LINEAR FREQUENCY TRANSPOSITION
AND WORD RECOGNITION ABILITIES OF
CHILDREN WITH MODERATE-TO-SEVERE
SENSORINEURAL HEARING LOSS

BY
ANNERINA GROBBELAAR

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE
M.COMMUNICATION PATHOLOGY
IN THE DEPARTMENT OF COMMUNICATION PATHOLOGY,
FACULTY OF HUMANITIES,
UNIVERSITY OF PRETORIA

PROMOTER: Dr Catherine van Dijk
CO-PROMOTER: Mrs Emily Groenewald

APRIL 2009

© University of Pretoria
“...I owe the world an attitude of gratitude.”
~ Clarence E Hodges

- Dr Catherine van Dijk, for her excellent guidance, expertise in the research process as well as paediatric audiology, and super-fast turnaround time…

- Mrs Emily Groenewald, for her knowledgeable input into this study.

- Deidré Stroebel, for seeing and pursuing the opportunity to do research projects within the private practice set-up, and for her wealth of knowledge in paediatric amplification issues, encouragement, understanding, resources, mentorship, and friendship.

- Dr Martin van Zyl and Kate Smit from the University of the Free State, for their assistance in analysing the data.

- Widex Denmark and Widex SA for the provision of the hearing aids and financial assistance.

- All the subjects and their families who participated in this project, for their patience and willingness.

- The Carel du Toit Centre, for using their premises and equipment, and for their tolerance.

- Rossouw, for his love, encouragement, and understanding.

- My parents and friends, for their interest in the study and their support.
ABSTRACT

Conventional hearing aid circuitry is often unable to provide children with hearing loss with sufficient high frequency information in order to develop adequate oral language skills due to the risk of acoustic feedback and the narrower frequency spectrum of conventional amplification. The purpose of this study was to investigate word recognition abilities of children with moderate-to-severe hearing loss using hearing aids with linear frequency transposition. Seven children with moderate-to-severe sensorineural hearing loss between the ages of 5 years 0 months and 7 years 11 months were selected for the participant group. Word recognition assessments were first performed with the participants using their own previous generation digital signal processing hearing aids. Twenty-five-word lists from the Word Intelligibility by Picture Identification (WIPI) test were presented to the participants in three test conditions, namely: at 55 dB HL in quiet, 55 dB HL with a +5 dB signal-to-noise ratio (SNR) and at 35 dB HL. The participants were then fitted with an ISP-based hearing aid without linear frequency transposition, and the word recognition assessments were repeated with different WIPI word lists under the same conditions as the first assessment. Linear frequency transposition was then activated in the ISP-based hearing aid and different WIPI word lists were presented once more under identical conditions as the previous assessments. A 12-day acclimatization period was allowed between assessments, and all fittings were verified according to the DSL v5 fitting algorithm. Results indicated a significant increase of more than 12% in word recognition score for some of the participants when they used the ISP-based hearing aid with linear frequency transposition. A significant decrease was also seen for some of the participants when they used the
ISP-based hearing aid with linear frequency transposition, but all participants presented with better word recognition scores when they used the ISP-based hearing aids without linear frequency transposition compared to their previous generation digital signal processing hearing aids. This study has shown that linear frequency transposition may improve the word recognition skills of some children with moderate-to-severe sensorineural hearing loss, and more research is needed to explore the criteria that can be used to determine candidacy for linear frequency transposition.

