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SUMMARY 

The goal of this study was to investigate the methodology in designing a vowel 

intelligibility model that can objectively predict the outcome of a vowel confusion test 

performed with normal hearing individuals listening to a cochlear implant acoustic model.  

The model attempts to mimic vowel perception of a cochlear implantee mathematically. 

The output of the model is the calculated probability of correct identification of vowel 

tokens and the probability of specific vowel confusions in a subjective vowel confusion 

test.  In such a manner, the model can be used to aid cochlear implant research by 

complementing subjective listening tests.  The model may also be used to test hypotheses 

concerning the use and relationship of acoustic cues in vowel identification.  

 

The objective vowel intelligibility model consists of two parts: the speech processing 

component (used to extract the acoustic cues which allow vowels to be identified) and the 

decision component (simulation of the decision making that takes place in the brain).  

Acoustic cues were extracted from the vowel sounds and used to calculate probabilities of 

identifying or confusing specific vowels.  The confusion matrices produced by the 

objective vowel perception model were compared with results from subjective tests 

performed with normal hearing listeners listening to an acoustic cochlear implant model.  

The most frequent confusions could be predicted using the first two formant frequencies 

and the vowel duration as acoustic cues.  The model could predict the deterioration of 

vowel recognition when noise was added to the speech being evaluated.  The model 

provided a first approximation of vowel intelligibility and requires further development to 

completely predict speech perception of cochlear implantees. 

 Keywords:  cochlear implant, speech intelligibility, acoustic model, confusion matrix, 

acoustic analysis, objective speech perception model, objective speech intelligibility model 
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OBJEKTIEWE BEPALING VAN VOKAAL VERSTAANBAARHEID VAN ’N 

KOGLÊERE INPLANTINGMODEL deur Joe van Zyl 

Studieleier:  Prof JJ Hanekom 

Departement Elektriese, Elektroniese en Rekenaar-Ingenieurswese 

Meester van Ingenieurswese (Bio-Ingenieurswese) 

OPSOMMING 

Hierdie studie het ten doel gehad die ondersoek na die metodologie in die ontwerp van ’n 

vokaal-verstaanbaarheidsmodel wat die uitkoms van ’n vokaal-verwarringstoets kan 

voorspel wat toegepas is op normalhorende persone wat na ‘n koglêere inplantingsmodel 

luister.  Die model poog om die vokaalpersepsie van ’n persoon met ’n koglêere 

implanting wiskundig na te boots.  Die uitsette van die model verteenwoordig die 

wiskundige waarskynlikhede vir die identifikasie van vokaalklanke deur ’n persoon met ’n 

koglêere implanting, en die waarskynlikheid van spesifieke vokaalverwarrings.  Die model 

kan gevolglik gebruik word om koglêere prostese navorsing te baat deur subjektiewe 

gehoortoetse te vervang of aan te vul.  Die model kan ook gebruik word om hipoteses te 

toets rakende die gebruik en verwantskap van akoestiese leidrade in vokaalherkenning. 

 

Die objektiewe vokaal-verstaanbaarheidsmodel bestaan uit twee dele: die spraak 

prosseseringskomponent (word gebruik om die akoestiese leidrade te ontleed wat toelaat 

dat vokale geidentifiseer kan word); en die besluitskomponent (simulasie van die 

besluitneming wat in die brein plaasvind).  Akoestiese leidrade is uit die vokaalklanke 

geneem en is gebruik om die waarskynlikhede vir die identifisering of verwarring van 

spesifieke vokale te bereken.  Die verwarringsmatrikse wat voortgebring is deur die 

objektiewe vokaalwaarnemingsmodel is vergelyk met die resultate van die subjektiewe 

toetse toegepas op normaalhorende persone wat geluister het na die akoestise koglêere 

inplantingmodel.  Die mees dikwelse verwarrings kon voorspel word deur die eerste twee 

formant frekwensies en die vokaaltydsduur te gebruik as akoestiese leidrade.  Die model 

kon die verslegting in vokaalherkenning voorspel, wanner ruis toegevoeg is tot die spraak 

wat beoordeel moes word. Die model was ’n eerste stap na redelike 

vokaalverstaanbaarheid en benodig verdere ontwikkeling om die spraakpersepsie van 

persone met koglêere inplantings te voorspel.  
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List of abbreviations 
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CI    Cochlear implant 

CIs  Cochlear implants 

CIS Continuous Interleaved Sampling (Cochlear implant speech processing algorithm) 

dB   Decibels 

DTW  Dynamic Time Warping 

F1   Formant 1 Frequency 

F2   Formant 2 Frequency 

FITA  Feature Information Transmission Analysis 

HMM  Hidden Markov Model 

Hz   Hertz 

jnd   just noticeable difference 

LPC  Linear Predictive Coding 

MFCC   Mel Frequency Cepstral Coefficients 

MPEAK Multi Peak (Cochlear implant speech processing algorithm) 

ms   millisecond(s) 

pdf  probability density function 

RMS  Root-Mean-Square 

SNR  Signal to Noise Ratio 

SPEAK  Spectral Peak (Cochlear implant speech processing algorithm) 

TEC  Token Envelope Correlation 
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CHAPTER 1   INTRODUCTION 

1.1 BACKGROUND AND SCOPE OF WORK 

 

This dissertation investigates the methodology in developing an objective vowel 

intelligibility model which can predict vowel recognition and confusion of normal hearing 

individuals listening to a cochlear implant (CI) acoustic model.  The model can be used to 

evaluate the effect of acoustic cue information on vowel identification and to predict 

confusions which might occur under specific testing conditions.  Such a model can benefit 

cochlear implant development by substituting or complementing time-consuming 

subjective testing done with cochlear implantees. 

 

Before discussing the issues concerning the evaluation of speech intelligibility for cochlear 

implantees however, it is necessary to provide the reader with background information on 

speech perception, cochlear implants, cochlear implant evaluation, and other related issues 

that are relevant for this study. 

1.1.1 Physiology of Hearing 

 

In a normal functioning ear, sound waves from the outer ear are transformed into 

mechanical displacement of the ossicular chain (malleus, incus and stapes) in the middle 

ear. (See Figure 1.1).  The ossicular chain is connected to the oval window of the fluid-

filled inner ear or cochlea and the displacement of the ossicles generates movement in the 

fluid. Resulting pressure variations cause displacement of the basilar membrane and 

subsequent deformation of the cochlear hair cells. The nature and magnitude of such 

deformation is determined by the spectral and temporal characteristics of the acoustic 

signal. Deformation of cochlear hair cells in turn initiate action potentials in associated 

nerve fibres, thereby encoding information regarding the original signal.  Auditory 

perception is achieved as a result of the interpretation of these neural signals in the 

auditory cortex of the brain (Marieb, 2004). 
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Figure 1.1  Physiology of the human ear.  Used with permission from 

http://www.tchain.com/otoneurology/testing/hearing_test.htm. 

1.1.2 Cochlear Implants 

 

Although hearing impairments can result from damage to the auditory nerve, Hinojosa and 

Marion (1983) showed that the loss of cochlear hair cells, rather than the loss of auditory 

nerve fibres, is the most common cause of deafness.  Loss of or damage to cochlear hair 

cells results in the failure of the auditory system to transform acoustic pressure waves to 

neural action potentials accurately, thereby causing hearing impairment (Ohlemiller and 

Gagnon, 2004).  This is good news for the hearing-impaired: by inserting a prosthetic 

hearing device into the inner ear the auditory neurons can be stimulated directly (Loizou, 

1999b; Whitlon, 2004).  Today, cochlear implants allow profoundly deaf individuals to 

partially regain their sense of hearing (Loizou, 1998). 

  

The objective of the cochlear implant is to mimic the function of a healthy cochlea (Clark, 

2003; Loizou, 1998; Loizou, 1999a; Waltzman and Cohen, 2000).  A cochlear implant 
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consists of an external and an internal part.  The external unit of the device comprises a 

microphone, speech processor and a transmitting module. Figure 1.2 shows all the main 

components of the cochlear implant. 
 

 

Figure 1.2  ESPrit 3G and Nucleus 22 cochlear implant system. The components are: 1. The 

electrode array (which is placed in the inner ear). 2. The receiver for the electrode array. 3. 

The speech processor 4. Transmitting module and 5. Microphone (worn behind the ear).  

(Used with permission from http://www.cochlear.com)  

 

The microphone receives the acoustic signal from the environment and conveys it to the 

speech processor. The speech processor performs a complex signal processing strategy 

which includes signal analysis, compression and filtering.  The reader is encouraged to 

consult Loizou (1998) for more information.   

 

In simple terms the speech processor’s main function is the separation of the input signal 

into its frequency components (Loizou, 1998), similar to the way a healthy cochlea would 

respond to acoustic input (Yost, 2006).  Once the input has been separated into frequency 

bands, the speech processor calculates an indication of the energy within each band.  The 

output signals are sent to the transcutaneous transmitting module, which allows signals to 

be transferred wirelessly to the internal components.  The internal receiver-stimulator uses 

the energy of each filter band to modulate pulsatile signals that are applied to specific 

electrodes of the electrode array inserted into the scala tympani in the cochlea. 
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Figure 1.3.  Representation of how the electrodes of a cochlear implant fits into the cochlea. 

(With permission from http://www.sciencenow.org.au/bionic_ear/bionic_ear_institute.htm)  

 

Figure 1.3 gives a representation of how a typical electrode array fits into the cochlea.  The 

electrode array consists of multiple electrodes, which, upon activation, stimulate specific 

regions of the auditory nerve fibres according to the spectral properties of the input signal. 

Successful functioning of the cochlear implant, therefore, requires sufficient auditory 

neuron survival in the vicinity of the inserted electrode array after damage to the cochlea or 

loss of neurons has occurred (Shepherd, Hatsushika and Clark, 1993; Shepherd and 

McCreery, 2006).  Once stimulated, the nerve fibres fire and propagate neural impulses to 

the brain.  The brain in turn interprets these pulses as sounds (Loizou, 1998).   

1.1.3 Speech Perception of Cochlear Implantees 

 

Although a cochlear implant enables a profoundly deaf individual to perceive speech to an 

extent that allows for meaningful participation in conversation, the quality of speech 

perception is not comparable to that of normal hearing listeners (Fu and Shannon, 1998; 

Fu, Shannon and Wang, 1998a). Cochlear implants have proven to be particularly 

successful in quiet environments,  although there is still a lot of variation in performance 

between CI users.  This variability may be due to patient-related factors (such as the type 

of  hearing loss, the duration of deafness, the health and the location of the remaining 

auditory neurons, the insertion depth of the electrode array, amongst others) and/or to 
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processor-related factors (such as the number of electrodes/channels, the stimulation rate, 

the frequency-to-electrode allocation, etc.) (Liu and Fu, 2007). Cochlear implantees still 

have difficulty in recognizing speech in the presence of noise.  Normal hearing listeners 

have the ability to mask background noise in order to still maintain a high level of speech 

perception.  This can, in part, be attributed to parameters that affect spectral resolution, 

which is dependant on the number of electrodes of the cochlear implant, the restrictions of 

the bio-physical interface and the processing strategy (Fu and Shannon, 2000; Holden, 

Skinner, Holden and Demorest, 2002; Zeng, Grant, Niparko, Galvin III, Shannon, Opie 

and Segel, 2002). 

 

Continuous studies are being conducted to determine if the acoustic cues in speech  known 

to aid speech perception for normal hearing listeners are actually available to cochlear 

implantees.  Although many studies have been completed and a vast array of knowledge 

has been compiled on speech perception, we do not know the relative relationship of 

acoustic cues and cochlear implant parameter settings that can optimally be employed by 

cochlear implantees to understand speech.  Understanding the use of acoustic cues by 

cochlear implantees can aid in the improvement of current cochlear implant speech 

strategies.  This can also be beneficial  in other areas such as automatic speech recognition 

algorithms and speech synthesis. 

 

In general, speech performance is strongly influenced by parameters that affect the spectral 

resolution (for example, the number of electrodes/channels). For both CI users and normal 

hearing subjects listening to an acoustic model of a CI, speech recognition improves with 

increasing numbers of spectral channels in the absence of any additional noise added to the 

signal (Liu and Fu, 2007). 
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1.1.4 Evaluation of Speech Intelligibility of Cochlear Implantees 

 

Subjective listening tests are traditionally used to measure the effect on speech perception 

when changing processor parameters of a cochlear implant or manipulating the speech 

input signal.  Subjective testing is based upon statistical information gathered from having 

human subjects evaluating sets of speech tokens (for example, groups of vowels, 

consonants or sentences).  The output of these tests are often presented as confusion 

matrices or recognition trends against some parameter setting (Van Wieringen and 

Wouters, 1999).  The results are valuable to researchers because they highlight information 

on speech perception that can be used for furthering cochlear implant development. 

 

Speech recognition is measured through listening tests in a controlled environment such as 

a sound-proof room.  These tests, however, require considerable effort and time in order to 

form a conclusive result.  A number of cochlear implanted subjects are necessary with each 

individual spending up to a few hours listening to each condition of an experiment, which 

may include hundreds of repetitions of vowels, consonants and/or short sentences.  In order 

to measure speech intelligibility on a regular basis, it is advantageous to avoid the time-

consuming and expensive procedures of subjective determination of speech intelligibility. 

 

In recent years, using acoustic models to test normal-hearing subjects for cochlear implant 

research is a widely used and well-accepted method for determining the effect of chosen 

parameters on speech intelligibility in cochlear implants (Dorman, Loizou, Spahr and 

Maloff, 2002; Svirsky, 2000; Van Wieringen and Wouters, 1999).  An acoustic model of a 

cochlear implant is an algorithm that processes speech exactly like a cochlear implant 

processor, but, unlike the processor, additionally includes a model of the biophysical 

interface.  It is used to present cochlear implant-like sound to normal-hearing persons.  

There are numerous advantages in using normal-hearing subjects listening to acoustic 

models in CI research.  Normal-hearing subjects are more numerous and easier to recruit, 

the experimental setups tend to be less involved, and there are fewer subject variables 

(such as the experience of the user with cochlear implant devices, the type of implanted 

device, the cause of deafness, and the quality of implantation) that affect an individual 
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user’s performance.  These types of tests have been used in numerous studies and have 

been verified to provide good predictions of parameters measured with cochlear implantees 

in a number of instances (Fu and Shannon, 2000; Fu et al., 1998a; Van Wieringen and 

Wouters, 1999). 

 

Although acoustic models make research into speech perception and parameter settings 

easier, objective speech intelligibility prediction models can take this evolution one step 

further, by replacing the normal-hearing listener with an algorithm that listens to the output 

of the acoustic model.  An objective speech prediction model attempts to mimic the 

transducing of acoustic information in the ear and the cognitive processing in decision-

making of a listener identifying a vowel sound.  Such a model predicts the psychophysical 

performance of a listener in vowel or consonant identification, and may give further insight 

into the acoustic cues hypothesized to be relevant.  An objective speech quality or 

intelligibility measurement system cannot replace the human brain in the perception of 

speech, but it can give a good estimation of the possible reaction of a listener in a specific 

experiment as a first approximation.  

 

Most speech intelligibility prediction models are usually only developed for listeners with 

normal hearing (Beerends, Hekstra, Rix and Hollier, 2002; Vainio, Suni, Jarvelainen, 

Jarvikivi and Mattila, 2005; Voran, 1999a).  Only a small body of research is available that 

attempts to predict speech intelligibility for cochlear implantees (Remus and Collins, 2004; 

Svirsky, 2000).  An objective speech evaluation method for CI users may save production 

development time in devising new speech processing algorithms by minimizing the time-

consuming subjective testing that needs to be done in intermediate development steps.  For 

every change made to a cochlear implant processor, subjective testing needs to be 

performed with cochlear implantees or normal hearing listeners using an acoustic model.  

An objective speech evaluation method could speed up the development process by cutting 

down on the time-consuming subjective evaluations.   

 

The problem addressed in this thesis is the development of a methodology that may be 

used to predict vowel intelligibility of severely degraded sound (as would be received at 

the output of a CI acoustic model).  Often speech recognition in cochlear implantees is 
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assessed through vowel and consonant confusion and sentence recognition tests (Loizou, 

Dorman, Poroy and Spahr, 2000; Loizou, Dorman and Powell, 1998; Loizou and Poroy, 

2001b; Pretorius, Hanekom, Van Wieringen and Wouters, 2006; Van Wieringen and 

Wouters, 1999).  The present study considers only vowel recognition. Although vowel and 

consonant intelligibility cannot be seen to be independent predictors of speech 

intelligibility, this is a first step towards developing algorithmic means of predicting 

speech intelligibility of cochlear implant speech. The eventual goal is not to replace 

subjective testing with testing using cochlear implantees completely, but, rather, to use an 

objective model for a first approximation of the possible results when developing new 

cochlear implant speech processing algorithms or testing a specific hypothesis. This 

method is developed by using an existing acoustic model (developed in our research group, 

but unpublished) for a cochlear implant together with signal processing and statistical 

theory.  The rest of the chapter will be devoted to the elaboration of the problem, the 

approach followed in solving it, and the specific research questions considered in this 

study. 

1.2 APPROACH 

 

The model proposed in this study attempts to approximate the outcomes of vowel 

confusion tests that are used traditionally in experiments with profoundly deaf individuals 

(Blamey, Dowell and Brown, 1987; Ferguson and Kewley-Port, 2002; Fu et al., 1998a; 

Pretorius et al., 2006; Skinner, Fourakis, Holden, Holden and Demorest, 1996; Tyler, Tye-

Murray and Otto, 1989; Van Wieringen and Wouters, 1999).  The results of these tests 

provide information on the confusions that an individual might experience between 

different vowel or consonant sounds.  This study will focus on developing an objective 

method that predicts the outcome of vowel confusion tests specifically.  Figure 1.4 shows 

an outline of the approach followed in the development of the objective vowel prediction 

model. 
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Figure 1.4.  Outline of the approach to the development of a method appropriate for 

quantifying vowel intelligibility of cochlear implantees. 

 

The input (pre-recorded vowel sounds) to the vowel perception model will first be 

processed through an acoustic model of a cochlear implant.  The acoustic cochlear implant 

model transforms a sound signal through the same processing steps as in a cochlear 

implant.  Biophysical interactions between simulated nerve fibres and the cochlear implant 

are also simulated by including models of these interactions in the acoustic model.  This 

produces an output simulating the speech as heard by a cochlear implant user.  The 

acoustic model (unpublished) used for this study was developed in our research group.  

Given the highly degraded nature of the speech at the output of the acoustic model, an 

unprocessed version of the vowel token is also used as a input for reference purposes.  

(This is explained in more detail later in this document.) 

 

Various methodologies are implemented to predict speech perception in current objective 

perceptual models.  Most of these models are comprised of two components:  The 

processing component and the decision component.  The processing component either 

extracts some information from the signal for evaluation or uses various signal processing 

transformations to prepare the speech token for evaluation.  Perceptual processes that are 

most important to vowel or consonant discrimination, such as masking and loudness 

mapping, are usually implemented (Beerends et al., 2002; Voran, 1998).  The present study 

focuses on acoustic cues that listeners use to identify vowel sounds and that, therefore, are 

assumed to be important in vowel confusion experiments.  These cues are extracted from 

each of the vowel sounds and used to generate a three dimensional vowel space.  The 

features in the vowel sound that mask these acoustic cues are also extracted and used as 

uncertainty factors.  The larger the uncertainty factor is, the larger the probability of 

confusion of vowels is going to be. 
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The decision component normally performs calculations in the form of spectral analysis or 

a difference measure between a reference token and a degraded token (Beerends et al., 

2002; Remus and Collins, 2004; Svirsky, 2000; Voran, 1999c).  Various methods such as 

neural networks or Hidden Markov Models (HMMs) have been used to improve the 

accuracy of results obtained in speech perception models (Chang, Anderson and Loizou, 

2001; Remus and Collins, 2005).  In the present study, signal detection theory is utilized to 

determine the perceptual distance between tokens. The measured information of the 

acoustic cues and the uncertainty factors are used to calculate multidimensional probability 

density functions in order to predict the probability of confusing the different vowel sounds 

with each other.  The probability of confusing each vowel with all other vowels is 

calculated and documented in a confusion matrix. 

 

Most other speech evaluation models provide a single score (percentage correct) as an 

output (Beerends et al., 2002; Rix, Beerends, Hollier and Hekstra, 2001; Thorpe and 

Wonho, 1999a; Voran, 1999a; Werner, Kamps, Tuisel, Beerends and Vary, 2003); the 

model in this study, however, attempted to produce an entire confusion matrix.  Only two 

published models appeared to be available at the time of writing that produced results in a 

similar way (Remus and Collins, 2004; Svirsky, 2000).  The predicted confusion matrix is 

used to approximate specific vowel confusions and the percentage correct answers that a 

cochlear implantee might produce for each vowel token.   

 

The confusion matrices obtained from the new objective method were evaluated and 

compared to subjective test results through information transmission analysis using the 

same speech tokens as input.  Information transmission analysis is used to determine how 

well acoustic cues were transmitted to the listener (Miller and Nicely, 1955).  The tests 

were first completed with noiseless speech tokens and then with added multi-speaker 

babble background noise at different Signal to Noise Ratios (SNRs).  A comparison is also 

made between each of the different tests using information transmission analysis.  The 

variation of the percentage of correct answers as the SNR changes is also compared 

between the prediction model and the subjective tests.  This is done to determine whether 

the model followed the trends of actual subjective tests at different SNRs which simulate 
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real world scenarios.   

1.3 HYPOTHESIS AND RESEARCH QUESTIONS 

 

The hypothesis in the present study is that an objective vowel intelligibility prediction 

model can be used to give an approximation of how well implantees will perform in 

subjective listening tests and of how well listeners with normal hearing will perform when 

listening to vowels degraded by an acoustic model of a cochlear implant.  This study tested 

this hypothesis specifically for a objective vowel intelligibility model that is based on some 

of the acoustic cues generally accepted to be used by the listeners to recognize vowel 

sounds.   

 

The results of this new model are compared with results of subjective vowel confusion 

tests conducted on normal hearing listeners listening to an acoustic cochlear implant 

model.  Such a test gives developers insight into not only the performance of a cochlear 

implant speech strategy but also into which types of signal information are transmitted to 

the electrically-stimulated auditory system.  Once the model is refined, these confusion 

results can aid in setting specific parameters of a cochlear implant for a specific individual 

and provide speech perception information for researchers.   

 

The second hypothesis tested in this study is that the general trend of a vowel confusion 

matrix can be predicted by the vowel prediction model.  A reliable prediction of this trend 

is more desirable than merely predicting a percentage of correct answers. 

 

Furthermore, this study investigates the trend of vowel prediction by the model when 

background noise is added to the input vowel tokens.  The hypothesis is that the vowel 

tokens are recognized more poorly than in high fidelity speech because the acoustic cues 

are masked by the noise.  This deterioration can be predicted by selecting the appropriate 

cues and using signal detection theory to calculate a probability.   The model will measure 

the disintegration of the spectral qualities of the vowel token as background noise is added, 

especially in terms of the lack of spectral contrast which has been shown to cause 
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ambiguity in speech recognition (Leek, Dorman and Summerfield, 1987; Leek and 

Summers, 1996b; Loizou and Poroy, 2001a).  The new objective method should be able to 

predict this decline at different signal to noise ratios. 

 

Specifically, the research questions investigated in this dissertation are: 

 Will an objective vowel intelligibility model, implementing acoustic cue analysis, 

provide an approximation to the percentage of correct answers by normal hearing 

listeners listening to an acoustic CI model in  subjective speech evaluation tests? 

 Can such a model also predict the most frequent confusions made by these 

listeners? 

 Will such a model adequately predict the deterioration of these results in the 

subjective evaluation test when noise is added to the vowel tokens?  

 If uncertainty factors are used to calculate standard deviation in the vowel 

confusion probabilities, which uncertainty factor will perform better in predicting 

subjective testing results? 

1.4 OBJECTIVES 

 

The overall objective of this study is to build upon existing speech prediction models to aid 

engineers and scientists in cochlear implant speech processor design.  Techniques were 

developed to assess the speech intelligibility of the vowel sounds received by listeners 

listening to an acoustic CI model.  To achieve these goals, speech processing and statistical 

tools were utilized along with an existing acoustic CI model to form a new objective vowel 

prediction model. 

 

More specifically this study had two primary objectives.  The first objective was to 

determine which acoustic cues are used by listeners to identify degraded vowel sounds.  

Previous studies performed with cochlear implant users were researched to establish which 

acoustic cues in speech aid vowel identification.  The research study also explores the 

methodologies and techniques used by current objective speech prediction and recognition 
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models.  In addition to this, an investigation was done to identify factors that may 

contribute to vowel confusions for cochlear implant users.   

 

The second objective concerns the development and evaluation of a new objective vowel 

prediction model for cochlear implant research.  In particular the objective is to develop an 

algorithm that (i) extracts important acoustic cues from degraded vowel sounds, (ii) 

calculates the uncertainty level of the acoustic cue being used for identification, (iii) uses 

statistical analysis to form a confusion matrix which approximates the results of a 

subjective speech evaluation test, and (iv) compares these results with those obtained in 

subjective tests for high-fidelity and noise-degraded speech. 

1.5 OUTLINE 

 

In the following chapters, the process for the development of a new objective vowel 

prediction model for cochlear implantees is given.  Before any development on the model 

could be done, a thorough background study was conducted.  This investigation is 

summarized in the literature study in chapter 2.  Speech perception is discussed, especially 

the cues used by cochlear implantees to identify a vowel sound.  Current speech 

recognition and prediction models are also studied, including the methodologies that have 

been followed in their implementation, and the results produced by these methods.  From 

the literature study, opportunities are identified for the development of a new vowel 

prediction model.  

 

The methodology in developing an objective vowel intelligibility prediction model is 

described in chapter 3.  All the individual steps implemented in the method are described 

in detail and the reasoning behind the choice of the specific implementation is also given.  

