5
Figure 6.6: Working arrangement with washtub draining into the tank and siphonic outlet discharging into the pipeline
Figure 6.7: Adjustable pipe hanger and clamp attached to roof of laboratory.
Figure 6.8: Small amount of sawdust left on invert of pipe after completion of flush (seen from underneath)
Figure 6.9: Perspex coring tube used to examine contents of septic tank
Figure 6.10: Sample core extracted from septic tank on plot near Wonderboom Airport
Figure 6.11: Extracting septage from a septic tank
Figure 6.12: Equipment setup for testing of sludge siphon, utilising actual septage
Figure 6.13: SEM photographs of inorganic particles in septic tank sludge
Figure 6.14: Actual septic tank sludge deposited on invert of pipeline after completion of flush (seen from underneath)
Figure 6.15: Apparatus set up to produce a discharge head of 0.5 m
Figure 6.16: Discharge from washtub
Figure 6.17: Discharge from tank
Figure 6.18: Outflow velocity from tank
Figure 6.19: Variation in discharge velocity relative to available head
Figure 6.20: Arrangement of waste inlet and sludge siphon assembly
Figure 6.21: Photographs of various parts making up the complete tank
Figure 6.22: Experimental layout of prototype interceptor tank with sludge siphon at the day-care centre on the CSIR campus
Figure 6.23: Calibration of the water volume in the washtub
Figure 6.24: Typical sludge sample cored from the tank before testing of the system (the core represents the sludge accumulated above the level of the grille)
Figure 6.25: Experimentation with inverse pipe gradients
Figure 6.26: Testing the effect of different wastewater flow distances on the operation of the siphon
Figure 6.27: Testing the effect of varying washtub heights on the operation of the siphon
Figure 8.1: Section through a house in the old part of the town of Sanaa, Yemen
Figure 8.2: The Vietnamese double vault dehydrating toilet, shown here without the superstructure
Figure 8.3: LASF toilets in a densely populated squatter area in central San Salvador
Figure 8.4: A dehydrating toilet with urine diversion and solar-heated vault, El Salvador
Figure 8.5: A solar-heated dehydrating toilet in Ecuador
Figure 8.6: Urine diversion pedestals for dry system and flushing system. Photographed in Sweden
Figure 8.7: Mexican urine diversion pedestal cast in mortar
Figure 8.8: Rev Henry Moule's earth closet patented in 1860. Found in the grounds of Cooling Castle, Kent, UK
Figure 8.9: Part of the agricultural research farm near Stockholm. The fields are divided into lots for experimentation with various dilutions of urine. The crop being tested here is barley.
Figure 8.10: Survival times of pathogens in untreated faecal sludges applied to fields in warm climates
Figure 8.11: Survival times of various pathogens as a function of temperature
Figure 9.1: Typical views of the villages selected for the pilot project
Figure 9.2: ECATU's Ms Sybil Lila introducing the subject of the meeting
Figure 9.3: The author demonstrating the concept of the sanitation technology with the help of a fiberglass model of a urine diversion pedestal
Figure 9.4: Community workshop at Gwebinkundla school
Figure 9.5: Community workshop at Manyosini school
Figure 9.6:	Sinyondweni residents singing for the project team	Page	9-7
Figure 9.7:	General design aspects of the toilet units	Page	9-9
Figure 9.8:	The plastic urine diversion pedestal designed by the author	Page	9-12
Figure 9.9:	The completed toilet units	Page	9-16
Figure 9.10:	Extracting samples from the faeces containers for laboratory testing	Page	9-19
Figure C.1:	Shear force on a granular bed showing velocity profile	Page	C-3
Figure C.2:	Head loss vs velocity relationship for closed-conduit flow, for sand with \(d = 2.0 \) mm	Page	C-6
Figure C.3:	Head loss vs velocity relationship with equi-concentration lines, for sand graded to 4.0 mm	Page	C-7
Figure C.4:	Schematic representation of concentration and velocity distributions	Page	C-9