Keywords: advanced digital signal processing, audiology, children with hearing loss, developed countries, developing contexts, evidence-based practice, hearing aids, linear frequency transposition, moderate-to-severe sensorineural hearing loss, paediatric amplification, Word Intelligibility by Picture Identification (WIPI), word recognition.
OPSOMMING

Konvensionele gehoorapparaat tegnologie is meestal nie instaat om kinders met gehoorverlies te voorsien van genoeg hoë frekwensie inligting nie. Hoë frekwensie inligting is noodskaaklik vir die normale ontwikkeling van orale spraak- en taalvaardighede, en kan beperk word as gevolg van die risiko vir akoestiese terugvoer en die kleiner frekwensie-spektrum van die gehoorapparaat. Die doel van hierdie studie was om woordherkenningsvaardighede van kinders met matig-tot-ernstige sensoriesneurale gehoorverlies wat gegaap is met gehoorapparate wat linière frekwensie transposisie inkorporeer, te onderzoek. Sewe kinders met matig-tot-ernstige sensoriesneurale gehoorverlies tussen die ouderdomme van 5 jaar 0 maande en 7 jaar 11 maande het deelgeneem aan die studie. Woordherkenning is eers getoets met die deelnemers se eie vorige generasie digitale seinprosessering gehoorapparate. Vyf-en-twintig-woord lyste van die Woordverstaanbaarheid deur Prent Identifikasie (WPI) toets is in drie toetssituasies aan die deelnemers aangebied, naamlik: eerstens teen 55 dB HL in stilte, dan teen 55 dB met ‘n sein-tot-ruis verhouding van +5 dB HL, en laastens teen 35 dB HL in stilte. Die deelnemers is daarna gegaap met derde generasie digitale gehoorapparate wat gebruik maak van geïntegreerde seinprosessering (ISP), en die WPI woordlyste is herhaal onder dieselfde toestande as vantevore, maar met ander woordlyste. Linière frekwensie transposisie is daarna gegaakte in die gehoorapparate, en die woordherkenningstoetse is weereens herhaal onder identieke toestande as vantevore, maar weer met ander WPI woordlyste. Tien dae is tussen die asseserings toegelaat vir akklimatisasie, en alle passings is geverifieer volgens die DSL v5 passingsformule. Resultate het aangedui dat sommige van die deelnemers ‘n betekenisvolle verbetering in woordherkenning van meer as 12% getoon het wanneer hulle die ISP-gehoorapparate gebruik het met linière frekwensie transposisie. Sommige van die deelnemers het ook met ‘n betekenisvolle verswakking in woordherkenning gepresenteer toe hulle die ISP-gehoorapparate met linière frekwensie transposisie gebruik het, maar alle deelnemers het beter woordherkenning met die ISP-gehoorapparate sonder linière frekwensie transposisie gehad in teenstelling met hulle eie vorige generasie gehoorapparate. Hierdie studie het aangedui dat linière frekwensie transposisie woordherkenningsvaardighede van
sommige kinders met matig-tot-ernstige sensoriesneurale gehoorverlies kan verbeter, en meer navorsing is nodig om die kriteria te ondersoek waarvolgens kandidaatskap vir linière frekwensie transposisie bepaal kan word.

Sleutelwoorde: bewys-gebaseerde praktyk, gehoorapparate, gevorderde digitale seinprosessering, kinders met gehoorverlies, linière frekwensie transposisie, matig-tot-ernstige sensoriesneurale gehoorverlies, ontwikkelde lande, ontwikkelende kontekste, oudiologie, pediatriese versterking, woordherkenning, Woordverstaanbaarheid deur Prent Identifikasie (WPI).
CONTENTS

CHAPTER 1: INTRODUCTION AND ORIENTATION

1.1 INTRODUCTION ... • 1
1.2 BACKGROUND AND RATIONALE ... • 2
1.3 RESEARCH QUESTION .. • 10
1.4 OUTLINE OF CHAPTERS ... • 12
1.5 DEFINITION OF TERMS ... • 13
1.6 ACRONYMS ... • 15
1.7 CONCLUSION ... • 15

CHAPTER 2: CHILDREN WITH MODERATE TO SEVERE SENSORINEURAL HEARING LOSS

2.1 INTRODUCTION ... • 17
2.2 PREVALENCE OF MSSHL IN CHILDREN • 18
2.3 AETIOLOGY OF MSSHL IN CHILDREN • 23
 2.3.1 Genetic syndromic hearing loss • 26
 2.3.2 Genetic non-syndromic hearing loss • 27
 2.3.3 Non-genetic causes of MSSHL in children • 30
2.4 OUTCOMES OF CHILDREN WITH MSSHL • 36
 2.4.1 Communicative outcomes of children with MSSHL • 42
 2.4.2 Educational outcomes of children with MSSHL • 47
 2.4.3 Socio-emotional outcomes of children with MSSHL • 49
2.5 CONCLUSION ... • 52