The new method is based on vowel confusion tests which are commonly performed with 

cochlear implant users.  The output of this method is no longer a single score but, rather, a 

confusion matrix which shows the uncertainty an individual would have in identifying 

presented vowels.   
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The results obtained from the model developed in chapter 3 are reported and evaluated in 

chapter 4.  These results are compared to results gained from subjective confusion listening 

tests.  Various analyses are performed on the confusion matrices to determine how much 

information transmitted by the acoustic cues are used by the new model.  The results are 

then compared to subjective testing with simulated cochlear implantees, i.e. normal hearing 

participants listening to an acoustic CI model.  The experiments are first performed with 

clean speech (no noise added) followed by speech with different levels of background 

noise added.  

 

The relation of this study to the literature available at present is discussed in chapter 5.  

Insights gained into various aspects of speech perception are reported and the implications 

of what was learnt from this study are discussed.  Conclusions are drawn from the results 

achieved and the objectives that were met by the completion of this study are summarized.  

The contribution of this study to the current state of literature is also presented in this 

chapter.   

 

Finally, in chapter 6, the study and all important findings are summarized.  Possible 

improvements that can be made to the model, as well as any suggested studies that might 

follow from this dissertation brings the study to a conclusion. 
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CHAPTER 2   LITERATURE STUDY 

2.1 CHAPTER OBJECTIVES 

 

The previous chapter outlined the study.  The problem introduced was how to predict 

objectively speech intelligibility of individuals fitted with cochlear implants.  To solve this 

problem, it is necessary to gain insight into previous work.  A thorough discussion of the 

relevant literature is given in this chapter.  Gaps in the current knowledge will become 

apparent from the material discussed here.  This chapter includes information on the 

mechanisms that listeners use to identify vowel sounds and how these and signal detection 

techniques have been applied to current objective intelligibility prediction models. 

2.2 INTRODUCTION 

 

A vowel intelligibility prediction model aims to predict how a listener, or in this study’s 

case a cochlear implantee, would identify a vowel sound.  The goal of this study is to learn 

more about how acoustic cues are used together to determine the identity of a vowel sound 

and to do an investigation into how current vowel intelligibility models are implemented. 

 

The first part of the literature study focuses on what the acoustic cues in vowel sounds are 

that are thought to be used by normal hearing and cochlear implanted listeners.  It will also 

focus on how these cues work together to form a perceptual vowel space in order for a 

listener to make a decision in interpreting the sound.  

 

Since cochlear implantees have difficulty in discriminating speech in the presence of noise 

the effect of noise on discrimination of sound cues will be investigated.  This study is 

extended to include other factors that influence confusion of vowel sounds and to 

investigate why vowel discrimination deteriorates in the presence of noise.  Specific 

questions are: Is there spectral or temporal information in a vowel sound that assists a 

normal-hearing individual in speech perception under noisy conditions that is not available 
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to cochlear implantees?   How can the deterioration of vowel intelligibility with added 

background noise be captured into an objective evaluation method?  Answers to these 

questions can be incorporated into a vowel intelligibility model in order to improve 

predictions of the model in the presence of additional noise.  

 

In general, objective speech evaluation tests have been developed to refine subjective 

testing or to replace subjective tests completely, to standardize results and speed up the 

testing procedures.  The literature study considers techniques used in current speech 

intelligibility prediction methods. This study examines speech evaluation methods 

designed to predict speech intelligibility for cochlear implantees. It also considers what 

types of results these methods provide. 

 

It will become apparent why research into a vowel intelligibility model for cochlear 

implantees is necessary.  The study will also show how such a method can aid the 

improvement of cochlear implants.   

2.3 CUES USED FOR VOWEL IDENTIFICATION 

 

Many speech quality or intelligibility methods use signal processing on the acoustic signal 

as a means to measure speech quality or intelligibility.  The present study, however, 

attempts to create a vowel intelligibility model that emulates the psychoacoustic processes 

that a listener would use to interpret a vowel sound.  First, the mechanisms underlying 

human vowel recognition are considered. 

2.3.1 Formant Frequencies 

 

It has long been recognized that a primary acoustic cue aiding a listener in identifying a 

vowel sound are peaks in the spectrum called formants (Hillenbrand, Getty, Clark and 

Wheeler, 1995; Kewley-Port and Watson, 1994; Kewley-Port and Zheng, 1999; Liu and 

Kewley-Port, 2004b).  The original study conducted by Peterson and Barney (1952) is still 

one of the most frequently quoted articles on the perception of vowels. Peterson and 

Barney measured the formant frequencies of vowel sounds and presented these vowels to 
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listeners in order to determine how vowel identification is correlated to the formant 

frequencies. The noise conditions of the sound recordings were not documented.  The 

frequency measurements of the first two formants, Formant 1 (F1) and Formant 2 (F2), 

were taken at a single time slice of a vowel sound as spoken between two consonants ‘h’ 

and ‘d.’  An average of these formant frequencies was used to create a F1-F2 vowel space 

which showed the separation of vowels based on their formant frequencies.  The results of 

the measurement study showed a strong relationship between the results of the listening 

test and the separation by formant frequencies.  The overall error rate when listening to the 

vowel sounds was 5.6% and nearly all confusions involved confusions between adjacent 

vowels in the vowel space (Peterson and Barney, 1952). 

 

This study was repeated and expanded by Hillenbrand et al.  (1995). The researchers came 

to the same conclusion that formant frequencies are the most important factors in the 

recognition of vowel sounds.  Hillenbrand and colleagues used a large group of speakers to 

take measurements of vowel duration, F0 contours, and formant frequencies.  It was 

however found that the F1-F2 perceptual space was more crowded (vowels lay closer 

together) than the initial study by Peterson and Barney (1952).  They concluded that 

formant frequencies are not the only acoustic cues used since a few of the vowels were 

well recognized in spite of lying very close together in the F1-F2 space.  It could also mean 

that the vowel space is not orthogonal as assumed in the study. 

 

The study performed by Remez, Rubin, Pisoni and Carrell (1981) supported the formant 

frequency theory and another approach of testing the hypothesis.  Their study showed that 

speech synthesized from formant frequencies only (in terms of three-tone sinusoidal 

replicas) had sufficient information to convey a vowel’s identity, despite removal of the 

rest of the spectral information.  

 

There can be as many as five formants in a vowel sound, although it is still widely 

accepted among researchers that the frequencies of the lower formants (F1, F2, and 

sometimes F3) are the most important acoustic cues in identifying a vowel correctly, also 

by cochlear implantees (Delgutte, 1984; Greenberg, Ainsworth, Popper and Fay, 2004; 

Klatt, 1982; Summerfield and Assmann, 1989; Van Wieringen and Wouters, 1999).  Van 
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Wieringen and Wouters (1999) specifically showed that the primary acoustic cues used by 

Laura cochlear implantees to identify vowels are the F1 frequency and vowel duration.  

This was done by presenting vowel sounds to twenty-five Laura cochlear implantees and 

analyzing the stimulus-response confusion matrices in terms of information transmission 

scores. 

2.3.2 Duration 

 

Although the spectral properties in the form of formant frequencies are considered to be 

the primary acoustic property, other properties have also been found to aid vowel 

discrimination.  Results by Hillenbrand et al. (1995) showed that inclusion of duration in 

the parameter set resulted in consistent improvements in performance, especially when 

used only with the lower formant frequencies. 

 

Similar findings were reported by Hillenbrand, Clark and Houde (2000). The results 

showed a modest but consistent improvement in classification accuracy with the addition 

of duration measures.  In the study it was found that vowels were recognized well even 

when their original duration was altered (decrease of 5% accuracy), although there were a 

number of vowel sounds that were severely affected by changes in their duration.  A study 

of Australian English vowels by Watson and Harrington (1999) showed an improvement in 

classification accuracy when duration measures were used to augment formant testing. 

 

Recent experiments have shown that normal-hearing individuals and cochlear implant 

users make similar use of duration as cues for vowel discrimination (Iverson, Smith and 

Evans, 2006).  The study by Van Wieringen and Wouters (1999) concluded that duration 

along with the F1 frequency are the most important acoustic cues used by Laura cochlear 

implantees for vowel identification. 
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2.3.3 Formant Movement  

 

Formants are not always steady throughout the duration of a spoken vowel.  In some vowel 

sounds there exists some formant movement in frequency over the duration of the sound.  

The effect of formant contour was tested by Hillenbrand and Nearey (1999).  They asked 

listeners to identify naturally produced nonsense ‘h’-vowel-‘d’ words using two 

synthetically generated versions.  One set of synthesized signals was generated using the 

original measured formant contours and a second set of signals was synthesized with 

constant flat formants.  When no additional noise was incorporated into the stimuli 

presented to the listeners, it was found that vowel recognition accuracy declines by about 

15 to 23 percentage points when vowel formant movement is flattened in synthesized or 

signal processed speech (Assmann and Katz, 2005; Hillenbrand and Nearey, 1999).  It has 

also been shown that vowels can be recognized even when the relatively steady-state 

portions, where the formant frequencies meet their targets, have been removed (Strange, 

1989). 

 

Iverson and colleagues (Iverson et al., 2006) performed experiments with post-lingually 

deafened cochlear implantees to test their use of formant movement and duration as 

acoustic cues.  The study suggested that patients with cochlear implants use formant 

movement and duration cues to the same extent as do normal-hearing listeners.  

Experiments showed that removing both formant movement and duration reduced vowel 

recognition accuracy for cochlear implant users by an average of 29.4%.  In a second 

experiment, cochlear implantees were asked to rate words that had modified combinations 

of formant frequencies, formant movement and durations.  It was found that the cochlear 

implantees’ preferences for those secondary acoustic cues were less consistent than for the 

F1 and F2 frequencies. 

2.3.4 Consonant-Formant Transitions 

 

Studies have shown that normal-hearing listeners can correctly identify the vowel sound 

between two consonants even when the central part of the vowel is silenced (Jenkins, 

Strange and Edman, 1983; Strange, 1989).  This is so because there exist transitions to and 
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from formants to consonants which can give indication to listeners as to the identity of the 

vowel sound.  Along with the duration cue it was found that listeners could identify vowels 

at almost 100% accuracy.  Even when the duration cue was removed (that is, the consonant 

transitions linked to each other), vowel identification was still 70% accurate. 

 

Since these formant transitions happen very rapidly, it seems uncertain whether a cochlear 

implantee would be able to use these transitions as acoustic cues for vowel identification.  

It has, however, been established that cochlear implant users are able to recognize vowels 

above the chance level (averages being between 40 and 50%) based only on consonantal 

formant transitions (Kirk et al., 1992).  It must be mentioned that removing these formant 

transitions had no effect on vowel recognition.   

2.3.5 Spectral Shape Features 

 

Although formant frequencies are seen as the essential cue for vowel perception, there 

exist research results that suggest that the whole spectral shape (not just the formant peaks) 

is used for vowel identification (Zahorian and Jagharghi, 1993).  Ito and co-workers (Ito, 

Tsuchida and Yano, 2001a) performed experiments to test this hypothesis.  In the first 

experiment, they suppressed the first and second formant frequencies to determine whether 

this suppression would change vowel identification.  The results proved to be very close to 

the results obtained using the normal spectrum.  This implies that formant frequencies are 

not exclusive cues for vowel perception. 

 

Experimentation by Beddor and Hawkins (1990) showed that spectral shape was an 

important cue if the lowest spectral prominence is weak.  This was confirmed in the second 

experiment by Ito et al. (2001a) in which the frequencies below 1250 Hz were varied to 

change the amplitude ratio between high and low components of the spectrum.   

 

Hillenbrand, Houde and Gayvert (2006) compared the effects on speech intelligibility 

between reconstructed speech based only on the distribution of spectral peaks and speech 

in which they had preserved the fine details of the spectral shape.  In general the 
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information conveyed by the peaks-only test was similar to the detail-preserving test.  

There was however a 5 to 6 percentage point advantage to the detail-preserving test.  They 

concluded that these results provided some support for the cochlear implant strategies such 

as MPEAK (Multipeak) and SPEAK (Spectral Peak) which rely on transmitting primarily 

the high energy components of the spectrum.  

2.3.6 Acoustic Cues Used in the Presence of Noise 

 

Many of the studies that have been used to determine which acoustic cues listeners use 

have been performed in sound-proof laboratory environments.  This practice, however, 

does not give a true reflection of speech recognition in everyday life.  Noise still poses a 

problem for cochlear implantees (Fetterman and Domico, 2002; Kiefer, Müller, 

Pfennigdorff, Schön, Helms, Von Ilberg, Baumgartner, Gstöttner, Ehrenberger, Arnold, 

Stephan, Thumfart and Baur, 1996; Skinner, Clark, Whitford, Seligman, Staller, Shipp, 

Shallop, Everingham, Menapace, Arndt, Antogenelli, Brimacombe, Pijl, Daniels, George, 

McDermott and Beiter, 1994), so it is important to look at speech recognition studies that 

have been conducted in the presence of additional noise.  These studies give important 

information on how acoustic cues are used in noisy conditions. 

 

In the study by Parikh and Loizou (2005),  the effects of multi-talker background noise on 

the spectral shape of speech was investigated.  The research showed that noise mostly 

affects the mid-frequency ranges (defined in their study as 1–2.7 kHz) and that listeners 

rely heavily on the F1 frequency to identify a vowel.  Liu and Kewley-Port (2004a) tested 

vowel recognition in the presence of noise by manipulating the formant frequency, signal-

to-noise ratio, and noise type. Results suggested that formant discrimination was 

significantly influenced by all three factors.  The masking caused by noise showed 

significant decrease in formant discrimination even for normal hearing listeners. 

 

The various studies discussed above showed that there are a number of acoustic cues that 

aid listeners in identifying a vowel sound.  The lower formant frequencies, especially F1 

and F2, are generally regarded as the primary acoustic cues in vowel identification.  This 

holds true for normal hearing listeners as well as cochlear implantees.  Studies have also 
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shown that duration is also an important acoustic cue used by cochlear implantees to 

identify vowels.  The primary acoustic cues have been shown to be important for vowel 

identification even in the presence of noise (Parikh and Loizou, 2005). For this reason 

these cues have been selected as the primary input for decision making in the objective 

model.  Secondary cues have also been found to aid vowel identification: these include 

formant glides (Hillenbrand and Nearey, 1999), formant-consonant transitions (Kirk, Tye-

Murray and Hurtig, 1992) and overall spectral shape (Hillenbrand et al., 2006).  However, 

these secondary acoustic cues were not included in the model developed in this study.  The 

objective vowel prediction model therefore extracted the F1, F2 and duration acoustic cues 

from vowel tokens being evaluated to approximate cochlear implantee vowel 

identification. 

2.4 OBJECTIVE SPEECH EVALUATION METHODS 

 

In addition to the above discussions on vowel identification cues, objective vowel 

intelligibility models have been developed that predict speech intelligibility in normal 

hearing and hearing impaired individuals.  The rest of this chapter will look at the 

techniques used in these models and their performance in predicting results from subjective 

tests. 

 

Objective vowel prediction models typically measure and process some property of the 

input signal.  Thereafter a decision component produces an outcome through measurement 

or calculation.  This study focused especially on the decision components used in these 

models.  The remaining part of the literature study will concentrate on the methodology of 

published objective models and the mechanisms used to produce an outcome.  The outputs 

and performance of these methods will also be considered. 

2.4.1 Difference Measure Based Models 

 

Three methods for predicting patterns of consonant and vowel confusion were developed 

by Remus and Collins (2004).  The methods were based on signal processing techniques 

that calculate a probability per speech token; these are then used to find a quantitative 
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difference between speech tokens, and are tested using listening test results.  The study by 

Remus and Collins is one of only two prediction methods (found at the time of writing this 

thesis) that attempted to provide the same type of results (in the form of confusion 

matrices) as the present study. The other study by Svirsky (2000) will be discussed later in 

this chapter. 

 

The study by Remus and Collins (2004) evaluated the following three techniques in speech 

prediction: 

1. Dynamic Time Warping (DTW) - using cepstrum representation. 

2. Token Envelope Correction (TEC) - using the discrete envelope of the signal. 

3. Hidden Markov Model (HMM) - using cepstrum representation and HMM 

 

A brief description of the methodology used in each of these methods will be described.  

This is followed by a discussion of the results produced by these methods when compared 

to vowel confusion tests with normal hearing listeners through a CI acoustic model.  The 

three prediction methods used metrics calculated as some measure of similarity or distance 

between two speech tokens, the stimulus and possible response.  These were used to 

generate a complete confusion matrix as opposed to a single score produced by other 

models. 

Dynamic Time Warping (DTW) 

The dynamic time warping method creates a confusion matrix by finding the Euclidean 

distances between the cepstrum coefficients of the stimulus and the response.  The 

Euclidean distance is calculated for all possible responses to complete the confusion 

matrix. Cepstrum coefficients can be seen as information about the rate of change in 

different spectrum bands.  Mel-frequency cepstral coefficients (MFCC) has been proved to 

be very successful and is a popular front-end feature extraction method for the automatic 

speech recognition (ASR) field (Han, Chan, Choy and Pun, 2006; Skowronski and Harris, 

2002; Zheng, Zhang and Song, 2001).  Mel cepstrum coefficients are generally calculated 

generically as follows (Zheng et al., 2001): 

1. Calculate the Fourier transform for time windows of the speech signal. 
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2. Map the log amplitudes of the spectrum to the Mel-scale, using triangular overlapping 

windows. 

3. Calculate the Discrete Cosine Transform of the list of Mel log-amplitudes.  

4. The MFCC’s are the amplitudes of the resulting spectrum. 

 

In the DTW method, the cepstrum coefficients of the two tokens (for the stimulus and 

response) were used to create a prediction confusion matrix.  The  (ith, jth) entry in the 

prediction metric matrix is the value of the minimum cost mapping through a cost matrix 

of Euclidean distances between the cepstrum coefficients of the ith given token and the jth 

response token. To calculate the (ith, jth) entry in the prediction metric matrix, the 

cepstrum coefficients are computed from energy-normalized speech tokens. 

 

The DTW method focuses on the cepstral properties of the speech signal – an aspect that 

seems important for the recognition of speech signals. It was assumed that using the 

cepstral properties could potentially be a good predictor of speech recognition. By using 

cepstrum coefficients the speech tokens are each assigned a location in a vowel space after 

which Euclidian distances are calculated in order to determine confusions between the 

tokens. A possible drawback in this method could result from the fact that no other known 

cues responsible for vowel and consonant recognition (like duration, formant movement, 

etc.) could be integrated in the model, since the location of each token in the vowel space 

is determined only by its cepstrum coefficients. 

 

Cepstrum coefficients were also used in a later study by Liu and Fu (2005) to compare 

perceptual space successfully to a prediction acoustic vowel space for cochlear implantees.  

A vowel space is Cartesian (or geometric) coordinate system based representation of the 

relationship between vowel sounds.  In Liu and Fu’s model the perceptual space is defined 

as the representation of the relationship between vowels that a person uses to identify a 

vowel sound.  The acoustic vowel space is the vowel space as measured from specific 

acoustic properties in the vowel sound. Liu and Fu’s results suggested that acoustic 

distance between phonemes may well predict recognition performance of spectrally 
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degraded speech.  

 

The aim of Liu and Fu’s study was to create a model that could predict, automatically, the 

level of speech recognition, without the need of cochlear implantees or normal-hearing 

listeners using an acoustic CI model. An acoustic model was used to test the vowel 

recognition performance of normal hearing subjects for five varied speech processor 

parameters (spectral channels, amount of spectral shifting, amplitude mapping and the 

degree of spectral smearing and warping). The acoustic Euclidian distances between these 

vowel signals for each simulated processor condition were then calculated by using 

MFCCs to determine the location of each vowel in the vowel space. The acoustic vowel 

space was compared with the normal hearing subject’s vowel recognition performance by 

using linear regression analysis. The outcome revealed that the predicted and actual 

obtained results were highly correlated when the number of spectral channels and amount 

of spectral smearing was varied.  The results indicate that measuring acoustic space using 

dynamic time warped Mel-cepstrum coefficients could predict perception data. 

 

Token Envelope Correlation (TEC) 

For the Token Envelope Correlation, each entry in the prediction confusion matrix is the 

normalised inner product of the discrete envelopes of the stimulus and response.  The 

stimulus is the token being presented and the current response is being calculated. The 

discrete envelope is obtained by first passing the signal through a high-pass equalization 

filter with cut-off at 1000 Hz prior to an anti-aliasing low-pass filter with cut-off frequency 

at 11 kHz.  The signal is separated into either eight or twenty frequency bands or channels, 

after which the envelope is extracted by full-wave rectifying of each channel and passing it 

through a low pass filter at 110 Hz.  The discrete envelopes of the two tokens are then 

aligned using dynamic time warping (or minimum cost path, as in the DTW method).  

After alignment the final value of the prediction confusion matrix can be calculated as: 
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where Mi,j is the prediction metric between the stimulus i and response j, ix  is the discrete 

envelope of the stimulus i and js  is the discrete envelope of the response j.  

 

The TEC method consistently underperforms to predict for three tests performed by Remus 

and Collins.  The TEC method seemed to lack some basic information regarding cues that 

are important for vowel and consonant recognition. By analysing temporal cues only, the 

TEC method did not provide accurate results.  This is to be expected since most of the cues 

mentioned previously in the literature study are based on the spectral properties of the 

speech signals. 

Hidden Markov Model Based Model 

In the third method, the prediction confusion matrix is calculated with Hidden Markov 

Models by using the Mel-cepstrum coefficients to represent each stimulus in a statistical 

fashion.  Hidden Markov Models serve as a theoretical basis in a variety of applications 

and are especially useful in speech recognition (Rabiner, 1989).  The Markov model uses a 

sequence of states to describe an observation.  Using HMMs, each entry in the prediction 

metric matrix is the log-likelihood that the cepstrum of the given token is the observation 

produced by the HMM for the cepstrum of the response token.  Training sets were used to 

obtain all the probabilities in the HMM. A training set of 100 speech samples was used to 

train each HMM, while the HMMs that were used consisted of three states each. No 

information is given in the article on the parameters used to maximize the probability of 

the observation sequence.  The final entries in the prediction confusion matrix were 

described as the log likelihood of the model for each token and observation.  

 

The effectiveness of each of the three prediction methods described above was evaluated 

by comparing the results obtained by these methods to results obtained from listening 

experiments done with twelve normal hearing subjects. These tests were done with noisy 

vowel and consonant speech tokens processed through two different cochlear implant 

acoustic models, each imitating the CIS and SPEAK processing techniques, respectively.   
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Three tests were done by Remus and Collins (2004) to determine which method, if any, 

would give an accurate prediction of vowel and consonant recognition. In the first test, 

successful near predictions were determined by measuring the most and least frequent 

incorrect responses. A near prediction for the vowel sounds was defined as the case where 

one token in a set of two MFIRs matches one token in the predicted set of two MFIRs. 

Where one speech token in the most or least frequently incorrect responses corresponded 

to a token in the predicted most or least frequently incorrect responses, it was classified as 

a successful prediction. This satisfied the study’s objective of predicting certain patterns in 

the confusions.  In the second test, each method was evaluated by its ability to predict the 

percentage of correct responses, as represented by the main diagonal of the confusion 

matrices.  This was done by ranking the responses from least to most recognised.  The third 

test evaluated the differences between the predicted and subjectively tested confusion 

matrices in terms of correctly identified speech tokens.  

 

For the first test the DTW method performed the best (with accuracy of a 78% compared to 

the subjective vowel tests described earlier) with the HMM method performing at a 

similarly high level.  The TEC method consistently underperformed.  Linear regression 

showed that the HMM method performed very well for vowel recognition ranking (96%).  

The TEC and DTW methods scored poorly for the test.  For the third test, DTW was the 

only method that appeared to have any success predicting the correct identification trends 

for different token sets (that is, different SNR levels).  The predicted trends for the TEC 

and HMM methods did not accurately indicate the trends in the listening tests at different 

SNRs (Remus and Collins, 2004). 

 

Failure of the TEC at the first task supported the conclusion that strictly temporal 

representations lack sufficient distinguishing characteristics.  Since the HMM method 

performed very well on the first and second tasks, its failure in the last test was 

unexpected. Overall, it appeared that speech recognition predictions were more accurately 

made by implementing cepstral representations of the signals compared to temporal 
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envelopes. This confirms the information from the literature that the formant frequencies in 

vowel signals (and, therefore, the spectral information) are important for vowel 

recognition.  

 

The three methods by Remus and Collins do provide some form of prediction of vowel 

confusions and correct identification of vowel sounds.  The techniques used in their 

methods do not correspond with the objectives of the present study.  The two methods 

which provided relatively successful results were based on cepstrum coefficients calculated 

from the speech.  Cepstrum coefficients however do not provide information on how the 

acoustic cues are used by listeners to identify the vowel sounds.   

 

Similarly the training of models using HMMs can improve the results produced by the 

model, but provides a statistical approach to predicting outcomes.  This approach does not 

aid researchers in learning more about the use of cues in the identification of speech.  The 

present study attempts to predict the vowel sound using the same acoustic cues shown in 

research to aid vowel identification and by doing so is aimed to provide information on 

speech perception.     

2.4.2 Feature Identification through the Neighbourhood Activation Model 

 

Luce and Pisoni (1998) researched human spoken word recognition and the relationship 

between sound patterns of words in memory and the effects of these relations on spoken 

word recognition.  Their assumption was that the internal recognition system of the listener 

was a noisy system.  This ‘noisy’ internal representation in memory implies that there are a 

number of words that are phonetically similar to the given stimulus word.  These similar 

phonemes fall into a group called the similarity neighbourhood. The intelligibility of words 

is affected, therefore, by both the number of possible confusions, as well as the frequency 

of these words.  The authors believed that the models of spoken word recognition at the 

time did not include an important technique which may improve lacked the importance of 

structural organisation of acoustic-phonetic patterns in the mental lexicon.  For instance, 

when a person hears a word that might be any one of three, the person will choose the 
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word that is more predictable (used more often) in the language.  The researchers found it 

unlikely that word recognition is accomplished by direct access to the acoustic phonetic 

representation in memory. 