CHAPTER 3: THE RECOGNITION OF SPOKEN WORDS:
A DEVELOPMENTAL PERSPECTIVE

3.1 INTRODUCTION ... • 53
3.2 NORMAL DEVELOPMENT OF THE AUDITORY SYSTEM • 55
 3.2.1 Embryonic development and prenatal hearing • 56
 3.2.2 Postnatal maturation of the auditory system • 61
3.3 THE NEUROPHYSIOLOGY OF THE AUDITORY SYSTEM
 AND WORD RECOGNITION .. • 62
Chapter 3: The Effect of Deprivation on Word Recognition

3.3.1 The Cohort model .. 65
3.3.2 The TRACE model .. 66
3.3.3 The Shortlist model .. 67
3.3.4 The Neighbourhood Activation Model (NAM) and the Paradigmatic and Syntactic model (PARSYN) 67

3.4 The Effect of Deprivation on Word Recognition 68

3.5 Assessment of Word Recognition Skills in Children 71

3.5.1 Paediatric open-set word recognition assessments 73

3.5.2 Paediatric closed-set word recognition assessments 74

3.6 Conclusion ... 76

Chapter 4: Linear Frequency Transposition Technology and Children: An Evidence-Based Perspective

4.1 Introduction ... 77

4.2 Conventional Advanced Digital Signal Processing Schemes and Children 80

4.2.1 Directional microphone technology 82

4.2.2 Digital noise reduction ... 83

4.2.3 Spectral speech enhancement 83

4.2.4 Extended high frequency amplification 84

4.3 Frequency Lowering Technology 85

4.3.1 Terminology issues ... 86

4.3.2 Early frequency lowering strategies and their implementation in hearing aids 87

4.3.3 Linear frequency transposition 90

4.4 Conclusion ... 93

Chapter 5: Method

5.1 Introduction ... 94

5.2 Aims of Research ... 95

5.2.1 Main aim .. 95

5.2.2 Sub aims .. 95

5.3 Research Design .. 95
5.4 SUBJECTS

5.4.1 Selection criteria

5.4.2 Subject selection procedures

5.4.3 Sample size

5.5 DATA COLLECTION

5.5.1 Data collection apparatus

5.5.2 Data collection materials

5.6 RESEARCH PROCEDURES

5.6.1 Data collection procedures

 5.6.1.1 Phases 1 and 2: Assessments with previous generation digital signal processing hearing aids

 5.6.1.2 Phase 3: Third assessment with previous generation digital signal processing hearing aids

 5.6.1.3 Phase 4: Acclimatisation period

 5.6.1.4 Phase 5: Assessments with ISP-based hearing aids without linear frequency transposition

 5.6.1.5 Phase 6: Acclimatisation period

 5.6.1.6 Phase 7: Assessments with ISP-based hearing aids with linear frequency transposition

5.6.2 Procedures for data recording and analysis

 5.6.2.1 Recording of data

 5.6.2.2 Procedures for analysis of data

5.7 ETHICAL CONSIDERATIONS

 5.7.1 Autonomy

 5.7.2 Beneficence

 5.7.3 Justice

5.8 RELIABILITY AND VALIDITY

5.9 CONCLUSION

CHAPTER 6: RESULTS AND DISCUSSION

6.1 DISCUSSION OF RESULTS

 6.1.1 Description of the subjects
6.1.2 Word recognition scores of children using previous generation digital signal processing hearing aids................. • 118

6.1.3 Word recognition scores of children using ISP-based hearing aids without linear frequency transposition............ • 127