 

Based on this theory, Luce and Pisoni (1998) developed a spoken word recognition system 

called the Neighbourhood Activation Model (NAM) which could predict how listeners 

interpreted spoken words.  The model focused primarily on structural issues concerning the 

process of lexical discrimination (taking acoustic phonetic properties and frequency of 

words into account). Equations expressed in terms of various probabilities were developed 

which took into account stimulus word intelligibility, stimulus word frequency, 

neighbourhood confusability, and neighbourhood frequency.  The confusability of 

individual speech sounds was determined from confusion matrices for all initial 

consonants, vowels, and final consonants.  Further information of these equations and the 

processing of the confusion matrices can be found in Luce and Pisoni, (1998) and Pisoni, 

Nusbaum, Luce and Slowiaczek (1985).  

 

In a study by Meyer, Frisch, Pisoni, Miyamoto and Svirsky (2003) the NAM model was 

used to predict word recognition of postlingually deafened adults after cochlear 

implantation.  The goal of the study was to use the model to gain insight into the 

psychoacoustic processes used by cochlear implant users in recognizing spoken words.  

Confusion tests from individual cochlear implantees were used to train the model.  The 

probability of correctly identifying the stimulus word was based on the phoneme confusion 

probabilities and the relative frequency of occurrence of the target word compared with 

similar sounding neighbours.  

 

The NAM model predicted word recognition at similar levels as actual cochlear implant 

users.  The study concluded that these listeners use word frequency of occurrence and 

word similarity information to identify spoken words in a manner that is fundamentally 

similar to the way listeners with normal hearing recognize spoken words.  The NAM 

model was also shown to be successful in predicting word recognition performance for 
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paediatric cochlear implant users (Frisch and Pisoni, 2000). 

 

The principle of the NAM model could be relevant in the subjective confusion tests which 

were used to compare the data gained from the model developed in this study. It needs to 

be considered that, in a situation where a listener is uncertain as to which speech token was 

presented to him/her, the listener would rather respond with the speech token that he/she 

hears more frequently.  The principles described in the NAM model were not used in this 

study but is important to note since it may be used at a later stage to improve on the model.  

2.4.3 Multidimensional Phoneme Identification (MPI) model 

 

The Multidimensional Phoneme Identification (MPI) model was first proposed and used in 

a study by Svirsky (2000).  It was used to predict vowel perception of subjects implanted 

with Ineraid CI which uses a compressed-analogy (CA) simulation strategy. Svirsky’s 

model appears to be the only model in the literature that uses perceptual acoustic cues in a 

mathematical model to predict vowel confusions in a fashion similar to what this present 

study attempted to do. The MPI model attempted to imitate how listeners encode and 

combine acoustic cues and how a decision is made on what sound they heard.  This then 

allowed for testing specific hypotheses about phoneme identification in a more insightful 

manner instead of the “black box” approaches of other models (Svirsky, 2000). 

 

The Svirsky study had a different goal than that of the present study.  The present study 

attempted to develop techniques to predict results from subjective confusion tests and 

determine which of two acoustic cue models provide better predictors of the data.  Svirsky 

studied the effect of vowels with “conflicting cues”, specifically in terms of temporal and 

amplitude information as transmitted by the cochlear implant.  This was done by 

presenting the temporal (waveform information) of one vowel while presenting cochlear 

channel amplitudes of another vowel to the cochlear implantee.  Svirsky’s mathematical 

model captures acoustic cues in separate dimensions in a vowel space and uses signal 

detection theory to generate a prediction confusion matrix.  This is precisely the 

methodology which the present study attempted to follow.  
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The MPI model uses three components to generate a prediction confusion matrix.  The 

model incorporates an internal noise model to account for sensitivity, a decision model that 

allows for response bias, and a multidimensional perceptual space.  From the perceptual 

space a prediction confusion matrix is generated using signal detection theory.   

 

The first step in implementing the MPI model was to determine which acoustic cues are to 

be used for prediction, and then to measure these cues from the stimulus tokens.  Svirsky, 

for the evaluation of his model, chose those acoustic cues that were assumed to be used 

most frequently by users of the Compressed Analogue (CA) CI strategy (Hillenbrand et al., 

1995; Rosen, 1992). The first cue was the first formant (F1), encoded by a temporal cue in 

channel 1 of the implant.  Another cue, believed to be used frequently, was the relationship 

between the amplitudes of stimulation delivered to different electrodes.  In other words, the 

F1/F2 frequencies (encoded as amplitudes by the four channels in the CI) were used as 

acoustic cues. 

 

Signal detection theory was used to determine a listener’s response to these acoustic cues.  

Signal detection theory is commonly applied to psychophysics and is widely used to 

investigate human perception (Wickens, 2002).  Physical characteristics of the stimulus 

and standard deviations were used to create a multidimensional perceptual space.  Each 

stimulus was represented in the multidimensional space as a Gaussian distribution.  The 

mean was determined by the measurements of each acoustic cue of the stimulus. The 

standard deviation along each dimension is equal to the listener’s ‘just-noticeable 

difference’ (jnd) along the relevant perceptual dimension.  The just-noticeable difference 

was measured by psychoacoustic testing of the listeners (see Figure 2.1.). 
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Figure 2.1.  Example of Gaussian probability functions for 3 vowel sounds in a two-

dimensional space.  The mean of each distribution is the value of the F1 and F2 frequencies 

and the variance is the jnd for each vowel sound.  

 

Each stimulus can be described mathematically for a perceptual space of M dimensions as 

a Gaussian probability function S associated with stimulus Ei as: 
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where jx  is the value of stimulus iE  along dimension j, ijT  is the average value of stimulus 

i over dimension j, and JND is the subject’s just-noticeable difference along dimension j. 

 

Once the value of ),( nES i  has been determined, the decision model was applied to 

determine the subject’s response to the stimulus.  The decision model associated a response 

centre kR  with each possible response, thus creating a partition of the space into response 

regions.  The response region kr  consisted of the points that are closer to kR  than to any 

other response centre.  If the stimulus falls in the response region kr , the subject’s response 

is equal to k.  Each cell in the response matrix was then determined by the multiple integral 
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of the distribution iS over the region kr . 

 

The prediction response matrix for the set of stimuli Ei  is obtained by integrating all the S 

(Ei) distributions over each multi dimensional response region using equation 2.3. 


kR mmiik dxdxdxxxxScellP ...),...,,()( 2121    (2.3) 

To evaluate the MPI model, various choices of dimensions were used.  At first temporal-

only (F1) and channel-amplitude-only (that is, A2/A1, A3/A1, A4/A1) dimensions were 

used, which proved insufficient to predict listeners confusions.  The MPI model was then 

run using all four dimensions which proved to be the best fit when jnd-values of 120 Hz 

were used for F1 and 2.6 dB was used for the channel-amplitude ratios.  The predicted 

matrix consisted of three vowel sounds and proved to be a good estimation of the observed 

data.  There were no errors greater than 20% and the mean square error was less than 8%.  

This showed that the MPI model can be used for predicting/evaluating group and 

individual performance of cochlear implant users (Svirsky, 2000). 

 

The methodology followed by Svirsky lines up closely with the objectives of the present 

study.  Svirksy extracted acoustic cues from the output of the individual channels of a 

cochlear implant model.  This can be seen as negative since calculation is not performed on 

the vowel sound as a whole, but rather on the individual CI channels.  It may be a better 

approach to perform the calculation on a reconstructed signal using the acoustic cues found 

in literature to aid vowel identification.  The model developed in the present study will also 

extract the acoustic cues from an acoustic CI model; however the acoustic cues will be 

extracted from the reconstructed vowel sound.  This allows the model to base its 

predictions on the signal as it is believed that the brain receives it.  

 

The use of probability theory to create probability density functions from the information 

from the vowel space was used in the present model.  This seems to be a good means of 

predicting confusions based on the acoustic cues.  Svirksy did not assign a bias to the 
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probability calculations because no reason was found to support this.  The present study 

followed the same course. 

 

The approach followed by Svirsky to estimate the ‘just noticeable difference’ seems to 

have a few flaws which can be highlighted.  Firstly it requires manual measurement of a 

specific listener’s performance in order to be of use.  This defeats the objective of 

replacing subjective testing with a model.  In Svirsky’s study these values were estimated.  

This, however, means that the predictions of the model is not made from the information in 

the signal alone but is also based on assumptions.  

 

The present model attempted to improve this part of the Svirsky model by rather measuring 

uncertainty factors (which was believed to produce confusion) directly from the signal.  

This allows for automated use of the model without the need for measurement of listener’s 

performance.  In measuring these values, the present model provides a more scientific 

approach to predicting the speech intelligibility.  This approach will also allow the model 

to automatically measure the deterioration in vowel identification as background noise is 

added to the original vowel sounds. 

2.4.4 Neural Network Model 

 

Chang et al., (2001) developed a method that automatically optimized the speech 

processing parameters for a given implant patient. A neural network was trained to mimic 

the CI user’s performance on the vowel identification task. The neural network model was 

trained from confusion matrices of the CI user, and was used subsequently to adjust the 

cochlear implant channel amplitudes to optimize the subject’s performance.  Results 

showed that weighting the channel amplitudes from using the neural network method 

yielded a small, yet significant, improvement in vowel recognition performance. 

 

The benefits of the approach followed by Chang et al. (2001) is that the implementation is 

relatively simple since no psychoacoustic measurements or signal detection models need to 
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be applied.  The disadvantage of the system is that it does not provide further insight into 

how cochlear implants interpret vowel sounds, since the system assumes a basically black-

box approach. Such a model can be used to predict speech intelligibility in specific 

circumstances and replace actual listeners for determining performance under 

environmental conditions.  A neural network model however fails to explain the reason 

why intelligibility in a specific circumstance is either good or bad.  Experimentation with 

such a model does not provide information on how to improve the speech perception for a 

listener.  For this reason neural networks were not used to improve the results of the 

present study.  

2.5 GAPS IN THE CURRENT LITERATURE 

 

This literature review shows that there have been numerous studies and investigations into 

the acoustic cues used by normal hearing listeners and cochlear implantees to identify 

vowel sounds.  There still remains a lot to be learnt about how these acoustic cues are used 

in relation to each other, especially in the presence of noise.  The following limitations 

exist with current objective vowel prediction models, which the present model will attempt 

to address 

 The final output of most models is a single number and does not provide further 

information which may not aid psychoacoustic research.  The current model will 

extend upon these methods by predicting vowel confusions under various 

conditions. 

 The two models which do provide a confusion matrix as output either need to be 

trained (HMM) or research needs to be done for each individual person to find a 

listener-specific ‘just noticeable difference’.  The present model, in contrast, will 

extract acoustic cues and uncertainty factors from the signal to calculate its output. 

 The right combination of acoustic cues has not been determined to build an 

accurate model.  The present model will be based on the three acoustic cues which 

literature shows are the primary cues for cochlear implantees. 

 Vowel prediction models are not flexible enough so that other acoustic cues can be 

inserted or so that the relationship between cues can be modified.  The present 
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model will be developed in a modular fashion so that various environmental 

conditions and cue inputs can be tested. 

 

These gaps in the existing models have led to the two primary research questions: "Can an 

objective vowel intelligibility model be developed which extracts these acoustic cues from 

a speech signal,” and “Can processing of these cues be used to predict vowel 

discrimination and confusions for cochlear implant users?" 

 

The acoustic cues used in the objective vowel intelligibility model was those documented 

in the literature to aid cochlear implantees most in the recognition of speech, namely the F1 

frequency, the F2 frequency and the duration of the vowel sound.   The F1 and duration 

cues were also found to play the largest role in vowel identification in the presence of 

background noise.  These will be extracted automatically from the vowel tokens and used 

as inputs for the model.  In addition, the model was modular so that any other acoustic cues 

can be used to generate the perceptual dimensions in the vowel space.  This allows further 

testing to be done to evaluate if other acoustic cue combinations will provide better 

correlation with results from subjective testing.  

 

The MPI model of Svirsky (2000) was the only model found in the literature to use 

acoustic cues and probability theory to predict vowel perception of cochlear implantees.  

The approach followed in this model aligns closely to the objectives of this present study.  

The Svirsky study required that psychoacoustic testing still had to be done to determine the 

‘just noticeable difference’ for every group of listeners that was to be predicted; this study 

attempts to automate this step. 

  

A new model was developed that attempts to measure the perceived quality of vowel 

identification by listeners fitted with cochlear implants.  This model uses psychoacoustic 

modelling to predict speech intelligibility and not difference measures (as used in most 

prediction or evaluation models to date).  Difference measures simply subtract certain 

spectral properties of the signal being evaluated from a reference signal.  The current 

model rather facilitates the use of the acoustic cues in the signal (as used by human 
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listeners).  This allows for better insight into vowel perception of CI users, since different 

acoustic cues can be evaluated and different weightings on acoustic cues can be assessed.   

 

The focus of the present study falls on the methodology of classification rather than on the 

selection of acoustic cues.  The present study also contributes to current literature by using 

uncertainty factors so that the model will be able to predict vowel confusion under various 

background noise conditions.  

2.6 SUMMARY 

 

In Chapter 2, the literature covering the field of speech perception and speech prediction 

was summarized.  The acoustic cues that listeners use for identifying vowel sounds have 

been identified.  The main acoustic cues will be used in the development of the objective 

prediction model.  A study was also made of the speech prediction models that have been 

proposed in the literature to date.  The methods used in these models have been evaluated 

and will be employed in the current objective model.  The methodology followed in 

developing this new model will be described in the next chapter.  
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CHAPTER 3   METHODS 

3.1 CHAPTER OBJECTIVES 

 

The literature study in the previous chapter investigated the elements in speech that are 

used to identify a vowel sound.  It concluded that formant frequency and vowel duration 

were the most important cues in vowel identification.  The literature study also looked at 

various objective speech intelligibility prediction models.  A number of models were found 

which predicted speech intelligibility for cochlear implantees.  Only one model was found 

to use acoustic cues to produce confusion matrices. 

  

The development of  a vowel prediction model for cochlear implantees will be described in 

this chapter.  The focus of this study is the methodology of developing such a model, 

which will be described systematically.  The purpose of the method is twofold: to predict 

the probability of the listener hearing a vowel correctly and to predict the trend of the 

confusions caused by other vowels.  In the next chapter, the ability of the model to predict 

vowel intelligibility will be compared to subjective testing done with normal hearing 

listeners and a CI model. 

3.2 INTRODUCTION 

 

An objective speech evaluation model essentially makes a prediction of the results that 

would be obtained in a specific subjective speech assessment method.  The output of the 

objective method could then be used to provide researchers with a first approximation of 

results without needing actual listeners present (as would be required using a subjective 

test).  The objective speech evaluation model described in this chapter attempts to predict 

the results of a vowel confusion test when performed with a normal hearing listener 

through an acoustic model of a cochlear implant.  

 

Afrikaans vowels were used in the development and evaluation of the model.  In the tests, 
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the vowel sounds were recorded between the  consonants ‘p’ and ‘t’.  The pronunciation of 

the 12 vowels are /œ/ (pat), /a/ (pad), /u/ (poet), /π/ (put), /y/ (puut), /e/ (peet), /A:/ (paat), 

/i/ (piet), /´/ (pit), /O/ (pot), /E:/ (pêt) and /E/ (pet).  This is stated here since the vowel 

sounds will be cited throughout the chapter (the complete test setup will be described at the 

end of this chapter.) 

 

The predictions obtained are summarized in a confusion matrix.  A confusion matrix shows 

which phonemes were presented to the listener and how the listener responded to each.  It 

shows the percentage of correctly-identified phonemes and those phonemes with which a 

particular phoneme was confused.  Figure 3.1 shows an example of a confusion matrix. 

  

Response of listener

x y

Vowel correctly interpreted Vowel confused with
interpreted other vowels

S
ti

m
ul

i

 

Figure 3.1.  Schema of a confusion matrix. 

Constructing a confusion matrix from an objective vowel prediction model means that 

acoustic analysis of each presented degraded vowel is necessary.  The algorithm will have 

to extract the acoustic cues thought to be used by listeners to identify each phoneme.  It 

will also have to calculate the probability of a listener either hearing the right vowel or 

confusing it with other specific vowels.  

 

Confusion is created when the information carried by acoustic cues is not transmitted 

properly to the listener.  Therefore, it must be established which factors of a degraded 

vowel cause uncertainty in the human auditory system to identify these cues.   

 

Lastly, the confusion matrix is collapsed into a single number to give the predicted 

identified 
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percentage of correct answers given by a listener.   

3.3 MATHEMATICAL MODELING OF VOWEL PERCEPTION BY 

COCHLEAR IMPLANTEES 

 

As shown in the literature study, it is accepted among many researchers that the 

frequencies of the lower formants and vowel duration are the most important acoustic cues 

used in  identifying a vowel correctly.  The method defined in this chapter extracts these 

acoustic cues from the vowel sounds, along with other spectral features in order to produce 

a measure of uncertainty.  The acoustic cues are used to create a 3-dimensional vowel 

space.  A vowel space can be defined as a multidimensional domain where each vowel 

occupies a single point as a function of chosen signal characteristics.  This allows various 

metrics to be used to measure the distances between vowels to account for how a person 

distinguishes vowel sounds from each other using specific acoustic cues.   

 

In the present model, the measured frequencies of the formants, F1 and F2, and the 

duration of the vowel are used for each of the axes that determine where the vowels lie in 

the vowel space.  It is assumed that vowels that lie closer together in this vowel space will 

have a greater probability of being confused with each other. Figure 3.2 gives a 

representation of a three dimensional vowel space for the Afrikaans vowels that were used 

in subjective vowel confusion tests.  This vowel space was created by measuring the 

mentioned three acoustic cues for each of the vowels and then using the model to construct 

the space.  The values of the acoustic cues were extracted by the model described in this 

chapter and the values are given in Table 4.1. 
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Figure 3.2.  The various Afrikaans vowels used as cues depicted in a 3-dimensional vowel 

space. 

The proposed model also measures degradation of the acoustic cues that might cause 

uncertainty to the listener as to the identity of a particular vowel.  The degradation of cues 

is indicated as a variance that represents this uncertainty, so that each vowel is 

characterized by a pdf (probability density function) in the vowel space.  Signal detection 

theory is then used to calculate the probability of a vowel being confused with any other 

vowel.  

 

The distances between the means of the pdfs were calculated from the vowel space.  The 

variance of each distribution was calculated from factors that cause uncertainty in the 

position of the formants and the duration.  The literature study implicated a few aspects of 

a formant that may act to confuse the auditory system when it's task is to recognize where 

formants lie in a vowel space.  One of these aspects is reduced spectral contrast caused by 

noise (Loizou and Poroy, 2001a).   Another possible factor is the instability of formants; 

this is caused when spurious formants are apparently inserted into the spectrum due to 

noise.  These factors will be discussed later in the chapter. 
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Finally, signal detection theory is used to reach the objective of producing a confusion 

matrix which predicts confusions made by cochlear implantees.  This will approximate the 

process whereby a person, listening to sounds in the presence of additional noise, identifies 

a vowel sound and isolates the factors that contribute in creating confusions between the 

vowel presented to the listener and other vowels. 

3.4 DEVELOPMENT OF MODEL 

 

The model consists of two parts.  Firstly, the processing component is described and the 

important features that a human would use to discriminate between vowels are identified.  

The second part is the decision component, which uses signal detection theory to predict 

the probability of discriminating between specific vowels .  Finally the confusion matrix 

(as the output) is explained.  

 

The individual steps that form the proposed model are described in more detail in the rest 

of the chapter.  The system is based on comparison methods which are the most common 

in the perceptual speech evaluation field (Beerends et al., 2002; Rix, Hollier, Hekstra and 

Beerends, 2002; Thorpe and Wonho, 1999b; Voran, 1998).   

 

 

Figure 3.3.  Outline of the objective speech evaluation model.  (Repeat of Figure 1.4.) 

 

The model accepts original and degraded speech as inputs (see Figure 3.3.).  The original 

speech was recorded under quiet conditions in a double-walled sound booth (Pretorius et 

al., 2006) and used as input.  This serves as a reference to aid the model in extracting the 

acoustic cues from the degraded input.   
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For the second input the original speech was processed through an acoustic CI model 

before it entered the processing component as degraded speech. It is this degraded speech 

that will be processed by the model.  The acoustic model was used to convert the input 

speech signal into an acoustic representation of what a person fitted with a CI is believed to 

hear.  The acoustic model used for the experimentation was developed by Conning and 

Hanekom (2005, unpublished).  It was designed to approximate the speech processing used 

in a Nucleus cochlear implant. The model also implements aspects of the biophysical 

interface that affect the signal in the cochlea.  The acoustic CI model approximates the 

speech heard by a person with a cochlear implant (more information on the acoustic model 

is given in section 3.5.1 about the experimental setup).   The output of the acoustic CI 

model is used as the degraded input that is to be processed by the prediction model. 

 

The aim of the model was to predict the intelligibility of vowels as heard by cochlear 

implantees under specific conditions.  Therefore, the CI acoustic model was an integral 

part in the development of this model and the output of the model was used to make 

decisions on how to implement certain functions.  The output of the CI acoustic model 

produces severely degraded speech tokens; therefore, spectra of the vowels processed by 

the acoustic model were analysed to determine how uncertainty in  the acoustic cues could 

be expressed. 

 

In Figure 3.3, prior to the acoustic CI model, there exists an optional step that adds multi-

talker babble noise to the original speech to simulate real-world environments.  Initial 

testing was done with no additional degradation through noise added (see block diagram in 

Figure 3.3), because of the severity of degradation caused by the acoustic CI model.  The 

ability of the model to track the results of the subjective test in the presence of different 

SNRs is used to evaluate the model in the results chapter. 

 

Speech is presented to the model in consonant-vowel-consonant context, exactly as it is 

when presented to listeners in subjective tests. The same material was used for both. The 

processing component extracts the vowel part from the presented speech in the fashion 
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described in paragraph 3.4.1.  It also performs acoustic analysis on the vowels to extract 

the selected features from the vowels for analysis.  It does this for both the original speech 

and the degraded speech. 

 

The decision component uses the information extracted from the vowels in the processing 

component to predict the probability of vowel intelligibility and confusion as described 

above. These probabilities were calculated for each vowel and used to construct a 

confusion matrix and to produce a single intelligibility score.  The rest of the chapter will 

give a in-depth description of the entire model. 

3.4.1 Processing Component 

 

The first component of the proposed vowel perception model is the processing component.  

The processing component has the following three goals. 

 Extract the vowel from the input speech signals. (Phonemes in a /CVC/ 

(consonant-vowel-consonant) form; in the present instance, in a ‘p’-vowel-‘t’ 

context.) 

 Extract the acoustic cues from the vowel sound. 

 Estimate the factors that will lead to uncertainty in a listener. 

 

An outline of the processing component is shown in Figure 3.4.  Subsequently, each 

functional block will be discussed in detail. 
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Figure 3.4. Block diagram of processing component 
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3.4.1.1 Inputs 

 

The processing component receives two inputs.  Firstly, it receives the original speech 

signal, which is the vowel in /CVC/ form and in a quiet state (therefore, as a normal 

hearing person would perceive it when the sound is presented under ideal circumstances).  

Moreover, it receives the degraded signal which has gone through an CI acoustic model 

and an optional degradation channel.  The degraded signal is the input that the algorithm 

evaluates. 

 

Since there is significant degradation caused by the CI model, the original speech is used 

as an input to serve as a reference to where the actual formants lie and to what the actual 

duration of the vowel is.  To enable comparison across SNR with actual listener 

performance, the degradation channel added multi-talker babble noise to the original 

speech to simulate real-world scenarios.  However, the degradation channel can also be, for 

example, a telecommunication system or codec that  needs to be evaluated for use by 

cochlear implantees.  The degradation channel can also be omitted in the situation that 

certain CI parameters need to be evaluated for noiseless speech.  Therefore, this step is 

indicated with a dashed-line box in Figure 3.4.   

3.4.1.2 Down Sampling 

 

The original vowels that served as input to the system were sampled at 44kHz.  Speech lies 

primarily in the frequency band from 100 Hz to 3400 Hz (Zwicker and Fastl, 1999); 

therefore, the original speech samples may be down sampled to 8000Hz.    This procedure 

would ensure a Nyquist frequency of 4000 Hz and is a common practice in perceptual 

speech evaluation models (ETSI Standard EG 201 377-1, 2002; ITU-T Recommendation 

P.862, 2000). Down sampling is important to ensure that only the required speech 

information lying in this frequency band is used in the Fast Fourier Transform (FFT) and 

the Linear Predictive Coding (LPC) calculations in the later steps.  This ensures that 

maximal precision is obtained in the spectrum that is produced since all the points of the 

FFT is focused on the band in question and not on irrelevant spectrum information. 
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Down sampling is usually followed by a low-pass filtering process to prevent the 

occurrence of aliasing in the base band. In the present model, therefore, a linear-phase anti-

aliasing low pass FIR filter function was used with a cut-off frequency of 4000Hz.  The 

standard built-in MATLAB low-pass filter function was used to accomplish this task. 

3.4.1.3 Segmentation (Hanning Window) 

 

The analysis of vowel signals in the developed system required that the signals be 

segmented into overlapping blocks of evenly-spaced samples in time.  Segmentation 

allows usable blocks of samples to be used to produce a spectrogram.  The typical length 

of windowed slices that speech is segmented into is between 15 ms to 40 ms in length 

(ETSI Standard EG 201 377-1, 2002).   In the present model the speech signal was 

segmented into 32 ms frames with an overlap of 50%.  Overlapping successive blocks is a 

smoothing operation that avoids abrupt changes from segment to segment. The choice of 

segment length and overlapping percentage conform to those implemented in current 

speech evaluation algorithms (ITU-T Recommendation P.862, 2000; Rix et al., 2001; 

Voran, 1999a).  

 

Segmentation can be seen as the multiplication of each segment by a rectangular window. 

Because the frequency response of a rectangular window contains high side lobes (in the 

frequency domain), it is normally not recommended to make use of such a window. For 

this reason each segmental block was multiplied by a Hanning window. A Hanning 

window reduces the endpoints of each segmental block to zero, avoiding spectral leakage 

in the process. Spectral leakage is an effect in the frequency analysis of signals where 

small amounts of signal energy are observed in frequency components that do not exist in 

the original waveform. The window is computed from the following equation 

     ),/2cos(1(
2

1
)( Nkkh                  (3.1) 

where N is the number of samples in the window.  The number of samples is calculated in 
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terms of the sampling frequency using the following equation.    

            ,
/)/1000(

1
32

samplemsf
msN

s

            (3.2) 

where N is the number of samples in the window and fs is the sampling frequency. 

3.4.1.4 Removing the Vowel From the Word 

 

Speech signals presented in vowel recognition tests are presented in a /CVC/ form: the 

vowel is presented between two chosen consonants.  This is how the vowel is presented to 

a listener in a traditional subjective vowel confusion test. (Refer to the literature study for 

more information.) Given that the exact speech signal needs to be used in the objective 

evaluation model as it is used in the subjective test that it attempts to replace, the sound 

files that are used for the input to this system must be in the same form.  Since the vowel 

portion of the file needs to be analyzed, it is necessary to determine where the vowel lies 

and, subsequently, the speech needs to be cropped so that only the vowel remains. 

 

Acoustically, vowels differ from consonants in at least two ways.  Firstly, a vowel contains 

more energy than a consonant.  Secondly, a vowel is characterised by steady state or 

slowly gliding  formants in the frequency spectrum.  These two observations are harnessed 

to crop the vowel sound of the /CVC/ word that is presented to the listener.  By calculating 

the Root Mean Square (RMS) for each of the 32ms time windows, the vowel can be 

distinguished from the rest of the word.  The RMS value for each window through time of 

the Afrikaans word “peet” is plotted in Figure 3.5.  It is visible in the figure that the high 

energy in the vowel sound distinguishes it from the rest of the word.  
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Figure 3.5.  Root Mean Square of the Original Speech (a) and Degraded Speech (b) of the 

/CVC/ word “peet”.  The thin blue lines represents the RMS of the frequency bands and the 

thick red line represents the average RMS of all frequency bands.   

 

These graphs were created by first separating the spectrum of the word into 10 separate 

frequency bands (shown as thin blue lines in the Figure 3.5.)  This was done to create 

broad bands which show the energy of the different formants and valleys in the spectrum. 

The RMS of each time window was calculated to form the separate curves on each graph. 

Since all bands were relatively stable throughout the duration of the vowel all of the 

frequency bands were used to calculate the RMS average energy of the vowel sound.  The 

calculated average is shown as a heavy red line in Figure 3.5.  The maximum value is 

found throughout the graph and, by experimentation, it was determined that a threshold of 

70% of that value would provide reliable estimates of the position of the vowel in the input 

token. The vowel is delimited by the first rise through the threshold and the first drop past 

it.  This section is then identified as the vowel and cut from the rest of the word. 

 

The vowel part of the degraded signal lies in the same windowed segments in time as the 

original, since the acoustic CI model has no effect on the time scale of the sound token 

(that is, there is no temporal distortion).  Therefore, this calculation is only done on the 

original speech to improve the accuracy of the vowel cropping. The start and stop markers 
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are used as a reference in conducting the processing of the degraded speech tokens. The 

formant frequencies and uncertainty factors are still calculated from the degraded speech, 

since the degraded speech is being evaluated.  

3.4.1.5 LPC Spectrum 

 

Linear prediction analysis of speech is historically one of the most important speech 

analysis and synthesis techniques (Makhoul, 1975b). In digital signal processing linear 

prediction is often called linear predictive coding (LPC). 

 

Speech analysis with LPC exploits the predictable nature of speech signals.  Cross-

correlation, autocorrelation, and auto-covariance provide the mathematical tools to 

determine this predictability (Berouti, Schwartz and Makhoul, 1979; Hermansky, 1990).  

Speech analysis by linear prediction is based on the assumption that the short-time spectral 

envelope of the speech waveform can be represented by a number of poles (Makhoul, 

1975a).  The signal is modeled as a linear combination of its past values.  This amounts to 

performing a linear prediction of the next sample as a weighted sum of past samples 

(Berouti et al., 1979).  The all-pole model of the speech spectrum is accurate for 

approximating vowel and vowel-like sounds (Atal and Schroeder, 1978).  The transfer 

function H(z) of the filter is given by the equation 

                                                 ,

1

)(

1






p

k

k
k za

G
zH                        (3.3) 

where G represents the gain, p the order and ka the different coefficients of the transfer 

function in the z-domain. 

 

The two most frequently implemented methods used to compute the coefficients for the 

all-pole filter (Equation 3.3) is the covariance method and the auto-correlation formulation. 

When using the auto-correlation formulation, the roots of the polynomial in the 

denominator of Equation 3.3 will always be inside the unit circle in the z domain. This will 
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guarantee stability for the filter H(z). It is for this reason that the auto-correlation 

formulation was used to compute the coefficients in equation 3.3. The auto-correlation 

method requires the calculation of the auto-correlation equation 

                                                        





Nn

knn
knnxx xxkR

0

0 1

)(  ,                                              (3.4) 

where 1<k<p with p being the order, N the number of samples and n0 the first sample in the 

window. The values of Rxx can be written in the matrix R and matrix B while the matrix of 

A contains the filter coefficients as in Equations 3.5 and 3.6. 
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In order to obtain the coefficients in the matrix A, the equation   

RA = P ,                                                     (3.7) 

needs to be evaluated. This can be done by rearranging Equation 3.7 in the following 

manner 

A = R-1P.                                                   (3.8) 

To solve for A it is required that R-1  be computed. It is important to notice that the matrix 

of R is symmetric and that all the elements that are on a line parallel to the diagonal 

elements are equal. This type of matrix is called a Toeplitz matrix and there exist efficient 
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recursive algorithms to find its inverse.  The Levinson-Durbin algorithm is one such 

algorithm and takes advantage of the properties of the Toeplitz matrix of R.  The Levinson-

Durbin algorithm is depicted in the flow diagram in Figure 3.6. 
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Figure 3.6. Flow diagram of the Levinson-Durbin algorithm 

 

In the block diagram (Figure 3.6) the filter order is denoted with a superscript ai
(j)  for a j’th 

order filter. The average mean squared error of a j’th order filter is denoted by Ej.  For a 
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p’th order filter, the Levinson-Durbin algorithm calculates all filters that have an order of 

less than p, and hence it determines all order N filters where N=1,...,p-1.  

 

The final LPC transfer function was formulated by using the coefficients obtained from the 

Levinson-Durbin algorithm, as well as the gain of the filter, which is defined by 

                                                       ARG xx  .                                                              (3.8) 

All the windows in the crude-cut vowel are filtered with the LPC filter to gain a smooth 

approximation of the FFT spectrum (that is, the envelope).  A 12th order LPC filter was 

implemented to approximate the spectrum of the signal.  This order will give a maximum 

of 6 peaks in the 4000Hz bandwidth of the signal.  An order of more than 10 is 

recommended in the literature so that the spectrum forms enough peaks to accentuate the 4 

-5 formants of the vowel which lie in the first 4000 Hz of a vowel sound (Ferguson and 

Kewley-Port, 2002; Snell and Milinazzo, 1993).  Using a LPC filter higher than 10th order 

allows all of these peaks to be shown as can be seen in Figure 3.7. 

 

Figure 3.7. FFT and LPC Spectrum of a single window of the word “pit”.  The smooth blue 

line represents the LPC spectrum. 

F1 

F2
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The Fast Fourier Transform (FFT) was implemented to obtain the discrete Fourier 

transform (DFT).  The Fourier transform was calculated by using a 256 point FFT.  The 

LPC was implemented by using a 12th order all-pole LPC filter.  The peaks in the LPC 

spectrum make it easy to identify the formants that a listener may use to identify the vowel.  

The most important of these are the lower formants, F1 and F2, represented by the first two 

peaks in the figure. 

 

The LPC was calculated for each segmented window in the word to form a LPC 

spectrogram for the entire word.  Figure 3.8 shows the LPC spectrogram for the entire 

/CVC/ word “pit”.   The vowel part of the word can be seen clearly as the high energy part 

of the word.  After the vowel there is a break before the burst of sound that produces the 

last consonant “t”. 

 

 

Figure 3.8.  LPC Spectrogram of the word “pit”. 

This LPC spectrogram was then used in determining the frequencies of the F1 and F2 

formants of the vowel.  

‘p’ 

‘i’ 
‘t’
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3.4.1.6 Formant Tracking 

 

The LPC spectrogram of the vowel ‘i’, cut from the original word “pit”, is shown in Figure 

3.9.  By inspecting the spectrogram it is easy to determine where the formant frequencies 

lie.   The first formant lies around 500 Hz, the second between 1550 and 1800 Hz, and the 

third between 2450 and 2700 Hz. There is very little uncertainty to human hearing as to 

where these formants lie.  However, this is more difficult to see after the clean vowel has 

been processed through the acoustic CI model. 

 

 

Figure 3.9.  LPC spectrum of only the vowel portion sliced out of the /CVC/ phrase "pit".  

The formants are clearly visible as red/yellow bands as consistent throughout the noiseless 

vowel. 

 

When the same word has been processed by the CI model, the frequency of the formants 

loses its exactness.  This can be seen in Figure 3.10. The vowel is still visible although the 

formants are not as apparent as in the spectrum of the clean vowel.  Since these are the 

cues that a person uses to identify a vowel, an uncertainty factor is introduced.   
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Figure 3.10.  LPC spectrum of only the vowel sliced out of the /CVC/ phrase "pit" (after 

processing in an acoustic model).  The formants are clearly visible as stable throughout the 

noiseless vowel. 

Since the algorithm has to determine the perceived frequencies of the first two formants of 

the degraded vowels, simply picking the peaks in the signal as formants is not sufficient in 

finding the formants. At least two approaches to the problem are available – analysis by 

synthesis and peak picking from smoothed spectra (McCandless, 1974; Snell and 

Milinazzo, 1993).   

 

In analysis by synthesis, an educated guess is made of the formant frequencies and 

bandwidths, and a spectrum is generated based on the educated guess.  The formant 

frequencies for the synthesized spectrum are varied systematically until the differences 

between this and the actual spectrum are minimized (McCandless, 1974).  A method for 

varying all three formant frequencies, using a Newton-Raphson technique to find a least-

squares fit is described in . 

 

In peak-picking, certain rules are applied to select the appropriate peaks from a smoothed 

LPC spectrum at each frame to identify the first two or three formants.  The challenge is in 

recognizing which peaks are spurious and/or whether two formants have merged into one 
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peak (McCandless, 1974; Snell and Milinazzo, 1993).  The peak picking method 

implemented will be explained in the following paragraphs. 

 

The peak-picking method was implemented for this algorithm.  An iterative approach was 

followed to select the correct peaks as formants.  As a first approximation, the first two 

peaks were chosen as the first two formants.  Therefore, the algorithm applied determined 

the peaks for each window and labelled the first peak F1 and the second peak F2.  This 

simple implementation worked well for the clean vowels, but, once the vowel had been 

processed by the CI model, errors were made in determining the formants.  This can be 

seen in Figure 3.11. 

 

Figure 3.11. Example of formant detection error in a degraded vowel in the degraded word 

“peet”.  The triangles depict the F2 frequencies and the squares represent the F1 frequencies. 

The blue dashed line depicts the standard deviation of each formant, and the red dotted lines 

show their standard deviation. 

 

The frequencies of the formants picked from individual LPC windowed segments in time 

from the vowel in the degraded word “peet” is shown in Figure 3.11.  The line depicted by 

squares represents the frequencies picked by the algorithm as F1 frequencies.  Similarly, 

Incorrectly allocated formants

 
 
 



CHAPTER 3  METHODS 

Department of Electrical, Electronic and Computer Engineering 58 
University of Pretoria   

the line depicted by triangles represents the frequencies picked as F2 frequencies. The lines 

of long dashes represents the average frequency for each of the two formants.  The lines of 

short dashes represent the standard deviation of each of the two formants.   

 

Looking at Figure 3.11, there are obvious mistakes in identification of the formants. This 

demonstrates how an error can be made when picking the formants directly from the peaks 

in the LPC spectrum. The reason this happens in the degraded signal is that a peak might 

disappear for a small number of windows when predicting the vowels with a 12th order 

LPC filter because of the low spectral contrast of the signal.  It may also disappear when 

two formants merge or they are sufficiently close to one another so that the valley between 

them disappear in a LPC spectrum. 

 

The first problem was solved by calculating the mean and standard deviations for the 

formants (shown in Figure 3.11 by dashed lines and dotted lines, respectively).  Normally a 

mismatch is made when F1 is not detected and the peak for F2 is mistakenly recognized as 

F1.  Therefore, if a frequency recognized for a formant lies outside the bounds given by the 

standard deviation, the frequency is reallocated.  In other words, if the frequency for F1 

lies inside the standard deviation bounds of F2, it is reassigned to F2.  For that specific 

window in time there is then no peak allocated for F1 since there is no peak representing 

F1.  It is assumed that a listener will not be able to have F1 available for that instance in 

time since there is no peak available. The formant frequency is then left out for that 

specific window, and the spectral contrast value (which will be explained later) is set to 0. 

 

Cross-checking is also performed in time. Consequently (in Figure 3.11), if a selected peak 

creates a large jump from the selected peak in the previous window in time, then it is 

accepted that there is no relevant peak depicting that formant for that instant in time.  No 

formant will be picked for that window, and the spectral contrast will once again be set to 

0.   
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Figure 3.12. Example of formant tracking after error correction has been implemented for 

the word “peet”. 

Once these correcting features have been implemented, the errors in Figure 3.11 are 

corrected. The formant tracking shown in Figure 3.12 above shows that F2 peaks are no 

longer selected incorrectly as F1 frequencies.  The average frequency for each formant 

across all windows in time is taken as the formant frequency for that specific vowel. To 

evaluate the formant tracking in the figure above, the formant frequencies were highlighted 

in the spectrogram of the same word in Figure 3.14.  The thick solid lines show the 

tracking of formants which were done manually by inspection of the spectrogram.  The 

dotted line gives the approximate average of each of the two formant frequencies.  The 

comparison of the automated tracking in Figure 3.12 and the manual inspection of the 

formant frequencies in Figure 3.14 correspond well.  Even by inspection, however, it is 

clear that the formants in a vowel processed by a cochlear implant is not well defined and 

hard to approximate. 
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F2

F1

 

Figure 3.13. Manual formant tracking by observation of spectrogram of the processed word 

“poet”. 

3.4.1.7 Uncertainty Factors 

 

Figure 3.14 shows the LPC spectra for three different windows evenly spaced in time for 

the degraded vowel in the word “pad”.  For a clean vowel the spectral peaks are normally 

constant over the duration of the vowel or show a slow increase or decrease throughout the 

time of the vowel (which would mean that all the graphs in the figure would look very 

similar).   It is seen easily in Figure 3.13 that for a degraded vowel the formant peaks are 

not constant from window to window.  The formants continuously shift in amplitude and 

frequency, and the spectral contrast changes continuously as formants appear and fade.  
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Figure 3.14.  Example of the instability of the LPC Spectrum between three time instances 

taken from the vowel portion of the degraded word “pad”.  The peaks in these spectra should 

look almost identical in a clean (non-degraded) vowel. 

It has been established earlier that formant peaks are important acoustic cues in 

recognizing a vowel sound. Therefore, the observed wavering of the spectral peaks 

between these windows in time suggests that uncertainty may be produced in a person’s 

perception of where the formants lie.  It is assumed that the inability of a person to 

recognize the formant positions may be one of the causes of vowel confusion for a 

cochlear implantee.  The model has to be able to measure these confounding effects.  From 

inspection of the degraded vowel, two main factors that have been identified as causing 

ambiguity in vowel identification (because of the masking of the formant frequency). 

These are: 

 Frequency Variance 

 Spectral Contrast 

 

One objective of the present work was to identify which of these two masking effects is the 

larger cause of deterioration in vowel identification.  Each of these factors will be 

implemented into the model separately.  In the next chapter these methods will be 

evaluated against each other so as to determine which method predicts most accurately the 

results obtained from the subjective listening tests with the acoustic CI model.  The rest of 

this section will cover how these two methods are used in quantifying these uncertainties. 
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Frequency Variance 

 

From observation it was apparent that the formants in clean vowels have very stable 

frequencies where the formant frequency never fluctuates more than a 100 Hz in 

consecutive windows.  Listeners can assumedly easily recognize these vowels because the 

formants are clearly defined. This can be seen in Figure 3.15 (a) which shows the LPC 

spectrogram of the vowel from the Afrikaans word “poet”. Figure 3.15 (b) shows the 

frequencies of F1 and F2 tracked by the algorithm for each window of duration through 

time.  The dashed lines show the mean of the two formants and the dotted lines show the 

standard deviation of the formants. The standard deviation in this case is clearly not very 

large due to the stable formant frequencies over the duration of the vowel. 
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Figure 3.15.  (a) LPC spectrogram and (b) and formant tracks of the vowel sound /u/ 

extracted by the algorithm from the clean Afrikaans word “poet”. 

 

In contrast to Figure 3.15 which represents a clean vowel, Figure 3.16 (a) shows the 

amount of noise visible in the spectrogram for the same vowel after it has been degraded 

by the acoustic CI  model.  It is difficult through inspection to see where the peaks that 

represent the formants in the spectrum are situated.  When the algorithm has tracked these 

formants, Figure 3.16 (b) is produced.  Although the first formant is still quite stable, much 

variation is produced in the frequency of F2.  The mean of the frequency of F2 (depicted 

time (ms) time (ms) 
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by the dashed line) still lies close to that of the original.  However, the standard deviation 

(shown by the red dotted line) has increased dramatically.  
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Figure 3.16.  (a) LPC Spectrogram and (b) Formant tracks of the vowel sound /u/ extracted 

from the Afrikaans word “poet” after it has been processed through the CI model. 

 

It is assumed that the variability in the formant frequencies is one of the causes of vowel 

misinterpretation.  This assumption is based on the fact that research defines a formant as 

being a stable spectral peak (Peterson and Barney, 1952; Hillenbrand et al., 1995).  

Inspection of the vowel sound in Figure 3.16 shows that the F2 frequency undergoes 

erratic movement in time.  Therefore, the standard deviation of the formant frequencies 

was used as the first measure of uncertainty.  The standard deviation was calculated for the 

detected frequencies of the peaks of each window through time.  An upper bound for the 

standard deviation of 1000Hz was applied.  Since all formants lie within 1000Hz of each 

other, it is assumed that if a formant jumps more than 1000Hz between windows it was 

picked incorrectly.  The calculated standard deviation was used for the confusion 

calculations in the decision component. 

Spectral Contrast 

 

As the frequencies of the formants (spectral peaks) signal the identity of a vowel, the 
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differences in amplitude of peaks and valleys must be maintained to some degree for the 

human auditory system to interpret it correctly (Leek et al., 1987).  Even in the absence of 

significant noise, poor frequency resolution results in reduced definition of spectral peaks 

in a speech signal as the frequency regions become smeared together (Leek et al., 1987). 

 

Speech processed through normal auditory filters generally shows significant preservation 

of spectral peaks and valleys that serve to differentiate speech sounds.  However, when 

speech is processed through a cochlear implant with broader auditory filters, a reduction in 

internal spectral contrast is produced.  A smearing of the spectral information specifying 

the frequency locations of the formants then results (Summers and Leek, 1994; ter Keurs, 

Festen and Plomp, 1993a; ter Keurs, Festen and Plomp, 1993b). 

 

Spectral contrast was used, therefore, as the second measure of the uncertainty of a person 

differentiating a vowel sound.  Spectral contrast is defined as the height of the peaks of a 

formant in relation to the valleys around it (Leek et al., 1987; Loizou and Poroy, 2001a).  

The higher this value is, the larger the spectral contrast becomes.  It has been shown that 

high spectral contrast contributes to the accuracy of a person recognizing a vowel and that 

a reduction in spectral contrast creates confusion in the interpretation of vowel sounds 

(Sidwell and Summerfield, 1985; ter Keurs et al., 1993b). 

 

Figure 3.17 displays the LPC spectra of all windows through time superimposed on each 

other, in order to depict the spectral contrast for the entire clean vowel in the word “paat”.  

The blue lines in the graph represent the LPC spectra of individual windows through time.  

The thick red line shows the average LPC spectrum of the vowel.  The first two peaks in 

the spectrum depict the first two formants.  The valleys around these formants are used to 

measure the spectral contrast of each formant.  For the first formant the spectral contrast is 

measured as the distance between the peak and the valley to the right of the peak.  The 

valley to the left is not included because it assumedly does not contain any information that 

is necessary for a human to hear the first formant.  The spectral contrast of the second and 

consecutive formants is measured as the distance between the peak of the formant and the 

average distance of the valleys both to the left and right of the formants.  
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Figure 3.17.  LPC spectra showing the spectral contrast of the clean vowel (which has not 

been processed by the acoustic model) in the Afrikaans word “paat”.  The thick line 

represents the average of all windows (thin lines) through time of the vowel sound.  The 

vertical bars represent the spectral contrast for the F1 and F2 frequency. 

 

Figure 3.18 shows that the spectral contrast between the valleys and peaks is reduced 

significantly, on average, after it has been processed through the CI model.  The same 

measurements were used as described before.  Experimentation showed that measuring the 

spectral contrast for each window individually and averaging this value does not give 

satisfactory results.  This happens for the following reason: individually there may be good 

spectral contrast per window, but this contrast is very unsteady throughout. To overcome 

this, the LPC spectra of all the windows in the vowel was first averaged (shown as a thick 

red line in Figure 3.18.)  The spectral contrast was then measured on the averaged 

spectrum instead of measured in the individual windows in time. Using this method was 

more pragmatic for the measurement of the spectral contrast. 
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Figure 3.18.  LPC windows showing the spectral contrast of the processed vowel sound /A:/ in 

the Afrikaans word “paat”. Vertical bars depict the average spectral contrast for the F1 and 

the F2 frequency. 

 

The spectral contrast was measured for each of the formants as the second type of 

uncertainty factor.  This is used in the decision component to aid in the confusion 

measurements, described next. 

3.4.2 Decision Component 

 

Once all the necessary information for all the vowels had been gathered by the processing 

component, the decision component was used to predict the correct answers and possible 

confusions that could arise between the vowels being evaluated.   

 

The decision component is based on a signal detection theory described in Gelfand (1990) 

and Green and Swets (1966).  Signal detection theory provides a general framework to 

describe and study decisions that are made in uncertain or ambiguous situations.  It is 
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commonly applied in psychophysics and in the most successful of the quantitative 

investigations into the processes of human decision-making and perception (Wickens, 

2002). 

 

The block diagram shown in Figure 3.18 summarizes the main functional steps that make 

up the decision component. The acoustic cues (those that were selected, as described 

previously) were used to determine perceptual distance measures in a vowel space of all 

the vowels presented.  The position for each vowel was determined by the frequency of the 

first two formants and the duration of the vowel.  These values were extracted from the 

degraded vowel sound being evaluated. The Euclidean distances between the vowels in 

terms of F1, F2 and duration were used to indicate the position of the vowels in the vowel 

space.  The variances for each pdf were calculated from the uncertainty factors provided by 

the processing component.  In calculating the probability of confusion, the greater the 

overlap between the pdfs the greater the probability of the vowels being confused.  This is 

similar to the model developed in Svirsky (2000), however the variances in the present 

study were calculated and not estimated. The end product of the decision component is a 

confusion matrix which predicts the confusions a listener would experience in a subjective 

vowel confusion test. 
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Figure 3.19.  Block diagram of the decision component. 

 

The operation of the decision component was based on statistical signal decision theory 

(Wickens, 2002).  In signal detection theory, pdfs are used to represent stimuli and 

responses to the stimuli.  To determine the probability of a correct answer, pdfs were 

generated for both the stimulus (the vowel being presented) and the listener’s possible 
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response (the vowel perceived by the listener).  The mean of the pdf was gained from the 

acoustic cues extracted in the processing component.  The variance of the pdf was 

determined by the amount of noise in the given stimulus which masks the acoustic cues. 

The noise variance is directly proportional to the uncertainty that a person has in 

identifying a vowel.  All pdfs were generated to have a Gaussian distribution.  Although 

this was done for three variables in the model (creating a four dimensional pdf), for the 

sake of simplicity the explanation provided here will describe a scenario for a one 

dimensional variable (creating a two dimensional pdf).  This will then be expanded later on 

in the chapter.  The Gaussian distribution f(x) in one dimension is shown in Equation 3.9, 

           

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 
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1
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



x
xf ,           (3.9) 

where μ is the mean of the distribution and σ the variance.  

 

A pdf was calculated for all the vowels being evaluated.  The probability of the listener 

giving one specific response from all possible responses was calculated individually. These 

probabilities were calculated by integrating the tail of the pdf of the stimulus from a certain 

decision point (one dimensional example shown in shown in Figure 3.20).  If no bias is 

assumed in the decision making process then this point is chosen as the crossing point of 

the stimulus pdf and the possible response that is being calculated.  (See Section 3.4.2.2. of 

this dissertation for further information on how the decision point was determined.) 
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Figure 3.20.  Probability distribution functions representing the stimulus and response.  The 

probability of giving the incorrect response, PF,  is calculated from λ to the end of the 

stimulus pdf. 

Figure 3.20 is presented for illustration purposes only, and shows the case when only one 

random variable is used. The model will use three variables, one for each acoustic cue.  

The mean of the pdfs are the acoustic cue values (for example, the F1 frequency).  The first 

pdf represents the stimulus (the vowel sound played) and the second pdf represents a 

possible response by a listener (one of the possible answers given by a listener).  The 

variance of each pdf is determined from the uncertainty factor from the processing 

component (either frequency variation or spectral contrast).  The cleaner the sound is, the 

better is the chance of the listener identifying the vowel correctly and the less is the 

variance in the pdf representing the vowel.  The more uncertainty a person has in 

identifying a vowel, the larger the variance of the pdf becomes.  Therefore, the more 

overlap there is between the two pdfs, the greater the probability of the listener responding 

in error.  The distance between the centre points of the pdfs is determined from the 

Euclidean distance in terms of the formant frequencies F1 and F2,  as well as the vowel 

duration. 