6.1.4 Word recognition scores of children using ISP-based hearing aids with linear frequency transposition............... • 134

6.1.5 A comparison of the word recognition scores obtained by the subjects using ISP-based hearing aids with and without linear frequency transposition.......................... • 139

6.2 CONCLUSION... • 146

CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS

7.1 INTRODUCTION.. 148

7.2 CONCLUSIONS.. 149

7.2.1 Word recognition skills of children using previous generation digital signal processing hearing aids........... • 149

7.2.2 Word recognition scores of children using ISP-based hearing aids without linear frequency transposition compared to previous digital signal processing hearing aids.. • 151

7.2.3 Word recognition scores of children using ISP-based hearing aids with linear frequency transposition and compared to ISP-based hearing aids without linear frequency transposition.. • 152

7.3 CLINICAL IMPLICATIONS... 154

7.4 CRITICAL EVALUATION OF THE STUDY............................... 155

7.5 RECOMMENDATIONS FOR FUTURE RESEARCH...................... 157

7.6 CLOSING STATEMENT... 158

REFERENCES.. 159

APPENDICES.. 193
LIST OF TABLES

CHAPTER 1: INTRODUCTION AND ORIENTATION

Table 1 Frequency lowering circuitries available at present………….. ● 8

CHAPTER 2: CHILDREN WITH MODERATE TO SEVERE SENSORINEURAL HEARING LOSS

Table 1 Prevalence data for children with moderate to severe hearing loss……………………………………………………..● 19
Table 2 The number of countries in the developing world………….. ● 20
Table 3 Prevalence data of moderate to severe hearing loss in developing countries…………………………………………………….. ● 22
Table 4 Estimated number of children (1000s) 0-19 years of age with MSSHL…………………………………………………….. ● 22
Table 5 The number of loci of causal genes………………………….. ● 27
Table 6 The genes and their loci responsible for prelingual MSSHL in children…………………………………………………….. ● 28
Table 7 The genes and their loci responsible for postlingual MSSHL in children…………………………………………………….. ● 28
Table 8 Prevalence of pre-, peri- and postnatal factors…………………….. ● 31
Table 9 Basic requirements of circuitry-signal processing…………… ● 40

CHAPTER 4: LINEAR FREQUENCY TRANSPOSITION TECHNOLOGY AND CHILDREN: AN EVIDENCE-BASED PERSPECTIVE

Table 1 Early frequency lowering circuitries……………………………… ● 87
Table 2 Case studies related to the use of the AE in children and adolescents…………………………………………………….. ● 91

CHAPTER 5: METHOD

Table 1 Subject group selection criteria………………………………… ● 98
Table 2 Assessment schedule for the subject groups…………………… ● 103
Table 3 The components of autonomy relevant to this study…………… ● 110
Table 4 Beneficence as a relative ethical principle for this study……… ● 111
Table 5 The three types of reliability in quantitative research methods…………………………………………………………• 112
Table 6 The controlling of extraneous variables in this study........... • 113

CHAPTER 6: RESULTS AND DISCUSSION

Table 1 Characteristics of the subjects (n=7)………………………………• 116
Table 2 A summary of the subjects’ own previous generation digital signal processing hearing aids………………………………• 118
Table 3 The SII calculated for soft and average speech sounds........ • 120
Table 4 Word recognition scores of subjects using previous generation digital signal processing hearing aids (n=7)………• 123
Table 5 Features of the ISP-based hearing aids………………………• 128
Table 6 The SII for soft and average input levels for the ISP-based hearing aids……………………………………………………• 129
Table 7 Word recognition scores of subjects using ISP-based hearing aids without linear frequency transposition (n=7)………• 131
Table 8 The linear frequency transposition start frequencies for each subject………………………………………………………• 135
Table 9 Word recognition scores of subjects using ISP-based hearing aids with linear frequency transposition…………………• 137
LIST OF FIGURES