 

The false response rate PF is the probability that an observation from the stimulus is 

incorrectly perceived.  The shaded area in the distribution in Figure 3.20 corresponds to 

PF

λ
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this probability.  It is assumed that no bias exists toward any vowel; therefore, the decision 

criterion λ was chosen as the point where the two distributions cross.  The equation for PF 

can be written as follows (where fs is the pdf of the stimulus) . 

         








dxxf

PP

s

F

)(

)Stimulus|ResponseIncorrect (
         (3.10) 

 

The probability of making all the possible responses is calculated in turn for each presented 

vowel.  The probability of all responses being given for each presented vowel is then 

grouped into a confusion matrix.  The probabilities are converted to a form that can be 

compared to confusion matrices resulting from subjective vowel confusion tests.  A more 

in-depth explanation of each functional block in the decision component will be described 

next.  

3.4.2.1 Creation of 4D Gaussian Distribution Functions 

 

In detection and identification models, the effect of a stimulus presentation is expressed by 

a univariate random value X (as described above).  This representation works well with a 

single stimulus; however, most signals incorporate more than one component carrying 

some information regarding the nature of a sound. The listener must integrate these various 

components into a single decision.  For the present, objective model trivariate random 

variables were used for the selected acoustic cues, namely the F1 and F2 frequencies and 

the duration of the vowel. 

 

The signal detection representation of a multidimensional stimulus is a generalization of 

the univariate representation.  The effect of a single component stimulus corresponds to a 

random variable X.  The effect of a three-component stimulus is described by a trivariate 

random variable X = (X1,X2,X3) and its instances by x = (x1,x2,x3). Instead of being 

represented as a point on a line (as in the description above) an observation is a point in 

three-dimensional space.  The distribution of X is expressed by a density function f(x) = 

(x1,x2,x3) which associates a density with each point in the space.  The Gaussian 
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distributions are expanded to trivariate form using the following equation (this will only be 

shown in  matrix form for simplicity): 

          

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1
exp)( xxf ΣΣ QC ,          (3.11) 

 

where the constant C  and quadratic function Q (x-u) are given by the following 

matrices.  
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The variable Σ represents the following covariance matrix. 
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The random variables (F1,F2, vowel duration) are considered to be independent of each 

other. Hence, the correlation coefficient ρ (representing the correlation between the random 

variables) have been set to zero.  This simplifies the covariance matrix to the following:  
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The density functions representing each vowel are characterized by their trivariate mean μ 

= (μ1, μ2, μ3).  The means of the processed vowels for each distribution are based on the 

acoustic cues obtained in the processing component. If these three means were plotted, 

each vowel’s trivariate mean could be plotted in a three-dimensional perceptual space.  If 

all vowels are given the same variance in all three directions, it follows that the closer the 

vowels are to each other, the higher the probability of a person confusing them.   

 

Figure 3.20 represents the modelled four-dimensional perceptual vowel space of a listener.  
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The centre points of the ellipsoids are defined by the duration of the vowel and its average 

F1 and F2 frequencies across the duration of the vowel sound.  The sizes of the ellipsoids 

give an indication of the standard deviation of both formants.  The figure shows the 

distances between the vowels and also gives an indication of which vowel is likely to be 

confused with another vowel.  A representation such as Figure 3.20 does not provide the 

actual pdfs, but provides the reader with a clear picture of the distances between the vowels 

and the possible confusions between vowels.  To show a pictorial representation of the 

pdfs would require a four-dimensional graphic. 

 

The variances of the vowel, that is, the size of these ellipsoids in all three dimensions, are 

determined by the uncertainty that a listener has in hearing one of the three listening cues 

(namely, the vowel duration, the F1 frequency and the F2 frequency).  The larger a 

particular uncertainty factor is, the larger the ellipsoid will be in the specific direction 

indicating that particular factor.  According to the proposed model, the closer the ellipsoids 

representing the vowels are to each other, the larger is the probability that they will be 

confused with each other.  In this model, if two ellipsoids do not intersect, there is a 

smaller probability that the vowels will be confused. 
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Figure 3.21.  A three-dimensional vowel space generated by the objective vowel prediction 

model 

 

As was mentioned earlier, the actual Gaussian distributed probability density functions 

used for determining the probability of vowels being confused exist in four dimensions 

(just as a one variable pdf requires a two-axis figure as representation, a trivariate pdf 

requires a four-axis figure).  The three-dimensional vowel spaces only provide the reader 

with a representation of the trivariate random variables and their respective variances.  

From the vowel space in Figure 3.21, the model predicts which vowels will have a 

probability of being confused, for example, “puut” with “piet”, and “pit” with “put.” 

 

The values from the vowel spaces are used to generate trivariate pdfs.  The next steps are 

to find the decision axis and integration point between the stimulus vowel and the response 

so that the probability of providing the response can be calculated.  

 

 
 
 



CHAPTER 3  METHODS 

Department of Electrical, Electronic and Computer Engineering 75 
University of Pretoria   

3.4.2.2 Finding the Decision Axis  

 

The problem in calculating probabilities with multivariate information is to find a rule to 

reduce the multiple dimensions to a single decision.  A common approach to solving this 

problem in signal detection theory is through geometry (Wickens, 2002).  It is clear that 

the shortest distance between the centres of the two distributions lies along the line that 

connects their means.  This line creates a natural decision axis.  When the two multivariate 

distributions are projected onto this axis, they form two univariate distributions.  These 

distributions can then be used to find the decision point.  The decision point is the place at 

which the two pdfs intersect and will be used to find the plane from which the integration 

to the tail of the distribution of the stimulus will take place.  Since the trivariate Gaussian 

distributions cannot be shown (they are four-dimensional), bivariate distributions will be 

used in figures to illustrate the concept. The equations given will be trivariate however, as 

used in the algorithm. 

 

 

Figure 3.22.  Bivariate representation of using the line between the means of the distributions 

to find the decision criterion. 

F1 (Hz) 

F2 (Hz)
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Figure 3.22 shows how the decision plane is found. The red and blue lines show the 

univariate distributions along the line that connects the two means. This line represents the 

plane along which the bivariate pdfs (three-dimensional) collapse into univariate pdfs 

(two-dimensional).  This procedure is done by finding the projection of both the pdfs onto 

the line between the two means, thus forming the function for the red and blue line in 

Figure 3.22.  To do this, the vector between the two means is first calculated by 

              RDSDRSRS  ,, 22 FFF1F1a ,        (3.15) 

where μS.. is the point of the mean of the Gaussian distribution of the stimulus in the F1, the 

F2 and the duration axes and μR.. is the point of the mean of the Gaussian distribution of the 

response in the F1, the F2 and the duration axes. 

 

Both distributions are then projected onto this vector in order to calculate the point of 

intersection.  This is completed by finding the dot product of the distribution and the vector 

a as calculated by  

             a(a)  ),,( 21 DFFPP ,                (3.16) 

where P(a) is the univariate pdf along the vector a,  P(F1,F2,D) is the original trivariate pdf 

and a is the vector between the mean of the stimulus pdf and the response pdf. 

 

Figure 3.23 is formed when these distributions are collapsed onto the vector between the 

two means.  This allows for the decision criterion to be found as it would be found in 

univariate signal detection theory.  It is assumed that there is no bias to either distribution: 

therefore,  the decision criterion λ was chosen as the point where the two distributions 

cross in the graph.  The crossing point between the two distributions, λ, minimizes the 

error even when the standard deviation between the two pdfs are not the same.  
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Figure 3.23.  Univariate distributions found along the line between the means of the bivariate 

distributions in Figure 3.22. 

3.4.2.3 Find Gradient of Decision Plane 

 

In univariate form the decision criterion is a point from which integration can start to 

determine the probability of error.  In the case of bivariate signal detection this point is 

extended to a line, whereas in the case of trivariate signal detection (as in this present 

model) the point needs to be extended to a plane.   

 

The difficulty in finding the area of integration for a trivariate pdf, is that the orientation of 

the plane is not known and needs to be determined.  The simplest approach is to choose the 

plane perpendicular to the line along the two means.  This approximation performs 

accurately in an equal-variance model: it produces inaccurate results, however, when the 

three variances differ from each other.  Figure 3.24 shows how an error is produced when 

setting the orientation of the plane orthogonal to the line between the means.   

λ
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Figure 3.24.  3-Dimensional representation of the error produced when choosing the decision 

line orthogonal to the line between the means of the distributions. 

The decision criterion calculated as the intersection between the univariate distributions 

along the decision line can be seen in Figure 3.23 as a green dot.  The yellow line is 

calculated by finding the line orthogonal to the vector between the means of the two pdfs.  

This line is the place from which the integration to the tail of the distribution of the 

stimulus will take place in order to calculate the probability of error.  By inspecting the 

figure, it becomes clear that there is almost no interaction between the two pdfs; therefore, 

the probability of error should also be very close to zero.  Although there is very little 

interaction between the two Gaussian distributions, it is clear that the yellow line cuts into 

both distributions and, if the integration starts from this line, the predicted error will be 

larger than it should be.  

 

This error in calculation is corrected by not choosing the plane perpendicular to the line 

between the means but, rather, finding the directional gradient of the distribution function 

in all three directions.  Therefore, the tangent plane to the pdf is found at the point of 

decision (green dot in Figure 3.24).  This is done by calculating the partial differential in 

F1 (Hz) 

F2 (Hz)
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each direction using the following equations: 
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where P(F1,F2,D) is the pdf for the stimulus distribution and fF1, fF2 and fD are the partial 

derivatives representing the slope in each direction.  From these equations a tangent plane 

can be calculated by calculating the dot product of the partial derivatives and the tangent 

plane at the decision point λ.  This is shown in equation 3.20. 

         )(),(),( 21  DFF fffTP λp ,        (3.20)

where TP is the new tangent plane function,  p is the tangent plane vector, fF1, fF2 and fD are 

the partial derivatives in each direction and λ is the decision point.   

 

By using the tangent plane the error can be minimized so that the least possible error is 

calculated since the integration to the tail happens at the point where the predicted error 

would be minimal.  This method of finding the gradient will be referred to as the tangent 

method henceforth.  Graphical portrayal in three dimensions (which means the plane is a 

line) is shown in Figure 3.25. (Remember that in the actual model the calculation is done 

for an integration plane for trivariate pdfs; therefore, in four dimensions the yellow line is 

actually a plane.)   
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Figure 3.25.  3-Dimensional representation of the error minimized by using the tangent 

method to find the decision line. 

Figure 3.25 gives a three-dimensional representation of how the tangent method improves 

on the perpendicular method. The yellow integration line shows how the error is fixed to 

give a more accurate answer to the interaction of the two distributions. The probability of 

confusing the stimulus with the response (error probability) is calculated by integrating to 

the tail of the pdf from the tangent plane using the equation  

     
R

S dDdFdFDFFPEP 2121 ),,()( ,                    (3.21) 

where PS is the Gaussian probability density function of the stimulus in terms of the three 

cues (F1, F2 and duration).  R, the region of integration, extends from the tangent plane 

(calculated above in Equation 3.20) to the tail of the pdf.  For the examples shown in 

Figure 3.24 and Figure 3.25, it is clear by inspection that the probability of error is reduced 

by using the tangent method.   

 

The probability of making an error is calculated using the method described in this chapter 

F1 (Hz) 

F2 (Hz)
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for each vowel presented and each possible wrong answer given.  Each of these results is 

then placed in a prediction confusion matrix.  The confusion matrix shows the probability 

of a listener confusing the various vowel sounds. These confusion matrices are evaluated in 

the next chapter by comparing the results with confusion matrices obtained from subjective 

vowel confusion tests performed with normal hearing listeners listening to an acoustic CI 

model. 

3.5 EXPERIMENTAL STUDY 

 

To assess the newly developed vowel prediction model it was compared with results from 

a subjective vowel confusion test conducted with human participants.  Care was taken in 

using the same speech stimulus material in testing the model that was used in the original 

subjective test.  In order to achieve this, results from the experiments done by Conning and 

Hanekom (2005 unpublished) were used; thus the original speech material was available 

together with the results.  The objective in the study by Conning and Hanekom was to 

evaluate the CI acoustic model, the same model used in this study.  The details from  the  

subjective experiments are given below. 

3.5.1 Listeners 

 

The processed speech segments were presented to seven female listeners and three male 

listeners.  All the listeners were normal hearing people between the ages of 19 and 26, with 

Afrikaans as their home language.   

3.5.2 Stimuli 

 

The acoustic model was used to process 12 /CVC/ vowels (in the context of ‘p’-VOWEL-

‘t’).  The original speech, spoken by an Afrikaans male speaker, were recorded at 44.1 kHz 

(16 bit resolution) in a double walled sound booth at the University of Pretoria. A high 

quality Sennheiser microphone was used for the recordings.  The stimuli presented were 

the Afrikaans vowels /œ/ (pat), /a/ (pad), /u/ (poet), /π/ (put), /y/ (puut), /e/ (peet), /A:/ 

(paat), /i/ (piet), /´/ (pit), /O/ (pot), /E:/ (pêt) and /E/ (pet).  Each phoneme was played, in 
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random order, to the listener through a loudspeaker at an average sound pressure level of 

70 dB SPL.  The listener had to select (from a computer screen) which vowel sound he/she 

recognized each stimulus to represent.  Each stimulus was repeated ten times for each 

experimental condition. The latter are described below.  Since normal hearing listeners had 

to become accustomed to the sound of the CI model, the experiments were repeated five 

times and only the results from the fifth experiment were used. 

3.5.3 Experimental Conditions Investigated 

3.5.3.1 Acoustic CI Model 

The acoustic CI model used for the experiments was designed to closely follow the speech 

processor used in a cochlear implant and it also implemented the biophysical features that 

affect the signal in the cochlea.  The flow diagram for this model is shown in Figure 3.26.  

In essence the model breaks the signal into 20 frequency bands.  Each of these bands 

corresponds to an electrode in the electrode array situated into the cochlea.  The 

biophysical part simulates the interaction between the electrodes and the nerve fibres in the 

cochlea.  

 

Figure 3.26.  Flow diagram showing the value of the acoustic model. 

The sound processing section of the acoustic model transforms the signals in the same 

manner that the processor does in a cochlear implant that uses the SPEAK strategy.  For 

this strategy the incoming speech signal is divided into 20 frequency bands and the 8 

channels with the highest energy content are used.  To reconstruct the speech signal, band-

limited noise bands are used as an approximation to the spread of current in the cochlea.  

All the channels are quantised to the stimulation current values and then all the active 
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channels are summed to provide output in the form of an audio file.   

 

The acoustic CI model allows the user to set the number of channels, type of signal 

processing, dynamic range compression of the stimulus current and the insertion depth of 

the electrodes.  For the simulations, the acoustic CI model was set to eight channels at an 

insertion depth of 25 mm with the SPEAK cochlear implant processing strategy.   

3.5.3.2 Background Noise Conditions 

In the first condition, the experiment was conducted with the cochlear implant acoustic 

model with no background noise.  In a second condition, Noise was added to the input 

speech signal to determine how speech recognition would deteriorate in the presence of 

noise. 

 

Multi-talker babble noise was used to test different listening conditions because of its 

superior masking effects on speech (Dubno, Horwitz and Ahlstrom, 2005; Ferguson and 

Kewley-Port, 2002; Friesen, Shannon, Baskent and Wang, 2001; Fu et al., 1998a; Killion, 

Niquette, Gudmundsen, Revit and Banerjee, 2004; Müller, Schön and Helms, 2002; Nie, 

Stickney and Zeng, 2005; ter Keurs et al., 1993b; Yang and Fu, 2005).  Existing .wav files 

of noise signals were used with permission from E. Hennix1.  The multi-talker babble has 

formants in the same frequency area as speech, thus simulating a more realistic hearing 

environment for cochlear implant users.  Three different noise conditions were tested along 

with the without noise condition. The noise conditions 40dB, 20dB and 0dB SNR. These 

were chosen to investigate how the speech recognition deteriorates with increasing noise, 

and whether this predicts findings with listeners.   

                                                 

 

 

1 http://www.e.kth.se/ and http://www.mmk.e-technik.tu-muenchen.de/ 
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3.5.3.3 Evaluation of Results 

Confusion matrices were created from the subjective tests using custom software.  These 

confusion matrices were analyzed through FITA (Feature Information Transmission 

Analysis) investigation to determine the effect of noise on the transmission of speech cues 

to the auditory system.  FITA analysis is a method that determines the amount of 

information transmitted (for present purposes, the information contained in the three 

acoustic cues) and conclusions are drawn as to which characteristics are transmitted most 

effectively with the acoustic simulation.  The process of obtaining the FITA will be 

explained in the results chapter. 

 

The accuracy of the objective prediction model was assessed by evaluating the same 

speech files using the model.  All the .wav files used in the subjective tests were processed 

through the new model to create the prediction confusion matrices.  In all conditions the 

clean speech was used as the clean input to the model so as to serve as a reference.  Noise 

was added to the input processed through the CI model.  Four different conditions of multi-

babble background noise were tested (no noise, 40 dB, 20 dB, 0 dB). 

3.5.4 Summary 

 

In this chapter, the methodology implemented to develop a new vowel intelligibility 

prediction model was reported.  A step-by-step guide was given as to the steps followed in 

the development of the model.  Considerations made during the development of the model 

were recorded here, as well as proposed solutions given.  This chapter also briefly 

explained how the results from previous subjective testing were obtained.  The results from 

the subjective and objective experiments are compared using confusion matrices and FITA 

analysis (as reported in the next chapter). These results are compared separately for each 

SNR level to evaluate the developed model.  
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CHAPTER 4   RESULTS 

4.1 CHAPTER OBJECTIVES 

 

The vowel prediction model is evaluated in this chapter.  Comparison is made between the 

confusion matrices obtained in the subjective vowel tests and those obtained when running 

the same speech material through the objective model.  These experiments were performed 

first in the condition of no channel noise added and then with specific increments of added 

multi-talker babble noise to determine the applicability of the algorithm under various 

conditions, as explained in the previous chapter.  Vowel spaces are presented to give the 

reader a visual representation of how the confusion matrices were generated.  The 

percentage information correctly transmitted by the major acoustic cues for the various 

tests is compared and discussed. 

 

The objective model was implemented with two different uncertainty factor calculations.  

The first implementation used variation in formant frequency and the second 

implementation used spectral contrast to calculate this uncertainty.  These models will be 

referred to as the Frequency Variation Model and Spectral Contrast Model respectively.  

Both of these possible factors underlying confusions will be evaluated in this chapter.  The 

chapter will be concluded with a summary of the comparative results of the Frequency 

Variation Model and the Spectral Contrast Model. 

4.1.1 Formant Frequencies and Duration 

 

The formant frequency and vowel duration acoustic cues present the model with the 

information needed to calculate predictions.  Table 4.1 shows the formant frequencies for 

each of the vowels that were used for testing the model.  The first and second formant 

frequencies were determined from the vowels’ spectrograms by using the software 

program PRAAT (Boersma and Weenink, 2001).  PRAAT has functionality to determine 

the mean formant frequencies of a vowel token and allows for visual inspection of the 

spectrogram of each vowel.  The data in the table will serve as a reference to aid in the 
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analysis of the confusion matrices. 

Table 4.1.  Values for vowel duration (ms), F1 frequency (Hz) and F2 frequency (Hz) of 

selected phonemes as measured with PRAAT 

 

The acoustic model of the cochlear implant shifts the values of the acoustic cues to a 

certain extent.  This is especially evident in the F1 and F2 frequencies.  The duration cue is 

still very similar for most of the vowel sounds.  Plotting a two-dimensional vowel space of 

the F1 and F2 frequencies for both the original vowels and the vowels processed through 

the CI model provides better insight into how these spectral shifts might affect vowel 

identification (see Figure 4.1).   

 

Duration 
(ms)

F1 
(Hz)

F2 
(Hz)

Duration 
(ms)

F1 
(Hz) 

F2 
(Hz)

pAAt A: 218 765 1074 226 747 1266

pIEt i 87 258 2031 70 540 1955

pOEt u 84 319 1057 67 440 1120

pAd a 100 783 1143 87 740 1174

pEt E 87 508 1966 88 541 1941

pOt O 102 525 954 118 540 1100

pIt ´ 73 479 1588 69 598 1644

pAt œ 135 664 1506 104 690 1430

pUt π 92 508 1524 84 526 1502

pEEt e: 198 337 2104 132 441 1955

pêt E: 274 416 1904 228 526 1756

pUUt y 91 285 2069 71 484 2034

Original vowels Vowels processed through CI model
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Figure 4.1.  Two-dimensional  vowel space of the formant frequencies of original vowels 

(small italic font) and the same vowels after being processed by the acoustic model (large 

font). 

The information in Figure 4.1 shows that vowel separation in the vowel space is different 

for a cochlear implantee compared to a normal hearing listener, at least when using the 

present acoustic model  The most evident difference is that there is no processed vowel 

which has a F1 frequency lower than 440 Hz.  All F1 frequencies are moved up to or past 

this frequency.  It is also evident that the vowel space for the processed vowels lies in a 

much smaller area than the original vowels.  Only looking at the formant frequencies (and 

ignoring the masking of noise) it is evident that there is already a greater probability of 

vowel confusion for a cochlear implantee.   

 

When the vowel space is viewed in terms of the F1 and F2 frequencies, one can predict a 

number of possible confusions.  There is a specific group of vowels, /u,π,y,i,´/, with 

approximately the same duration and with a first formant frequency in the region of 440 

Hz – 600 Hz.  Based on the similarities, it may be predicted that these vowels will be 

confused frequently. 

 

What cannot be seen from the vowel space above is the masking effect of noise on the 
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availability of the acoustic cues to the listener.  For the original vowel the formant 

frequency is stable with a high spectral contrast making it easy to hear.  The introduction 

of noise by the cochlear implant (by, for example, decreasing spectral contrast) plays a 

major role in the transmission of these acoustic cues to the listener.  This factor causes 

vowel identification to degrade as additional noise is added to the vowel.  This can be seen 

in the confusion matrices in the rest of the chapter.  Examples of the spectral effects of the 

noise introduced by the cochlear implant can be seen in the spectrograms and LPC spectra 

in the previous chapter.  

4.1.2 Accuracy of Acoustic Cue Tracking 

 

The predictions of the objective model depend on the correct extraction of the acoustic cues 

from the vowel sounds, especially in the case where the vowels have been degraded by the CI 

acoustic model.  The following two tables show comparisons between the values extracted by 

the objective model and the values obtained from inspection (Table 4.1). 

Table 4.2.  Comparison of the values of the acoustic cues (vowel duration, F1 frequency and 

F2 frequency) for clean vowels which have not been processed by the CI model.  

Dur (ms) F1 (Hz) F2 (Hz) Dur (ms) F1 (Hz) F2 (Hz)
paat 218 765 1074 208 609 1047
piet 87 258 2031 80 297 2047
poet 84 319 1057 88 328 1109
pad 100 783 1143 96 609 1094
pet 87 508 1966 104 453 2016
pot 102 525 954 112 484 844
pit 73 479 1588 72 484 1578
pat 135 664 1506 128 594 1531
put 92 508 1524 96 484 1531
peet 198 337 2104 192 313 2094
phet 274 416 1904 272 422 1938
puut 91 285 2069 96 297 2000

Inspection Objective Method

 

Table 4.2 shows the measured values for the three acoustic cues (vowel duration, F1 

frequency and F2 frequency) for the clean vowels.  On the left are the values as measured 

by inspection and analysis in PRAAT.  On the right are the values as measured by the 
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objective model.  The average absolute differences for the duration, F1 frequency and F2 

frequency are 6 ms, 49 Hz, and 31 Hz, respectively. This is less than a one percent 

difference on average for each of the acoustic cues.  The maximum error found was in the 

word “pad” where there was a 22% difference for the F1 cue.  This shows how difficult it 

is to determine the precise location of the formants in the degraded speech.  Apart from 

this exception, the model performs adequately in cue extraction for clean vowels presented 

with no additional background noise.   

Table 4.3.  Comparison of the values of the acoustic cues (vowel duration, F1 frequency and 

F2 frequency) for clean vowels that have been processed by the CI model.  

Dur (ms) F1 (Hz) F2 (Hz) Dur (ms) F1 (Hz) F2 (Hz)
paat 226 747 1266 208 563 1156
piet 70 540 1955 80 500 1766
poet 67 440 1120 88 547 1141
pad 87 740 1174 96 656 1141
pet 88 541 1941 104 531 1781
pot 118 540 1100 112 531 1109
pit 69 598 1644 72 516 1641
pat 104 690 1430 128 688 1438
put 84 526 1502 96 516 1438
peet 132 441 1955 192 516 1859
phet 228 526 1756 272 563 1656
puut 71 484 2034 96 516 1688

Inspection Objective Method

 

 

Table 4.3 shows the values for the three acoustic cues measured for vowels that have been 

processed by the CI model.  Accurate measurement of these vowels provides a challenge 

because of the amount of noise present in the spectrum of the vowel.  Again the values 

measured by inspection are presented in the left column of the table and the values 

extracted by the objective model are shown in the right column.  The average absolute 

differences for the vowel duration, F1 frequency and F2 frequency are 21 ms, 56 Hz, and 

95 Hz, respectively. This is an average of 99% precision or more for the formant 

frequencies and more than 98% accuracy for the duration of the vowel.  These values were 

calculated by finding the absolute difference between the cues for the objective extraction 

and for inspection for each vowel individually and calculating the average for each cue.  
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Once again, the first and second formant frequencies were determined from the vowels’ 

spectrograms by using the software program PRAAT.  The acoustic cues are, therefore, 

properly tracked by the objective vowel prediction model.   

4.1.3 FITA Analysis 

 

FITA analysis is used in the rest of the chapter to compare the objective model’s confusion 

matrices to the subjective tests’ confusion matrices.  The FITA analysis is obtained by 

using the formant frequencies and the duration of each of the vowels presented to the 

listener.  FITA analysis was done for the vowel recognition confusion matrices to 

determine which acoustic cues were transmitted most effectively and to determine whether 

listeners use the acoustic cues to the same extent under the various conditions presented in 

this study.  The output of the FITA analysis is a measure of covariance between input and 

output.  This measure is calculated the following procedure.   

 

If the input variable is x with probability pi, i = 1, 2, ..., k, the mean logarithmic probability 

(MLP) is defined as  

    
i

iii pppExMLP log)log()( .           (5.1) 

A similar expression is defined for the output y with probability pj, j = 1, 2, ..., m.  A 

measure of covariance of input with output is given as 

   
ji ij

ji
ij p

pp
pxyMLPyMLPxMLPyxT

,

log)()()();( ,          (5.2) 

where pij is the probability of the joint occurrence of input i and output j.  T(x;y) is the 

transmission from x to y.  When a response is closely correlated with a specific stimulus, 

the transmission of a specific feature is authentic and T(x;y) will be near unity (Miller and 

Nicely, 1955).   

 

FITA analysis requires that the information (the acoustic cues in this instance) that is to be 

evaluated is grouped in categories for analysis.  The classifications were different for the 
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processed and original vowels because of the shifting of the acoustic cues as shown in 

Table 4.3 (Pretorius, Hanekom, Van Wieringen and Wouters, 2005).  The acoustic cues are 

classified as shown in Table 4.4 and Table 4.5.  The classifications of the vowels were 

determined using the guideline summarised in Table 4.6.  The vowels were grouped 

together according to their classifications to determine the percentage information 

transmitted for a specific characteristic.  The confusion matrices were analysed using these 

classifications to determine whether long vowels could be distinguished from short vowels, 

vowels with low F1 frequencies could be distinguished from vowels with high F1 

frequencies, and so forth.   

 

Table 4.4.  Classification of processed vowels for FITA analysis. 

pAAt pIEt pOEt pAd pEt pOt pIt pAt pUt pEEt pêt pUUt

Duration 2 1 1 1 1 2 1 2 1 2 2 1

F1 2 1 1 2 2 1 1 2 1 1 1 1
F2 2 3 2 2 3 2 2 2 2 3 3 3

 

 

Table 4.5.  Classification of original vowels for FITA analysis (Pretorius et al., 2005). 

pAAt pIEt pOEt pAd pEt pOt pIt pAt pUt pEEt pêt pUUt

Duration 2 1 1 1 1 1 1 1 1 2 2 1
F1 2 1 1 2 2 2 2 2 2 1 1 1
F2 2 3 1 2 3 1 2 2 2 3 3 3

 

 

Table 4.6.  Ranges of vowel duration, F1 frequency and F2 frequency used for the 

classification of processed vowels. 

Duration F1 F2

1 0 - 100 0 - 540 0 - 960

2 > 100 541 - 900 960 - 1700
3 > 900 >1700  
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4.2 FREQUENCY VARIATION MODEL 

 

The results for the Frequency Variation Model are described in this section.  The results 

obtained from the test that was conducted with speech to which no additional noise had 

been added are presented first.  Thereafter, the results from the tests done in the presence 

of different SNR levels of multi-talker babble noise follow.  For each test the confusion 

matrix from the subjective test is shown along with the prediction confusion matrix 

generated by the objective model.  Section 3.4 explained the procedure that was followed 

in the particular study and which experimental parameters were set in the subjective tests.  

The results of the subjective tests serve as a reference against which the new objective 

algorithm can be evaluated.  The confusion matrices are compared using FITA analysis. 

 

4.2.1 Speech Without Additional Background Noise 

 

Figure 4.2 gives a representation of the possible confusions between the vowels that were 

presented to the listener without additional background noise.  This figure was generated 

by the objective evaluation algorithm from the acoustic cues and their respective 

uncertainty factors.  Each ellipse in the figure represents a vowel sound.  The centre of 

each of these lie at the vowel’s measured acoustic cues.  The size of the ellipse indicates its 

uncertainty factor.  In the Frequency Variation Model the uncertainty factors for F1 and F2 

are their standard deviations in terms of frequency. 
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Figure 4.2.  Perceptual vowel space (generated using the Frequency Variation Model) for the 

processed vowels, with no background noise. 

 

From the above vowel space it can be predicted that the vowels with a longer duration 

(above 100 ms), that is, the vowels in the words “paat”, “peet”, “pat”, and “pêt”, have little 

probability of being confused with other vowels.  The vowels of duration between 60 ms 

and 100 ms all lie close together and are separated only by their formant frequencies.  The 

sizes of all the ellipses for all the vowels are generally the same except for ‘pad’.  For the 

word ‘pad’, the measurement of the F1 frequency has a very large standard deviation.  This 

is so because its first two formant frequencies lie very close together, which causes the CI 

model to merge them into one in some of the windows, causing the objective algorithm to 

pick the formants incorrectly.  Assumedly, the implantee would do the same. 

 

A confusion matrix was compiled by recording the response of a listener to a specific 

stimulus.  The values lying along the diagonal of the matrix represent the stimuli that were 

recognised correctly, while incorrect responses are scattered across the matrix.  By 
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examining these matrices, typical confusions between vowels were determined.  The 

matrix shown in Figure 4.3 has been summed from all the listeners in the subjective test.  

There is a total of 200 answers for each presented stimulus.  Following the first matrix, the 

prediction matrix (Figure 4.4) that was generated by the objective model is shown.  

pAAt pIEt pOEt pAd pEt pOt pIt pAt pUt pEEt pêt pUUt
A: i u a E O  ´  œ  π  e:  E:  y

pAAt A: 197 0 0 3 0 0 0 0 0 0 0 0
pIEt i 0 141 2 0 2 0 8 0 5 0 0 42
pOEt u 0 0 93 32 1 39 13 12 10 0 0 0
pAd a 0 0 13 173 0 12 0 2 0 0 0 0
pEt E 0 42 3 0 85 1 36 2 18 0 1 12
pOt O 0 1 33 7 1 137 0 1 1 19 0 0
pIt ´ 0 10 1 0 23 0 116 1 49 0 0 0
pAt œ 0 0 0 8 0 11 0 180 0 0 1 0
pUt π 0 6 2 7 32 36 41 4 61 0 0 11
pEEt e: 0 0 0 0 0 0 1 0 0 199 0 0
pêt E: 5 0 0 0 3 0 0 1 0 0 171 20
pUUt y 0 109 1 0 6 0 11 0 7 1 1 64

Average Correct 135

S
ti

m
ul

us

Response

 

Figure 4.3.  Confusion matrix obtained from the results of the subjective test for vowels with 

no background noise. 

pAAt pIEt pOEt pAd pEt pOt pIt pAt pUt pEEt pêt pUUt
A: i u a E O  ´  œ  π  e:  E:  y

pAAt A: 197 0 0 0 0 0 0 0 0 2 0 0
pIEt i 0 45 3 3 31 8 43 1 18 3 0 45
pOEt u 0 1 98 15 1 43 20 3 17 1 0 1
pAd a 0 4 50 50 3 50 13 6 18 1 0 4
pEt E 0 11 3 1 104 8 29 1 22 6 0 14
pOt O 0 4 63 12 8 63 29 1 16 1 0 4
pIt ´ 0 9 14 3 18 19 109 0 17 1 0 11
pAt œ 1 2 8 6 3 2 1 152 10 11 0 4
pUt π 0 8 20 6 30 22 46 4 48 5 0 12
pEEt e: 2 5 3 1 25 3 6 14 17 113 0 10
pêt E: 0 0 0 0 0 0 0 0 0 0 200 0
pUUt y 0 31 2 2 37 9 46 2 21 5 0 46

102

Response

S
ti

m
ul

us

 

Figure 4.4.  Prediction confusion matrix (generated by the Frequency Variation Model) for 

vowels with no background noise. 
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The average percentage of correctly recognised vowels (pooled over all listeners) in the 

subjective test is 67.5%.  This percentage is expected to decrease when background noise 

is added to the stimuli.  The vowels with longer duration are predicted to have a high 

probability of being correctly recognized.  The fact that the confusion matrix is not 

symmetrical (a given vowel might be confused with another vowel, but the percentage of 

confusions depend on the presentation order) increases the complexity of predicting the 

confusions.  The results in the confusion matrix are categorized and summarized in Table 

4.7.  This was be done for all the confusion matrices to help the reader in comparing the 

matrices. 

 

The matrix in Figure 4.4 was generated by the Frequency Variation Model.  The answers 

have been scaled so that there is a total of 200 answers for each presented stimulus to allow 

for easier comparison with the subjective model.  The overall percentage that was correctly 

recognised for the vowels presented is 50.5%.  This is much lower than the 67.5 % 

obtained in the subjective test.  The confusions in the matrices are summarized in Table 

4.8; once again this is done to make the comparisons easier.  

Table 4.7.  Summary of the confusion matrix from subjective testing with no background 

noise. 

Stimulus
Percentage 

correct
Stimulus

Percentage 
correct

Words 
confused 

with
Stimulus

Percentage 
correct

Words 
confused 

with
Paat 98.5% Piet 70.5% Puut Poet 46.5% Pot, Pad
Pad 86.5% Pot 68.5% Poet Pet 42.5% Piet, Pit
Pat 90.0% Pit 58.0% Put Put 30.5% Pit, Pot, Pet

Peet 99.5% Puut 32.0% Piet
Pêt 85.5%

Well recognized                 
(50-80%)

Poorly recognized                
(<50%)

Best recognized       
(>80%)

 

From Table 4.7 it is apparent that the vowels that were recognized best are the ones that are 

of a longer duration than the rest.  This is in agreement with the results found in a study by 

(Van Wieringen and Wouters, 1999).  The original vowels for “paat”, “pad”, “pat”, “peet”, 

and “pêt” all have durations of more than 100 ms.  The only vowel with a short duration 
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that was recognized very well with a shorter duration is the vowel in “pat”.  The poorly 

recognized vowels all had similar durations around 90 ms.  They were generally confused 

with vowels that have similar formant frequencies, for instance “poet” with “pot” and  

“puut” with “piet”. 

Table 4.8.  Summary of the prediction confusion matrix from the objective model for vowels 

with no background noise (Frequency Variation Model). 

Stimulus
Percentage 

correct
Stimulus

Percentage 
correct

Words 
confused 

with
Stimulus

Percentage 
correct

Words 
confused 

with
Pêt 100.0% Peet 56.5% Pet Poet 49.0% Pot, Pit
Paat 98.5% Pit 54.5% Pot, Pet Pot 31.5% Poet
Pat 76.0% Pet 52.0% Pit Pad 25.0% Pot, Poet

Put 24.0% Pit, Pet
Puut 23.0% Pit
Piet 22.5% Puut, Pit

Best recognized       
(>75%)

Well recognized                
(50-75%)

Poorly recognized                
(<50%)

 

In Table 4.8 above, compiled from the results of the objective model, three of the five 

vowels in the subjective test that fell in the best recognized category were correctly 

predicted to fall in the same category as the subjective test.  Again the best recognized 

vowels were the ones with longer duration.  The other two vowels, those in “peet” and 

“pad”, that fell in the best recognized category for the subjective test were incorrectly 

predicted to have a much lower correct percentage at 56.5% and 25%, respectively.  In the 

well recognized category, only the vowel in “pit” was close to being correctly predicted, 

although the confusion was incorrectly predicted to be “pot” and “pet” instead of “put” as 

seen in the subjective test results.  Some of the poorly recognized vowels have close 

correlations to the subjective test’s results, for instance “poet”, “put”, and “puut”.  Most of 

the rest of the vowels have lower correct recognition percentages in comparison to the 

subjective test.  This analysis seems to indicate that the Frequency Variation Model 

produces results which are best described by the duration cue.  It seems that the use of 

frequency variation in the model causes the model to inaccurately predict vowel 

confusions. 
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The FITA analyses for the confusion matrices of the subjective test and the objective 

model are given in Table 4.9.  The objective test is referred to as the frequency method in 

the table to indicate that the Frequency Variation Model was used.  

Table 4.9.  Results of FITA analysis for the pooled answers in the subjective test and for the 

Frequency Variation Model implemented in the objective test (no background noise). 

% information transmitted Freq. Method Subj. Method
Duration 31% 60%
F1 22% 43%
F2 32% 57%  

FITA analysis shows that the percentage of information transferred for each acoustic cue is 

close to double in the subjective test compared to that in the objective model prediction.  

The vowel duration and F2 frequency are the cues that are transmitted best in both tests.  

The F1 frequency contains the least information that is transmitted to the listener.  It shows 

that the algorithm follows the trend that the duration and F2 frequency of vowels were 

transmitted most effectively and F1 information was transmitted poorly.  From the above 

table it is apparent, however, that the Frequency Variation Model produces much lower 

information transmitted for all three of the acoustic cues for vowels presented with no 

additional background noise. 
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Figure 4.5.  Graph of FITA analysis for the subjective test and the objective test (Frequency 

Variation Model) performed with no additional background noise.  The average and 

standard deviation for the percentage of information transmitted is shown for the subjective 

test. 

 

Figure 4.5 shows a comparison between the information transmitted in the major acoustic 

cues in the subjective and objective tests.  The FITA analysis for the subjective test was 

obtained from the individual confusion matrices for each person.  The averages for each 

acoustic cue are calculated and plotted, and the standard deviation (shown as error bars) in 

the answers between the listeners is given.  Since there is only one confusion matrix for the 

objective model, no standard deviation can be calculated for this model. 

 

Although the percentage information transmitted for the objective model is much lower 

than it is for the subjective model, from the FITA analysis it can be seen that the trend 

between the cues is similar.  The averages for each of the acoustic cues are between 19% 

and 24% less for the objective model than for the subjective tests.  None of the percentages 

for any of the cues fall inside the bounds set by the error bars of the subjective model.  

Therefore, there is not enough information that is transmitted correctly for any of the 
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acoustic cues in the objective test.  This implies either that the model requires more 

acoustic cues in order to produce correct results, or that the calculated uncertainty factors 

play too large a role in creating confusions between presented vowels.   

4.2.2 Speech at 40dB SNR (Multi-Talker Babble Noise) 

 

This test used the same speech tokens that were used in the test without additional 

background noise, except that background noise was added to the speech at a SNR of 

40dB.  Multi-talker babble was used as the additional noise since it simulates closely 

everyday environments that cochlear implantees need to communicate in.  Multi-talker 

babble refers to nonsensical chatter originating from various speakers simultaneously.  The 

multi-talker babble has the same spectral characteristics as normal speech.  More 

information on the experimental set-up can be found in section 3.5. 

 

 

Figure 4.6.  Perceptual vowel space (generated using the Frequency Variation Model) for the 

processed vowels with added babble background noise at 40 dB SNR. 
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Figure 4.6 presents the vowel space generated by the acoustic cues and uncertainty factors 

as determined by the objective model in the 40dB SNR test.  The vowels have moved 

closer together perceptually when compared to the vowels presented with no background 

noise.  The vowels with longer duration are still separated from each other to a larger 

extent compared to those with shorter duration.  Most of the vowels with shorter duration 

now intersect with each other.  Where the ellipsis for the vowel in the word “pad” was 

much larger than those for any other vowel in the vowel space for the test without 

additional noise, in this test it is now of a similar size to the other vowels.  From the vowel 

space it is expected that the words “pot”, “put”, and “pad” will be confused with each 

other, as will the words “puut”, “pet”, and “piet”.  It is also expected that more confusions 

will occur and that the percentage information transmitted per acoustic cue will be less due 

to the intersection of most of the vowels.   

 

The confusion matrix for the subjective test is shown in Figure 4.7. 

pAAt pIEt pOEt pAd pEt pOt pIt pAt pUt pEEt pêt pUUt
A: i u a E O  ´  œ  π  e:  E:  y

pAAt A: 94 0 2 1 0 3 0 0 0 0 0 0
pIEt i 0 77 1 0 0 0 10 0 7 0 0 5
pOEt u 1 0 1 20 5 12 39 9 13 0 0 0
pAd a 0 0 0 100 0 0 0 0 0 0 0 0
pEt E 0 30 1 2 18 5 26 0 13 0 1 4
pOt O 0 0 9 25 6 57 2 0 0 1 0 0
pIt  ´ 0 0 0 0 1 12 74 1 12 0 0 0
pAt  œ 0 0 0 22 0 0 1 77 0 0 0 0
pUt  π 0 0 3 2 1 34 32 1 27 0 0 0
pEEt  e: 1 0 0 0 0 0 0 0 0 99 0 0
pêt  E: 3 0 0 0 0 0 0 0 0 0 80 17
pUUt  y 0 76 0 5 0 0 9 0 7 0 0 3

Average Correct 59

Response

S
ti

m
ul

us

 

Figure 4.7.  Confusion matrix obtained by pooling the results from the subjective test for 

vowels with additional multi-talker babble at 40 dB SNR. 
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Figure 4.7 was pooled from the confusion matrices for each individual that participated in 

the test.  There was a total of 100 answers for each stimulus.  Pooled over all the listeners, 

the overall percentage of presented vowels that were correctly recognised in the subjective 

test was 59%.  This is 8.5% less than the average obtained in tests with no additional noise.   

 

The confusion matrix shown below in Figure 4.8 was generated by the objective model.  

The predicted answers in the confusion matrix have been scaled to show 100 answers for 

each stimulus. 

pAAt pIEt pOEt pAd pEt pOt pIt pAt pUt pEEt pêt pUUt
A: i u a E O  ´  œ  π  e:  E:  y

pAAt A: 90 0 0 0 0 0 0 3 2 1 2 0
pIEt i 0 34 12 0 15 0 31 1 1 3 0 4
pOEt u 0 13 25 5 14 8 13 4 10 4 0 4
pAd a 0 0 9 49 0 16 1 3 21 0 0 1
pEt E 0 12 9 0 32 4 23 2 6 5 0 5
pOt O 0 1 8 21 4 26 6 3 26 1 0 4
pIt ´ 0 10 5 0 7 3 66 0 6 2 0 1
pAt œ 2 1 10 6 5 6 1 54 5 7 0 2
pUt π 0 1 7 11 4 18 8 2 46 1 0 2
pEEt e: 1 7 9 0 15 2 11 7 4 38 2 5
pêt E: 4 0 0 0 0 0 0 0 0 4 92 0
pUUt y 0 14 10 2 20 8 11 2 6 4 0 22

48

Response

S
ti

m
ul

us

 

Figure 4.8.  Prediction confusion matrix (produced by the Frequency Variation Model) for 

degraded vowels with added multi-talker babble noise at 40dB SNR. 

The average for correct scores (at 48%) was again much lower than in the subjective test.  

The score has dropped by only 2.5% from the previous test speech with no additional 

background noise.  This shows that, although the Frequency Variation Model does respond 

to the noise that is added, it does not decline to the extent that it is supposed to.  The results 

for the individual stimuli is grouped and summarized in Table 4.10 and Table 4.11.  
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Table 4.10  Summary of the confusion matrix from the subjective test performed with 40 dB 

SNR multi-talker babble. 

Stimulus
Percentage 

correct
Stimulus

Percentage 
correct

Words 
confused 

with
Stimulus

Percentage 
correct

Words 
confused 

with
Pad 100.0% Pit 74.0% Pot, Put Put 27.0% Pot, Pit
Peet 99.0% Pot 57.0% Pad Pet 18.0% Piet, Pit
Paat 94.0% Puut 3.0% Piet
Pêt 80.0% Poet 1.0% Pit, Pad
Pat 77.0%
Piet 77.0%

Best recognized       
(>75%)

Well recognized                
(50-75%)

Poorly recognized                
(<50%)

 

 

Once again the vowels with longer duration were recognized at an average of more than 

75% of the time in the subjective test.  The only vowel that has dropped below 80% 

recognition from the test with no additional noise was “pat” although it was still 

recognized correctly 77% of the time.  The results from this test are very similar to the 

previous test done with the speech with no additional noise.  Most of the vowels still fall 

into the same category and where confusion of vowels takes place, the confusion still 

occurs with the same vowels as in the previous test.  The poorly recognized vowels have 

very low percentages.  They are mostly confused with one or two other vowels.  The 

confusions are very specific.  “Puut”, for example, is recognized very poorly at 3% with 

almost all incorrect answers being “piet”.  This shows that the acoustic cue information 

available to the listener in the words “piet” and “puut” are very close together and this 

causes confusion between the two vowels.  In general, when comparing the confusion 

matrices, it is clear that the subjective model has many distinct confusions, where as in the 

objective test the confusions are spread out more among the vowels (as seen in Figure 4.8). 
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Table 4.11.  Summary of the prediction confusion matrix from the Frequency Variation 

Model for vowels with 40 dB SNR multi-talker babble. 

Stimulus
Percentage 

correct
Stimulus

Percentage 
correct

Words 
confused 

with
Stimulus

Percentage 
correct

Words 
confused 

with
Pêt 92.0% Pit 66.0% Piet Pad 49.0% Put, Pot
Paat 90.0% Pat 54.0% Poet Put 46.0% Pot, Pad

Peet 38.0% Pet, Pit
Piet 34.0% Pit, Pet
Pet 32.0% Pit
Pot 26.0% Put, Pad
Poet 25.0% Pet,Piet, Pit
Puut 22.0% Pet, Piet

Best recognized       Well recognized                Poorly recognized                

 

 

For the objective model (Table 4.11), only the vowels with the longest duration, namely 

“pêt” and “paat”, still fall in the best recognized category.  The other two vowels that were 

in the best recognized category for the subjective test, “pad” and “peet” were predicted to 

be recognized much less at 54% and 38%, respectively.  The only word that was predicted 

to fall correctly in the well recognized category is “pit”, but where it was confused with 

“pot” and “put” in the subjective test, the objective model incorrectly predicted “pit” to be 

confused with “piet”.  Most of the vowels are predicted to be poorly recognized by the 

objective model, although all of the predictions are incorrectly identified.  This shows that 

the results of the Frequency Variation Model become less accurate as additional noise is 

added to the stimuli. 

 

The FITA analysis for the confusion matrices of the subjective test and the objective model 

is given in Table 4.12.  The objective test is referred to as the frequency method in the 

table to indicate that the Frequency Variation Model was used.  
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Table 4.12.  Results of FITA analysis for the pooled answers in the subjective test and the 

Frequency Variation Model implemented in the objective test with added multi-talker babble 

at 40 dB SNR. 

% information transmitted Freq. Method Subj. Method
Duration 25% 42%
F1 15% 38%
F2 23% 58%  

 

The FITA analysis shows that the information transmitted has dropped predictably for the 

subjective test.  There was also a drop in the percentages for the objective test.  The 

duration cue and the F2 frequency are no longer the better transmitted cues as was the case 

in the subjective test with no additional background noise.  Rather, the percentage 

transmitted for the F2 frequency is transmitted the best, with the F1 frequency still having 

the least information successfully transmitted.  For the objective test the F1 frequency also 

still has the lowest FITA score.  

 

Figure 4.9 shows a graph of the average FITA analysis obtained in the subjective tests 

along with error lines representing the standard deviation between the listeners.  The 

dashed line represents the FITA results from the objective model.   
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Figure 4.9.  Graph of FITA analysis for the subjective test and the objective test (Frequency 

Variation Model) performed with multi-talker babble at 40dB SNR.  The average and 

standard deviation for the percentage of information transmitted is shown for the subjective 

test. 

 

For this test the information transmitted by each of the acoustic cues in the objective test 

were once again below that of the subjective test.  Not one of the cues fall inside the error 

bars.  This is consistent with the results obtained in the test without additional noise.  The 

cue that is the closest to the error bar is the duration cue.  This shows that, although the 

average percentage correct scores follow the trend of the subjective tests, the amount of 

information transmitted in the objective test is by no means accurate. 

4.2.3 Speech at 20 dB SNR (Multi-Talker Babble Noise) 

 

The results obtained in the 20dB noise test are described next.  For this test the listeners 

were presented with vowels in the presence of multi-talker babble noise at a SNR of 20dB.  

The accuracy of the answers in the subjective test were expected to decrease once again.  If 

the variation in the frequencies of the formants increases, the objective model is also 
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expected to predict less correct answers. 

 

 

Figure 4.10. Perceptual vowel space (generated using the Frequency Variation Model) for the 

processed vowels with added babble background noise at 20 dB SNR.  

 

The vowel space shown in Figure 4.10 displays the vowels in relation to each other 

perceptually.  The first noticeable difference in this vowel space in comparison to the 

previous two (Figure 4.2 and Figure 4.6) is that the uncertainty factor of the vowel duration 

has grown considerably, the largest of these being for the word “puut”.  Therefore, 

according to the objective model, it should be more difficult to distinguish the vowels with 

longer duration from those with shorter duration.  These vowels could easily be 

distinguished from each other in Figure 4.2 and Figure 4.6.  The size of each vowel ellipse 

has not grown much in terms of its F1 and F2 cues.  This shows again that the frequency 

variation is perhaps not a very good feature to use as an uncertainty factor.  The confusion 

matrices for the subjective test and the objective test are shown in Figure 4.11 and Figure 

4.12, respectively. 
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pAAt pIEt pOEt pAd pEt pOt pIt pAt pUt pEEt pêt pUUt
A: i u a E O  ´  œ  π  e:  E:  y

pAAt A: 99 0 0 1 0 0 0 0 0 0 0 0
pIEt i 0 11 0 8 2 4 51 3 19 0 0 2
pOEt u 0 0 11 29 1 5 26 17 11 0 0 0
pAd a 0 0 10 59 1 17 6 1 5 1 0 0
pEt E 0 5 1 13 7 9 44 7 11 0 0 3
pOt O 0 4 19 4 1 56 13 0 3 0 0 0
pIt  ´ 0 0 1 4 2 9 59 0 25 0 0 0
pAt  œ 0 4 0 13 4 1 8 63 7 0 0 0
pUt  π 0 12 3 1 4 8 44 0 25 0 2 1
pEEt  e: 0 3 0 0 1 1 0 1 1 83 0 10
pêt  E: 14 0 0 1 0 0 0 0 0 3 64 18
pUUt  y 0 65 0 8 0 2 13 1 11 0 0 0

Average Correct 45

Response

 

Figure 4.11.  Confusion matrix obtained by pooling the results from the subjective test for 

vowels with additional multi-talker babble at 20 dB SNR. 

pAAt pIEt pOEt pAd pEt pOt pIt pAt pUt pEEt pêt pUUt
A: i u a E O  ´  œ  π  e:  E:  y

pAAt A: 29 0 7 9 1 5 2 19 4 8 6 9
pIEt i 0 21 2 0 21 0 22 7 21 0 5 0
pOEt u 8 2 21 21 4 4 5 17 6 5 2 5
pAd a 5 0 10 27 2 15 5 15 5 4 1 11
pEt E 0 16 1 0 27 0 27 7 19 0 3 0
pOt O 1 0 1 1 0 82 2 1 1 7 1 3
pIt ´ 1 9 1 2 10 1 55 7 12 1 2 0
pAt œ 5 4 4 7 9 2 14 41 10 2 3 1
pUt π 2 11 2 4 21 2 21 14 21 1 3 0
pEEt e: 15 0 5 12 1 16 3 7 3 16 4 16
pêt E: 7 9 2 3 11 3 9 12 9 4 31 1
pUUt y 6 0 3 8 0 32 0 1 0 17 0 32

34

Response

S
ti

m
ul

us

 

Figure 4.12.  Prediction confusion matrix (produced by the Frequency Variation Model) for 

degraded vowels with added multi-talker babble noise at 20dB SNR. 