CHAPTER 2: CHILDREN WITH MODERATE TO SEVERE SENSORINEURAL HEARING LOSS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aetiology of MSSHL</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>Variables related to the outcomes of children with MSSHL</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>The distribution of race in the South African population</td>
<td>37</td>
</tr>
<tr>
<td>4</td>
<td>The percentage of people using each of the eleven official languages at home</td>
<td>37</td>
</tr>
</tbody>
</table>

CHAPTER 3: THE RECOGNITION OF SPOKEN WORDS: A DEVELOPMENTAL APPROACH

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Audibility of the different speech sounds in the presence of MSSHL</td>
<td>70</td>
</tr>
</tbody>
</table>

CHAPTER 4: LINEAR FREQUENCY TRANSPOSITION TECHNOLOGY AND CHILDREN: AN EVIDENCE-BASED PERSPECTIVE

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Levels of evidence produced by clinical research</td>
<td>79</td>
</tr>
<tr>
<td>2</td>
<td>Grades of recommendation</td>
<td>79</td>
</tr>
<tr>
<td>3</td>
<td>A spectrogram of the word “monkeys” as spoken by a female talker</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>The extra speech cues provided by linear frequency transposition for the speech sound /s/</td>
<td>92</td>
</tr>
</tbody>
</table>

CHAPTER 5: METHOD

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>An overview of the research phases</td>
<td>102</td>
</tr>
</tbody>
</table>

CHAPTER 6: RESULTS AND DISCUSSION

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Discussion of the results according to the sub aims</td>
<td>115</td>
</tr>
<tr>
<td>2</td>
<td>Child A: aided thresholds</td>
<td>121</td>
</tr>
<tr>
<td>3</td>
<td>Child B: aided thresholds</td>
<td>121</td>
</tr>
<tr>
<td>4</td>
<td>Child C: aided thresholds</td>
<td>121</td>
</tr>
</tbody>
</table>
Figure 5 Child D: aided thresholds.. 121
Figure 6 Child E: aided thresholds.. 121
Figure 7 Child F: aided thresholds.. 121
Figure 8 Child G: aided thresholds.. 121
Figure 9 The difference between the test scores obtained for
the first, second and third test conditions.. 125
Figure 10 A comparison of the SII for soft speech levels and
the word recognition scores obtained.. 126
Figure 11 Child A: aided thresholds.. 130
Figure 12 Child B: aided thresholds.. 130
Figure 13 Child C: aided thresholds.. 130
Figure 14 Child D: aided thresholds.. 130
Figure 15 Child E: aided thresholds.. 130
Figure 16 Child F: aided thresholds.. 130
Figure 17 Child G: aided thresholds.. 130
Figure 18 A comparison between word recognition scores of
subjects across all the test conditions... 133
Figure 19 A comparison of the SII calculated for soft speech
input (55 dB SPL) and word recognition scores obtained
at 35 dB HL... 133
Figure 20 Child A: aided thresholds.. 136
Figure 21 Child B: aided thresholds.. 136
Figure 22 Child C: aided thresholds.. 136
Figure 23 Child D: aided thresholds.. 136
Figure 24 Child E: aided thresholds.. 136
Figure 25 Child F: aided thresholds.. 136
Figure 26 Child G: aided thresholds.. 136
Figure 27 A comparison of word recognition scores when using
an ISP-based hearing aid with linear frequency transposition. 138
Figure 28 A comparison of word recognition scores obtained
during the first test condition... 139
Figure 29 A comparison of the average word recognition scores
obtained during the first test condition.. 140
Figure 30 A comparison of word recognition scores obtained during the second test condition................................. • 141

Figure 31 A comparison of the average word recognition scores obtained during the second test condition................................. • 142

Figure 32 A comparison of word recognition scores obtained during the third test condition................................. • 142

Figure 33 A comparison of the average word recognition scores obtained during the third test condition................................. • 143

Figure 34 The number of subjects presenting with acceptable word recognition scores for the first test condition............. • 144

Figure 35 The number of subjects presenting with acceptable word recognition scores for the second test condition........... • 145