There is a total of 100 answers for each stimulus for both of the matrices.  The overall 

percentage of presented vowels that were correctly recognised has decreased by only 6% to 

45% (from the 59% obtained in the 40dB subjective test).  The predicted correct answers 
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dropped from 58% to 34% in the prediction confusion matrix (as shown in Figure 4.12).  

This is a drop of 14%, which is more than double that of the subjective test. 

 

Table 4.13 summarizes the confusion matrix for the subjective test for 20dB multi-babble 

noise and Table 4.14 summarizes the results from the objective test. 

Table 4.13. Summary of the confusion matrix from the subjective test performed with 20 dB 

SNR multi-talker babble.  

Stimulus
Percentage 

correct
Stimulus

Percentage 
correct

Words 
confused 

with
Stimulus

Percentage 
correct

Words 
confused 

with
Paat 90.0% Pêt 64.0% Puut Put 25.0% Pit
Peet 83.0% Pat 63.0% Pad Piet 11.0% Pit

Pad 59.0% Pot Poet 11.0% Pad, Pit
Pit 59.0% Put Pet 7.0% Pit
Pot 56.0% Poet Puut 0.0% Piet

Best recognized       
(>75%)

Well recognized                
(50-75%)

Poorly recognized              
(<50%)

 

The vowels with the longest durations were still recognized very accurately in the 

subjective test.  “Pêt”, which was correctly recognized more than 80% of the time for the 

test without additional noise and the 20dB SNR test, has now decreased to 64% 

recognition.  This is interesting since all the vowels with long vowel durations have fallen 

in the best recognized category up to this point (this showed the superior robustness of the 

duration cue against noise).  “Piet” was recognized correctly 77% of the time in the 40dB 

SNR, but has now dropped to 11%.  Other vowels have relatively the same percentage 

correct answers as the previous test, that is, “pot”, “put”, and “puut”.  This shows that the 

decrease in percentage is by no means linear.  Another observation that can be made is that 

some of the vowels are now confused with different vowels compared to the 40dB test.  

“Pot”, for instance, was confused with “pad” most of the time in the 40dB test, but it is 

now confused most commonly with “poet.”  This indicates that the F2 cues of the different 

vowels have moved closer together in the vowel space, thus causing more confusions. 
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Table 4.14.  Summary of the prediction confusion matrix from the Frequency Variation 

Model for vowels with 20 dB SNR multi-talker babble. 

Stimulus
Percentage 

correct
Stimulus

Percentage 
correct

Words 
confused 

with
Stimulus

Percentage 
correct

Words 
confused 

with
Pot 88.0% Pit 55.0% Put, Pet Pat 41.0% Pit, Put

Puut 32.0% Pot
Pêt 31.0% Pat, Pet
Paat 29.0% Pat
Pat 27.0% Pot, Pat
Pet 27.0% Pit
Piet 21.0% Pit, Pet, Put
Poet 21.0% Pad, Pat
Put 21.0% Pet, Pit
Peet 16.0% Pot, Puut

Best recognized       
(>75%)

Well recognized               
(50-75%)

Poorly recognized                
(<50%)

 

Table 4.14 shows a summary of the results of the objective model.  There is almost no 

correlation between the percentage correct scores between the objective model and the 

subjective test. Pit” was the only vowel predicted relatively correctly with 55% (compared 

to 56% in the subjective test).  It was also predicted correctly that it would be confused 

with “put”.  The words which were originally recognized very well because of their 

duration cues, now have a very low recognition percentage.  The separation provided by 

the duration cue is no longer as prominent as it was in previous tests because of the 

overwhelming effect of the masking factor for the vowel duration cue (as seen in the vowel 

space in Figure 4.10).  The calculation of the uncertainty factor for the duration cue is 

incorrect; this aspect needs to be reinvestigated.  “Peet” is such an example; it was 

recognized correctly 83% of the time in the subjective test, however, it is now recognized 

most poorly at 16%.  Most of the confusions are also predicted incorrectly, with the 

exceptions of  “pit”, “pet”, “piet”, and “poet”.   

 

The lack of correlation between the objective model and the subjective test under 

exceptionally noisy conditions show that the uncertainty factor used for this 

implementation (that is, frequency variation) does not provide very good results.  This 

shows that the disguising effect of frequency variation in the model does not properly 

mimic what happens in subjective tests.   It may also mean that the three acoustic cues used 
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in the objective method need to be supplemented with secondary cues in order to predict 

accurately any vowel confusions in the presence of this amount of noise.  

 

The FITA analysis for the subjective confusion matrix and the objective confusion matrix 

in the 20dB SNR test is shown in Table 4.15.  The subjective model still has some 

information transmitted by the cues, with the best acoustic cue being the duration.  The 

FITA analysis for the objective test has dropped to very low percentages in comparison to 

the previous tests.  None of the acoustic cues transmit enough meaningful information for 

accurate interpretation by the listeners.   

 

Table 4.15. Results of FITA analysis for the pooled answers in the subjective test and the 

Frequency Variation Model implemented in the objective test with added multi-talker babble 

at 20 dB SNR.  

% information transmitted Freq. Method Subj. Method
Duration 11% 34%
F1 4% 24%
F2 6% 25%  

 

The averages and standard deviation of the FITA analysis of the individual confusion 

matrices in the subjective tests are shown in Figure 4.13.  The dashed line represents the 

FITA results from the objective model.   
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Figure 4.13. Graph of FITA analysis for the subjective test and the objective test (Frequency 

Variation Model) performed with multi-talker babble at 20dB SNR.  The average and 

standard deviation for the percentage of information transmitted is shown for the subjective 

test. 

 

The error lines show that the standard deviation is very large for the duration acoustic cue.  

This shows that the duration cue is used to quite different extents by different listeners.  

The F1 and F2 cues are very similar in terms of average information transmitted and the 

standard deviation.  The information transmitted for all the acoustic cues in the objective 

test fall far outside the standard deviation of the subjective model.  Once again the 

objective model under-performed and did not approximate the results of the subjective test. 
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4.2.4 Speech at 0 dB SNR (Multi-Talker Babble Noise) 

 

 

Figure 4.14.  Perceptual vowel space (generated using the Frequency Variation Model) for 

the processed vowels with added babble background noise at 0 dB SNR.  

 

Figure 4.14 displays the vowels in relation to each other perceptually for vowels embedded 

in multi-babble noise at the same level as the speech itself.  At this level a person fitted 

with a CI was expected to have extreme difficulty in distinguishing vowels from each 

other.  Therefore, the vowel space should have all the vowels intersecting each other.  In 

terms of duration this is the case in the figure above, although the formant frequencies do 

not seem to be large enough to produce the levels of confusion that cochlear implantees are 

expected to experience in the test. 
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pAAt pIEt pOEt pAd pEt pOt pIt pAt pUt pEEt pêt pUUt
A: i u a E O  ´  œ  π  e:  E:  y

pAAt A: 35 4 7 5 2 7 1 4 6 14 10 5
pIEt i 9 14 4 11 5 5 6 8 10 14 7 7
pOEt u 14 6 2 10 8 12 5 9 9 9 8 8
pAd a 26 5 1 17 4 8 3 6 4 11 12 3
pEt E 11 10 4 14 3 9 6 13 7 9 8 6
pOt O 17 1 6 7 5 12 3 11 6 10 16 6
pIt  ´ 7 10 5 15 10 9 9 16 13 2 3 1
pAt  œ 23 11 4 6 4 8 1 6 2 11 16 8
pUt  π 23 6 6 8 5 12 5 4 6 9 11 5
pEEt  e: 12 13 5 1 4 4 2 3 5 19 8 24
pêt  E: 32 4 5 8 3 7 0 2 6 9 15 9
pUUt  y 10 5 4 5 9 9 6 8 4 15 11 14

Average Correct 13

Response
S

ti
m

ul
us

 

Figure 4.15.  Confusion matrix obtained by pooling the results from the subjective test for 

vowels with additional multi-talker babble at 0 dB SNR. 

The confusion matrix in Figure 4.15 shows the pooled confusion matrix as recorded in the 

subjective test.  The average correct score is 13% which is so low that the outcome can be 

attributed to chance alone.  The answers are spread widely across the confusion matrix; no 

presented vowel is recognized correctly or confused incorrectly with any other single 

vowel.  The only vowel that produced some form of recognition was /a:/ in the word 

“paat”, which was identified correctly 35% of the time.   
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pAAt pIEt pOEt pAd pEt pOt pIt pAt pUt pEEt pêt pUUt
A: i u a E O  ´  œ  π  e:  E:  y

pAAt A: 30 2 4 11 9 5 4 21 6 1 5 1
pIEt i 0 20 20 4 4 4 5 0 11 6 8 19
pOEt u 1 8 43 5 8 1 1 1 8 7 9 8
pAd a 2 1 9 53 7 5 9 3 5 1 3 1
pEt E 3 8 16 15 15 3 3 3 15 4 7 8
pOt O 3 5 3 15 5 26 26 6 5 1 3 1
pIt ´ 2 6 4 9 7 21 36 4 6 1 4 1
pAt œ 17 2 3 14 9 11 7 27 5 1 4 1
pUt π 2 10 18 11 9 3 3 2 18 6 7 12
pEEt e: 1 11 8 3 6 1 2 1 13 23 8 23
pêt E: 3 10 19 5 9 2 4 2 11 6 19 9
pUUt y 0 6 7 1 7 1 1 0 8 19 7 42

29

Response
S

ti
m

ul
us

 

Figure 4.16.  Prediction confusion matrix (produced by the Frequency Variation Model) for 

degraded vowels with added multi-talker babble noise at 0dB SNR. 

 

The prediction confusion matrix of the objective model in Figure 4.16 also shows low 

recognition percentages.  The average correct score, however, amounts to 29%, which is 

more than double that of the subjective test.  The objective model also does not show any 

specific confusions with all the confusions spread out among all the vowels.  In other 

words, there is not a specific confusion made for each vowel; the confusions are mostly 

random.  However, it was expected that under extremely noise conditions (SNR of 0 dB) 

the objective prediction model would no longer be able to predict the confusions correctly 

due to the variance found in subjective tests under these conditions. 

 

Table 4.16.  Results of FITA analysis for the pooled answers in the subjective test and the 

Frequency Variation Model implemented in the objective test with added multi-talker babble 

at 0 dB SNR.  

% information transmitted Freq. Method Subj. Method
Duration 5% 1%
F1 15% 0%
F2 11% 1%  
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The FITA analysis shown in Table 4.16 shows predictably that there is very little 

information transmitted by the acoustic cues.  The noise drowns out the cues sufficiently so 

that there is 1% or less information received in the subjective model.  The Frequency 

Variation Model shows that the duration cue is very low at 5%, which is a good 

approximation.  The formants on the other hand provide little information on the 

identification of the vowels.  This outcome correlated well with the vowel space in Figure 

4.14, which showed that the vowels did not all intersect in respect to their formant 

frequencies.   

 

Figure 4.17.  Graph of FITA analysis for the subjective test and the objective test (Frequency 

Variation Model) performed with multi-talker babble at 0dB SNR.  The average and 

standard deviation for the percentage of information transmitted is shown for the subjective 

test. 

The FITA analysis of the individual confusion matrices in the subjective test produced 

very little deviation as shown by the error bars in Figure 4.17.  The duration cue in the 

objective model falls within the range of the error bars for the subjective test.  All the cues 

are very close to 0% for the subjective test.  The F1 and F2 cues in the objective model are 

too high and, although they are lower than in the better quality speech, they have not 

dropped as much as in the subjective test. 
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4.3 SPECTRAL CONTRAST MODEL 

 

In this section the Spectral Contrast Model is evaluated.  The Spectral Contrast Model was 

designed to use the spectral contrast of the formants to determine the variation for the 

probability functions that are used to generate the confusion matrix.  The hypothesis for 

this is: the spectral contrast is the major role player in causing confusion in recognizing 

vowel sounds.  Spectral contrast has been shown in the literature to play an important role 

in vowel recognition; it is, therefore, expected that this model will perform better than the 

Frequency Variation Model (Leek et al., 1987; Leek and Summers, 1996a; Loizou and 

Poroy, 2001a; ter Keurs et al., 1993b).  The results obtained in this model are compared 

once again to the results in the subjective test.  The reader should note that the same results 

from the subjective tests used in the Frequency Variation Model will be used here.  The 

figures and confusion matrices for the subjective tests are repeated here for easier 

comparison. 

4.3.1 Speech Without Additional Background Noise 

 

Figure 4.18 gives the vowel space generated by the objective model.  It serves as an 

indication of how the confusion matrix is formed.  The centre of each ellipsis lies at the 

measured acoustic cues for each of the vowels, and is the same as in the Frequency 

Variation Model.  The size of the ellipse in the F1 and F2 dimensions, is calculated 

differently, however, compared to the Frequency Variation Model.  In this instance, the 

distances are calculated from the spectral contrast for each formant (instead of from the 

variation in frequency as in the rival model).  
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Figure 4.18.  Perceptual vowel space (generated using the Spectral Contrast Model) for the 

processed vowels, with no background noise. 

 

The vowel space for the vowels presented without additional background noise (Figure 

4.18) shows that the vowels with the longer duration (“paat”, “peet”, “pat”, and “pêt”) are 

well separated from the rest.  In the confusion matrix they should be recognized most 

easily.  The vowels of duration between 60 ms and 100 ms all lie close together and, hence, 

have a greater probability of being confused.  In comparison with the Frequency Variation 

Model the sizes of the ellipses are larger, especially in terms of the F1 dimension.  The 

ellipse for “pad” is the largest once again, although it seems more realistically shaped (in 

that it is smaller) than in the Frequency Variation Model.  
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pAAt pIEt pOEt pAd pEt pOt pIt pAt pUt pEEt pêt pUUt
A: i u a E O  ´  œ  π  e:  E:  y

pAAt A: 197 0 0 3 0 0 0 0 0 0 0 0
pIEt i 0 141 2 0 2 0 8 0 5 0 0 42
pOEt u 0 0 93 32 1 39 13 12 10 0 0 0
pAd a 0 0 13 173 0 12 0 2 0 0 0 0
pEt E 0 42 3 0 85 1 36 2 18 0 1 12
pOt O 0 1 33 7 1 137 0 1 1 19 0 0
pIt ´ 0 10 1 0 23 0 116 1 49 0 0 0
pAt œ 0 0 0 8 0 11 0 180 0 0 1 0
pUt π 0 6 2 7 32 36 41 4 61 0 0 11
pEEt e: 0 0 0 0 0 0 1 0 0 199 0 0
pêt E: 5 0 0 0 3 0 0 1 0 0 171 20
pUUt y 0 109 1 0 6 0 11 0 7 1 1 64

Average Correct 135

S
ti

m
ul

us
Response

 

Figure 4.19.  Confusion matrix obtained from the results of the subjective test for vowels with 

no background noise. 

The confusion matrix in Figure 4.19 shows the pooled averages from the confusion 

matrices for all listeners in the subjective test.  There is a total of 200 answers for each 

presented stimulus.  The overall percentage for the presented vowels that are correctly 

recognised is an average of 67.5 %. 

pAAt pIEt pOEt pAd pEt pOt pIt pAt pUt pEEt pêt pUUt
A: i u a E O  ´  œ  π  e:  E:  y

pAAt A: 199 0 0 0 0 0 0 0 0 0 0 0
pIEt i 0 75 1 0 26 0 15 0 7 2 0 73
pOEt u 0 2 55 21 9 55 27 1 26 0 0 3
pAd a 0 0 27 129 1 24 5 4 11 0 0 0
pEt E 0 23 6 0 102 1 17 1 15 6 0 29
pOt O 0 0 30 20 1 109 22 0 16 0 0 0
pIt ´ 0 18 11 2 14 18 96 0 15 1 0 25
pAt œ 1 0 4 9 3 1 0 169 5 7 0 1
pUt π 0 9 23 6 26 21 42 1 55 4 0 12
pEEt e: 0 3 0 0 11 0 1 2 5 168 0 9
pêt E: 0 0 0 0 0 0 0 0 0 0 200 0
pUUt y 0 36 1 0 24 0 27 0 10 5 0 98

121

Response
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ti
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us

 

Figure 4.20.  Prediction confusion matrix (generated by the Spectral Contrast Model) for 

vowels with no background noise. 
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The confusion matrix shown in Figure 4.20 was generated by the objective model using the 

same speech without additional background noise as for the subjective model.  The average 

correct answers predicted by the objective model is 60.5%.  This is a much closer 

approximation to the results of the subjective test than the 51% predicted by the Frequency 

Variation Model.  The two confusion matrices are summarized in the following two tables 

(Table 4.17 and Table 4.18). 

Table 4.17.  Summary of the confusion matrix from subjective testing with no background 

noise. 

Stimulus
Percentage 

correct
Stimulus

Percentage 
correct

Words 
confused 

with
Stimulus

Percentage 
correct

Words 
confused 

with
Peet 99.5% Piet 70.5% Puut Poet 46.5% Pot, Pad
Paat 98.5% Pot 68.5% Poet Pet 42.5% Piet, Pit
Pat 90.0% Pit 58.0% Put Puut 32.0% Piet
Pad 86.5% Put 30.5% Pit, Pot
Pêt 85.5%

Best recognized       
(>75%)

Well recognized                
(50-75%)

Poorly recognized              
(<50%)

 

Table 4.18.  Summary of the prediction confusion matrix from the objective model for vowels 

with no background noise (Spectral Contrast Model). 

Stimulus
Percentage 

correct
Stimulus

Percentage 
correct

Words 
confused 

with
Stimulus

Percentage 
correct

Words 
confused 

with
Pêt 100.0% Pad 64.5% Pot Puut 49.0% Piet
Paat 99.5% Pot 54.5% Poet Pit 48.0% Puut
Pat 84.5% Pet 51.0% Puut Piet 37.5% Puut
Peet 84.0% Poet 27.5% Pot

Put 27.5% Pit

Best recognized       
(>75%)

Well recognized                
(50-75%)

Poorly recognized              
(<50%)

 

The vowels that are recognized most accurately in the subjective test are those with a long 

duration.  The objective model predicted this result accurately, with the same vowels lying 

in the best recognized category except for “pad.”  The vowel in the word “pad” has a 

shorter duration (87 ms once processed through the CI model) than most of the other 

vowels that lie in the best recognized category.  Although “pad” does not lie in the best 
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recognized category, it is still predicted to have a relatively high percentage of correct 

answers at 64%.  In the well recognized category only “pot” was predicted correctly to lie 

in this category.  The vowel that it is confused with is also predicted accurately.  In the 

poorly recognized category, it was predicted correctly that “puut” would be confused with 

“piet”, “poet” with “pot”, “put” with “pit”, and “piet” with “puut”.  This shows a much 

better prediction to confusions than the Frequency Variation Model can provide; this was 

expected.  

 

The results of the FITA analyses for the vowels for the above two confusion matrices are 

given next.   

Table 4.19.  Results of FITA analysis for the pooled answers in the subjective test and for the 

Spectral Contrast Model implemented in the objective test (no background noise). 

% information transmitted S. Contrast Method Subj. Method
Duration 46% 60%
F1 36% 43%
F2 52% 57%  

 

In Table 4.19, the results from the subjective test show that the duration cue presented the 

most information to the listener in the identification of the vowels.  The information of the 

F2 acoustic cue was transmitted only 3% less than the vowel duration cue.  The acoustic 

cue that carried the least information to the listener was the F1 cue.  The FITA analysis of 

the confusion matrix produced by the objective model showed that each of these cues were 

lower than they should have been.  They are, however, closer in the Spectral Contrast 

Model than in the Frequency Variation Model (see Table 4.9 for a direct comparison).  The 

F2 acoustic cue is only 5% lower than the subjective test value, and the F1 cue is 7% less 

than it should be.  The duration cue shows the greatest dissimilarity between the two tests – 

there is a 14% difference.  
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Figure 4.21  Graph of FITA analysis for the subjective test and the objective test (Spectral 

Contrast Model) performed with no additional background noise.  The average and standard 

deviation for the percentage of information transmitted is shown for the subjective test. 

 

Figure 4.21 shows a comparison between the information transmitted in the major acoustic 

cues for the subjective and objective models.  All the acoustic cues of the objective model 

fall inside the error bars of the subjective test.  The acoustic cue that had the largest 

difference was duration, but it also lies within the standard deviation of the cues in the 

subjective test.   

4.3.2 Speech at 40dB SNR (Multi-Talker Babble Noise) 

 

The vowel space in Figure 4.22 was generated by the objective model.  It serves to give the 

reader an indication of how the confusion matrix is formed. 
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Figure 4.22.  Perceptual vowel space (generated using the Spectral Contrast Model) for the 

processed vowels with added babble background noise at 40 dB SNR. 

 

The vowel space above shows that the vowels have moved closer together perceptually in 

comparison to the vowels with no additional background noise.  The vowels with longer 

duration are still separated from each other and from those vowels with shorter duration.  

Most of the vowels with shorter duration intersect with each other.  The sizes of the 

ellipses are not much larger than they were for the speech with no additional noise.  

However, there will be more confusions predicted because of the fact that the formants 

have moved closer together. 
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pAAt pIEt pOEt pAd pEt pOt pIt pAt pUt pEEt pêt pUUt
A: i u a E O  ´  œ  π  e:  E:  y

pAAt A: 94 0 2 1 0 3 0 0 0 0 0 0
pIEt i 0 77 1 0 0 0 10 0 7 0 0 5
pOEt u 1 0 1 20 5 12 39 9 13 0 0 0
pAd a 0 0 0 100 0 0 0 0 0 0 0 0
pEt E 0 30 1 2 18 5 26 0 13 0 1 4
pOt O 0 0 9 25 6 57 2 0 0 1 0 0
pIt  ´ 0 0 0 0 1 12 74 1 12 0 0 0
pAt  œ 0 0 0 22 0 0 1 77 0 0 0 0
pUt  π 0 0 3 2 1 34 32 1 27 0 0 0
pEEt  e: 1 0 0 0 0 0 0 0 0 99 0 0
pêt  E: 3 0 0 0 0 0 0 0 0 0 80 17
pUUt  y 0 76 0 5 0 0 9 0 7 0 0 3

Average Correct 59

Response
S

ti
m

ul
us

 

Figure 4.23.  Confusion matrix obtained by pooling the results from the subjective test for 

vowels with additional multi-talker babble at 40 dB SNR. 

The confusion matrix in Figure 4.23 has been summed from all the listeners in the 

subjective test.  The listeners were presented with vowels in the presence of 40dB SNR 

multi-talker babble.  There is a total of 100 answers for each presented stimulus.  The 

overall percentage that is correctly recognised for the vowels presented is 59%. This result 

is 8.5% less than the average percentage for vowels with no additional background noise.   
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pAAt pIEt pOEt pAd pEt pOt pIt pAt pUt pEEt pêt pUUt
A: i u a E O  ´  œ  π  e:  E:  y

pAAt A: 90 0 0 0 0 0 0 2 1 3 3 0
pIEt i 0 50 11 1 7 1 28 0 1 1 0 1
pOEt u 0 20 41 8 7 5 9 1 4 2 0 2
pAd a 0 2 22 60 0 11 1 1 4 0 0 0
pEt E 0 13 8 0 42 4 21 1 5 4 0 3
pOt O 0 1 9 15 5 43 8 2 14 1 0 2
pIt ´ 0 13 7 0 8 3 65 0 3 1 0 1
pAt œ 2 1 10 2 5 6 0 56 5 10 0 3
pUt π 0 3 9 4 11 28 13 2 28 2 0 2
pEEt e: 1 7 9 1 14 1 8 6 4 44 1 3
pêt E: 2 0 0 0 0 0 0 0 0 2 97 0
pUUt y 0 13 13 0 23 6 10 3 4 4 0 25

53

Response
S

ti
m

ul
us

 

Figure 4.24.  Prediction confusion matrix (produced by the Spectral Contrast Model) for 

degraded vowels with added multi-talker babble noise at 40dB SNR. 

 

Figure 4.24 shows the results when the same speech is processed through the objective 

algorithm.  The average scores correct (at 53%) is very comparable to that of the subjective 

test.  This answer has decreased by 7.5% from the test with speech with no noise added. 

Although this is less than it should be, the trend is still closely followed.  This is again a 

better result than that obtained by using the Frequency Variation Model.  

 

The results for the individual stimuli are classified in the following two tables.  Table 4.20 

summarizes the subjective test for 40dB multi-babble noise and Table 4.21 summarizes the 

objective test. 
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Table 4.20.   Summary of the confusion matrix from the subjective test performed with 40 dB 

SNR multi-talker babble. 

Stimulus
Percentage 

correct
Stimulus

Percentage 
correct

Words 
confused 

with
Stimulus

Percentage 
correct

Words 
confused 

with
Pad 100.0% Pit 74.0% Pot, Put Put 27.0% Pot, Pit
Peet 99.0% Pot 57.0% Pad Pet 18.0% Piet, Pit
Paat 94.0% Puut 3.0% Piet
Pêt 80.0% Poet 1.0% Pit
Piet 77.0%
Pat 77.0%

Best recognized       
(>75%)

Well recognized                
(50-75%)

Poorly recognized              
(<50%)

 

Table 4.21.  Summary of the prediction confusion matrix from the Spectral Contrast Model 

for vowels with 40 dB SNR multi-talker babble. 

Stimulus
Percentage 

correct
Stimulus

Percentage 
correct

Words 
confused 

with
Stimulus

Percentage 
correct

Words 
confused 

with
Pêt 97.0% Pit 65.0% Piet Peet 44.0% Pet
Paat 90.0% Pad 60.0% Poet Pot 43.0% Pad, Put

Pat 56.0% Poet, Peet Pet 42.0% Pit
Piet 50.0% Pit Poet 41.0% Piet

Put 28.0% Pot
Puut 25.0% Pet

Best recognized       
(>75%)

Well recognized                
(50-75%)

Poorly recognized              
(<50%)

 

 

Once again, all the vowels recognized correctly more than 80% of the time are those with 

the longest duration.  The two longest vowels were correctly predicted as being well 

recognized.  The predictions of the objective model are not as accurate as for the speech 

with no extra noise.  More than half of the vowels are predicted to be recognized correctly 

between 40 and 60% and the vowel recognized the worse is “puut” at 25%.  The subjective 

test has a large number of vowels recognized above 75% and below 30% of the time.  It 

would seem then that the predictions become less accurate when noise is added. This could 

mean that listeners use additional secondary cues to interpret the vowel sounds.  

Alternatively, this could indicate that spectral contrast as an uncertainty factor needs to be 
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supplemented by other factors.  

Table 4.22.  Results of FITA analysis for the pooled answers in the subjective test and the 

Spectral Contrast Model implemented in the objective test with added multi-talker babble at 

40 dB SNR. 

% information transmitted S. Contrast Method Subj. Method
Duration 25% 42%
F1 18% 38%
F2 22% 58%  

 

The FITA analysis shows that the information transmitted by the acoustic cues has dropped 

predictably for the subjective test.  The acoustic cue that shows the largest decrease is the 

duration cue, whereas the F2 cue has had no drop in percentage at all.  All the acoustic 

cues for the objective model have decreased; a much larger decline in the percentage of 

information transmitted is seen. 

 

Figure 4.25 shows the averages of the individual confusion matrices obtained in the 

subjective tests.  It also shows error lines representing the standard deviation between the 

matrices.  The dashed line represents the FITA results from the objective model.   
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Figure 4.25.  Graph of FITA analysis for the subjective test and the objective test (Spectral 

Contrast Model) performed with multi-talker babble at 40dB SNR.  The average and 

standard deviation for the percentage of information transmitted is shown for the subjective 

test. 

 

In the test without added noise all three acoustic cues lie inside the error bars for the 

information transmitted for the subjective test.  For this objective test the information 

transmitted by each of the acoustic cues is lower than it should be.  Not one of the cues 

falls inside the error bars for the subjective test.  The cue that is closest to the 

corresponding error bar is the vowel duration cue.  Comparing this graph to Figure 4.9 

(which showed the results for the Frequency Variation Model), the results look almost 

identical.  F1 is only a few points lower on the graph than for the Frequency Variation 

Model.   
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4.3.3 Speech at 20 dB SNR (Multi-Talker Babble Noise) 

 

The results obtained in the 20dB noise test are described below.  In this test the listeners 

were presented with vowels in the presence of multi-talker babble noise at a SNR of 20dB.  

The decrease in spectral contrast should cause an increase in the number of incorrectly 

identified vowels in the prediction confusion matrix.   

 

Figure 4.26.  Perceptual vowel space (generated using the Spectral Contrast Model) for the 

processed vowels with added babble background noise at 20 dB SNR. 

The vowel space in Figure 4.26 shows that the spectral contrast has decreased causing the 

enlargement in the ellipses that represent the vowels.  The increased overlap between the 

vowels caused the algorithm to predict more confusions between the vowels in comparison 

with the 40 dB SNR test.  From the vowel space it is clear that the only vowel that should 

be predicted to be recognized relatively well is “pêt”, because it does not intersect with the 

other vowels.  

 

The confusion matrix from the subjective test is shown in Figure 4.27.  Figure 4.28 shows 
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the prediction confusion matrix generated by the objective algorithm.  There is a total of 

100 answers for each presented stimulus.   

 

pAAt pIEt pOEt pAd pEt pOt pIt pAt pUt pEEt pêt pUUt
A: i u a E O  ´  œ  π  e:  E:  y

pAAt A: 99 0 0 1 0 0 0 0 0 0 0 0
pIEt i 0 11 0 8 2 4 51 3 19 0 0 2
pOEt u 0 0 11 29 1 5 26 17 11 0 0 0
pAd a 0 0 10 59 1 17 6 1 5 1 0 0
pEt E 0 5 1 13 7 9 44 7 11 0 0 3
pOt O 0 4 19 4 1 56 13 0 3 0 0 0
pIt  ´ 0 0 1 4 2 9 59 0 25 0 0 0
pAt  œ 0 4 0 13 4 1 8 63 7 0 0 0
pUt  π 0 12 3 1 4 8 44 0 25 0 2 1
pEEt  e: 0 3 0 0 1 1 0 1 1 83 0 10
pêt  E: 14 0 0 1 0 0 0 0 0 3 64 18
pUUt  y 0 65 0 8 0 2 13 1 11 0 0 0

Average Correct 45

Response

 

Figure 4.27.  Confusion matrix obtained by pooling the results from the subjective test for 

vowels with additional multi-talker babble at 20 dB SNR. 

pAAt pIEt pOEt pAd pEt pOt pIt pAt pUt pEEt pêt pUUt
A: i u a E O  ´  œ  π  e:  E:  y

pAAt A: 23 1 2 3 7 5 3 21 8 13 12 2
pIEt i 0 22 0 0 22 0 20 6 22 0 6 0
pOEt u 6 7 12 12 9 10 7 12 11 5 2 7
pAd a 3 5 9 12 10 12 10 12 11 6 2 8
pEt E 0 14 0 0 27 1 25 9 19 1 3 0
pOt O 0 0 0 0 1 87 2 1 1 4 0 4
pIt ´ 0 2 0 0 7 2 77 3 7 1 1 0
pAt œ 1 3 0 0 9 1 6 66 10 1 3 0
pUt π 0 11 0 0 25 1 19 13 25 1 3 0
pEEt e: 4 2 1 3 7 23 10 4 7 23 8 7
pêt E: 2 7 0 0 11 2 8 10 9 3 47 1
pUUt y 3 2 1 8 5 19 8 3 7 18 7 18

37

Response

S
ti

m
ul

us

 

Figure 4.28.  Prediction confusion matrix (produced by the Spectral Contrast Model) for 

degraded vowels with added multi-talker babble noise at 20dB SNR. 
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In the subjective test the overall percentage of presented vowels that are correctly 

recognised is 45%, pooled over all listeners.  This is 14% less than the corresponding 

average at a 40dB SNR level.  The prediction confusion matrix generated by the objective 

model is shown in Figure 4.28.  The average score for correct responses (at 37%) is 

comparable to that of the subjective test; it is a mere 9% less than the value of the 

subjective model.  The score for the Spectral Contrast Model has decreased by 16% from 

the prediction made for the speech in the 40dB test.  Although the objective model has a 

lower percentage correct answers than the subjective model, the decrease in both the 

subjective test and the objective model is exactly the same.  This shows that spectral 

contrast is more promising as an uncertainty factor than frequency variation, the latter 

decreasing almost double the amount that it should have. 

 

Table 4.23.  Summary of the confusion matrix from the subjective test performed with 20 dB 

SNR multi-talker babble. 

Stimulus
Percentage 

correct
Stimulus

Percentage 
correct

Words 
confused 

with
Stimulus

Percentage 
correct

Words 
confused 

with
Paat 90.0% Pêt 64.0% Puut Put 25.0% Pit
Peet 83.0% Pat 63.0% Pad Piet 11.0% Pit

Pad 59.0% Pot Poet 11.0% Pad, Pit
Pit 59.0% Put Pet 7.0% Pit
Pot 56.0% Poet Puut 0.0% Piet

Best recognized       
(>75%)

Well recognized                
(50-75%)

Poorly recognized              
(<50%)
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Table 4.24.  Summary of the prediction confusion matrix from the Spectral Contrast Model 

for vowels with 20 dB SNR multi-talker babble. 

Stimulus
Percentage 

correct
Stimulus

Percentage 
correct

Words 
confused 

with
Stimulus

Percentage 
correct

Words 
confused 

with
Pot 87.0% Pat 66.0% Put, Pet Pêt 47.0% Pet, Pat, Put
Pit 77.0% Pet 27.0% Pit, Put

Put 25.0% Pet
Paat 23.0% Pat
Peet 23.0% Pot
Piet 22.0% Pet, Put, Pit
Puut 18.0% Pot, Peet
Poet 12.0% Pad, Pat, Put
Pad 12.0% Pot, Pat, Put

Best recognized       
(>75%)

Well recognized                
(50-75%)

Poorly recognized                
(<50%)

 

Table 4.23 and Table 4.24 show a categorized view of the confusion matrices for the 

subjective test and the objective model, respectively.  The vowels with the longest 

durations are still recognized best in the subjective test.   The objective model produced 

very interesting results.  The best recognized vowels are no longer those with longer 

durations.  They are two vowels that have larger spectral contrasts than the others, namely 

“pot” and “pit”.  Most of the vowels are predicted to be poorly recognized.  This is a wrong 

prediction as can be seen in the results from the subjective test.   Most of the confusions 

are also incorrectly predicted.   

 

The FITA analysis of the subjective confusion matrix and the objective confusion matrix in 

the 20dB SNR test is shown in Table 4.25.     

Table 4.25.  Results of FITA analysis for the pooled answers in the subjective test and the 

Spectral Contrast Model implemented in the objective test with added multi-talker babble at 

20 dB SNR. 

% information transmitted S. Contrast Method Subj. Method
Duration 18% 34%
F1 7% 24%
F2 7% 25%  
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In the subjective test some information is still transmitted by the cues, with the best 

acoustic cue being the vowel duration.  The FITA analysis for the objective test has 

dropped to very low percentages.  None of the acoustic cues transmits enough meaningful 

information for accurate interpretation by the listeners. 

 

The averages and standard deviation of the FITA analyses of the individual confusion 

matrices in the subjective test are shown in Figure 4.29.  The dashed line represents the 

FITA results from the objective model.   

 

Figure 4.29.  Graph of FITA analysis for the subjective test and the objective test (Spectral 

Contrast Model) performed with multi-talker babble at 20dB SNR.  The average and 

standard deviation for the percentage of information transmitted is shown for the subjective 

test. 

 

The error lines show that the standard deviation is very large for the duration acoustic cue.  

The F1 and F2 cues are very similar in average information transmitted and the standard 

deviations.  The information transmitted for the duration cue lies on the boundary of the 

error bar, and the other two cues fall short of the level they should be.  Therefore, the 
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objective model did not approximate the results of the subjective test well for this test, 

although the relationship between the cues is still maintained. 

4.3.4 Speech at 0 dB SNR (Multi-Talker Babble Noise) 

 

Figure 4.30.  Perceptual vowel space (generated using the Spectral Contrast Model) for the 

processed vowels with added babble background noise at 0 dB SNR. 

 

Figure 4.30 displays the vowels in relation to each other perceptually for vowels embedded 

in multi-babble noise at a 0 dB SNR.  At this level a person fitted with a CI was expected 

to have extreme difficulty in distinguishing vowels from each other.  It is, therefore, 

correct that all the vowels in the vowel space above intersect each other and will cause 

confusions with each other.  The confusion matrices from the subjective test and the 

objective model are given next in Figure 4.31 and Figure 4.32, respectively. 
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pAAt pIEt pOEt pAd pEt pOt pIt pAt pUt pEEt pêt pUUt
A: i u a E O  ´  œ  π  e:  E:  y

pAAt A: 35 4 7 5 2 7 1 4 6 14 10 5
pIEt i 9 14 4 11 5 5 6 8 10 14 7 7
pOEt u 14 6 2 10 8 12 5 9 9 9 8 8
pAd a 26 5 1 17 4 8 3 6 4 11 12 3
pEt E 11 10 4 14 3 9 6 13 7 9 8 6
pOt O 17 1 6 7 5 12 3 11 6 10 16 6
pIt  ´ 7 10 5 15 10 9 9 16 13 2 3 1
pAt  œ 23 11 4 6 4 8 1 6 2 11 16 8
pUt  π 23 6 6 8 5 12 5 4 6 9 11 5
pEEt  e: 12 13 5 1 4 4 2 3 5 19 8 24
pêt  E: 32 4 5 8 3 7 0 2 6 9 15 9
pUUt  y 10 5 4 5 9 9 6 8 4 15 11 14

Average Correct 13

Response
S

ti
m

ul
us

 

Figure 4.31.  Confusion matrix obtained by pooling the results from the subjective test for 

vowels with additional multi-talker babble at 0 dB SNR. 

pAAt pIEt pOEt pAd pEt pOt pIt pAt pUt pEEt pêt pUUt
A: i u a E O  ´  œ  π  e:  E:  y

pAAt A: 37 1 0 8 7 10 5 18 4 1 6 2
pIEt i 7 8 8 8 8 8 9 8 8 8 8 9
pOEt u 0 29 38 0 7 1 2 0 0 8 6 9
pAd a 1 1 0 80 3 9 2 1 1 0 1 0
pEt E 4 4 3 19 20 12 15 3 12 4 2 2
pOt O 3 1 3 27 6 32 21 3 1 1 1 1
pIt ´ 3 2 5 14 16 21 21 4 6 4 2 1
pAt œ 17 3 4 11 11 14 9 17 3 3 4 2
pUt π 7 6 9 8 9 9 9 9 9 9 9 6
pEEt e: 0 9 20 1 11 3 7 3 3 20 7 12
pêt E: 6 5 13 7 13 7 8 7 5 13 13 4
pUUt y 6 2 11 6 11 3 11 7 11 11 10 11

26

Response
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ti

m
ul

us

 

Figure 4.32.  Prediction confusion matrix (produced by the Spectral Contrast Model) for 

degraded vowels with added multi-talker babble noise at 0dB SNR. 

The first confusion matrix (Figure 4.31) shows the pooled confusion matrix as recorded in 

the subjective test.  The answers are spread out widely across the confusion matrix; no 

presented vowel is recognized correctly or confused incorrectly with any other single 

vowel.  
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The prediction confusion matrix of the objective model (Figure 4.32) also shows low 

recognition percentages.  The average correct score, however, amounts to 26%, which is 

exactly double that of the subjective test.  This is a slightly better result than that of the 

Frequency Variation Model (which predicted that 29% of the answers would be correct).  

The objective model also does not show any specific confusions with all the vowels spread 

out among all the other vowels.  However, the percentage for correct answers is a little 

high for a 0dB SNR test.  This shows that the model cannot be appropriately used for 

conditions where speech recognition has decreased to an almost random level.  

 

Table 4.26.  Results of FITA analysis for the pooled answers in the subjective test and the 

Spectral Contrast Model implemented in the objective test with added multi-talker babble at 

0 dB SNR. 

% information transmitted S. Contrast Method Subj. Method
Duration 3% 1%
F1 10% 0%
F2 3% 1%  

The FITA analysis in Table 4.26 shows that there is almost no information transmitted by 

any of the acoustic cues in the subjective test.  The objective model predicted this well, 

except for the F1 acoustic cue.  The F1 cue is the only cue that transmitted any information 

regarding the identity of the vowels (although still at a very low level at 10%). 

 

The FITA analysis of the confusion matrices of the individuals that participated in the 

testing can be seen in Figure 4.33.   
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Figure 4.33.  Graph of FITA analysis for the subjective test and the objective test (Spectral 

Contrast Model) performed with multi-talker babble at 0dB SNR.  The average and standard 

deviation for the percentage of information transmitted is shown for the subjective test. 

The averages for all the acoustic cues in the subjective test are negligible, showing that 

almost no information is transmitted for each of the three acoustic cues.  The standard 

deviation of all the acoustic cues are very small indicating that none of the individuals 

performed well in the subjective test.  The vowel duration and F2 cues for the objective 

model compared very well with the subjective model.  The F1 acoustic cue in the objective 

model is the only cue that transmits some information, although the level is still minimal at 

10%. Once again, the Spectral Contrast Model outperforms the Frequency Variation 

Model, although it seems that the model should not be used under such extreme conditions. 

4.4 SUMMARY 

 

In this chapter, the results of the experimental studies were given.  The results from 

subjective vowel confusion tests were compared to the predictions of the two objective 

models.  The tests were done firstly with speech with no added background noise and then 

with three levels of SNR using multi-talker babble as additional noise.  From the results it 

can be seen that the Spectral Contrast Model is a good first approximation to the subjective 
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tests’ results.  The results presented in this chapter are discussed in the following chapter 

and compared to those found in the literature.   
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CHAPTER 5   DISCUSSION 

5.1 CHAPTER OBJECTIVES 

 

In this chapter the results from the two implemented methods are discussed and compared 

with each other.  A general discussion then follows to provide interpretation of the results 

as a whole.  The methodology of the model implemented is brought into context with the 

findings in other studies, although a direct comparison is not possible. The chapter 

concludes with answers and observations related to the research questions that were posed 

at the beginning of this study. 

5.2 EVALUATION OF THE OBJECTIVE MODELS 

 

A comparison of the two objective models with subjective testing data showed that only a 

first approximation of confusion predictions was possible.  The Frequency Variation 

Model performed poorly in predicting the confusions for the vowels under all noise 

conditions.  The Spectral Contrast Model performed better with some of the most common 

confusions predicted correctly.  The Spectral Contrast Model also followed the trend of 

average correct answers as the noise level was varied.  

 

The vowel spaces for the Frequency Variation Model showed inconsistencies with regard 

to the subjective test results.  The best example of this is the vowel /a/ (pad).  The model 

showed a high variance for recognition of the vowel (in the no noise test), although it was 

recognized very well (with 87% accuracy) in the subjective test.  This discrepancy may 

arise because the F1 frequency of /a/ (pad) is very high and lower spectral peaks are 

introduced which the model then picks incorrectly as the first formant. A very limited 

number of vowel confusions, for instance between /y/ (puut) and /i/ (piet), were predicted 

correctly.  This could be attributed to the proximity of these vowels in the vowel space.  

The correlation between the variances in the vowel space and the confusion of vowels 

generally did not match.   
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Once background noise was added to the vowel sounds, the confusions increased in the 

subjective test and in the predictions by the objective model.  The average correct answers 

dropped by 8.5% in the subjective test but only by 2.5% in the objective test.  This shows 

that overall the increase in frequency variation does not correlate with the deterioration of 

results in the subjective test.  The confusion prediction also declined with eight of the 

twelve vowels predicted to be confused more than 50% of the time compared to the four in 

the subjective test.  Around half of the predictions were correct because of the vowels’ 

proximity in the vowel space. 

 

The 20dB SNR test showed the superior robustness of the duration cue.  Only vowels with 

the longest duration (that is, /A:/ (paat) and /e/ (peet)) were recognized above 75% of the 

time.  In the 20dB SNR test, the Frequency Variation Model failed to predict any trend in 

vowel confusions. For instance /e/ (peet) which was well recognized (at 83%) in the 

subjective test, was shown to be poorly recognized by the objective model (at 16%).  The 

FITA analysis showed that the F1 and F2 cues only transmitted 4% and 6% of information, 

respectively. Therefore the model predicted that the formant frequency information is of no 

use for this test.  These results do not correlate with the result of the subjective test. The 

results show that frequency variation increases at a rate which is not in line with the 

subjective test. 

 

Tests were also conducted with a 0dB SNR. As discussed in the previous chapter, these 

results should be ignored since the only random confusions and no information transmitted 

were shown in the subjective test.  The Frequency Variation Model did not predict the 

extreme deterioration of recognition because of stabilization of the frequency variation at 

this SNR level.  This may occur because new peaks are introduced into the spectrum by the 

multi-talker background noise.  The model’s ability to determine vowel confusions does 

not work at all at 0dB SNR.  This is expected since the little vowel recognition that 

seemingly takes place in the subjective test can be put down to chance.  The results 

obtained for this condition do not provide any useful information concerning the testing 

and outcome and will be ignored for both models.  
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The spectral contrast implementation is based on the fact that formants are less discernible 

when spectral contrast is reduced.  The results showed that confusion correlation with the 

subjective results increased when the spectral contrast method was used.  The FITA 

analysis also showed that the percentage information transmitted fell within the error bars 

of the subjective test for the test with no additional noise and the 40dB SNR test.  This 

suggests that spectral contrast plays a larger role in the identification of vowels than 

frequency variation.  It also suggests that the use of formants by the human auditory 

system as identifiers of vowels is related to the level of spectral contrast. 

 

Only specific confusions were correctly predicted by the spectral contrast method (for 

instance, the confusion between /´/ (pit) and /π/ (put), the confusion between /œ/ (pat) and 

/O/ (pot), and the confusion between /i/ (piet) and /y/ (puut)).  This was expected since these 

vowels lie close to each other in the vowel space, and the increased variance causes them 

to be confused when the SNR decreases.  The confusions which are not so specific in the 

subjective tests were only predicted to a limited extend (for example, /E/ (pet) being 

confused with /´/ (pit), and /O/ (pot) being confused with /a/ (pad)).   

 

In the 40dB SNR test, the average correct score was predicted well (53% predicted for the 

59% actually shown in the subjective test.)  The subjective test showed that six of the 

twelve vowels were recognized well (above 75%), but the prediction of the objective 

model showed that only two vowels met this criterion.  Only three of the twelve vowel 

confusions were predicted correctly (namely, /O/ (pot) and /a/ (pad), /E/ (pet) and /´/ (pit) 

and /π/ (put) and /´/ (pit)). This shows the potential of the Spectral Contrast Model since 

these are the most common confusions in the subjective test.   

 

Once the noise level was increased to 20dB, the Spectral Contrast Model failed to predict 

confusions correctly.  The average correct score was predicted well (37% predicted for the 

45% actually shown in the subjective test).  It seems that when background noise is added 

the other acoustic cues are used to aid the listener in identifying noises.  This suggests that 

the smaller confusions can be attributed to other secondary acoustic cues which were not 

included or tested in the model.  These cues could include the spectral envelope (Zahorian 
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and Jagharghi, 1993), formant glides (Hillenbrand and Nearey, 1999), or even vowel-to-

consonant transitions (Jenkins et al., 1983; Strange, 1989). 

 

In both tests the vowels separated by their duration were found to be the best recognized. 

The vowels with the longest durations (that is, /E:/ (pêt), /A:/ (paat), and /e/ (peet)) were 

recognized very well up to a 20dB SNR.  This is common in the subjective as well as the 

objective tests – the only test where this is not the case is the 0dB SNR test. 

5.3 DIRECT COMPARISON BETWEEN THE TWO MODELS 

 

Figure 5.34 shows the average correct scores of the subjective test and the two objective 

models.  The average correct score is the average of the correct responses for each of the 

presented vowels.  For the subjective test the figure includes error bars that represent the 

standard deviation of the average correct scores between the listeners. 

 

Figure 5.34.  The average correct recognition scores for the subjective method and the two 

objective models for each SNR level of additional multi-talker babble. 

The graph shows that both of the objective models predicted averages lower than those of 

Subjective Test 
Spectral Contrast Model 
Frequency Variation Model 
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the subjective test.  The Frequency Variation Model had only one prediction falling inside 

the bounds set by the standard deviation of the subjective test.  All of the predicted correct 

answers of the Spectral Contrast Model lay within the standard deviation (error bars in 

Figure 5.34) of the subjective test with the exception of the 0dB SNR test.  Both of the 

objective tests did not decrease to the measured level at 0dB SNR.   

 

The FITA analyses for all the subjective tests and tests of the Frequency Variation Model 

and the Spectral Contrast Model are shown in Figure 5.35, Figure 5.36, and Figure 5.37, 

respectively.  Bar graphs are used to show the relationship between the acoustic cues in 

each level of SNR.  

 

Figure 5.35.  FITA analysis for the subjective tests. 

 
Figure 5.36.  FITA analysis for Frequency Variation Model. 
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Figure 5.37.  FITA analysis for Spectral Contrast Model. 

 

The FITA analysis for the subjective tests shows a gradual decrease in the percentage of 

information transmitted as the signal to noise ratio decreases (with only one exception – 

see below).  From no noise added up to the 20dB level there is a gradual decrease; between 

20dB and 0dB the information transmitted drops to almost zero.  There seems to be no 

indication as to which acoustic cue transfers the largest percentage of information 

throughout.  For instance the duration cue has the highest percentage of the three cues for 

the test with no added noise and the 20dB SNR test; however, in the 40dB test the F2 

frequency carries a higher percentage of information correctly transmitted (this is the only 

exception to the general trend). 

 

The FITA analysis for the Frequency Variation Model also shows a gradual decrease in the 

percentage of information transmitted up to 20 dB SNR; below this level there is an 

increase.  For each SNR level, however, the information transmitted for each acoustic cue 

is much lower than in the subjective tests.  In fact, for the test with no additional noise, the 

40dB SNR test and the 20dB SNR test, the information transmitted for all cues is half the 

value for the subjective test.  The Frequency Variation Model does not utilize the cues 

well, and the model undershoots the values of the subjective test by a large margin, except 

for the 0dB SNR test in which the information transmitted actually increases.  The Spectral 

Contrast Model also does not perform well under extremely noisy conditions (as can be 

seen in the 0dB SNR test results).  In general, the F1 frequency transmits the least 

information in all the tests; the exception occurs in the inflated results for the F1 frequency 
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in the 0dB SNR tests for both the objective models. 

 

The FITA analysis for the Spectral Contrast Model shows a better correlation with the 

analysis for the subjective tests.  For speech with no additional noise there is a good 

correlation with the subjective test and the ratio between the cues is similar to the 

subjective model.  However, the results of the objective model decreased too rapidly with 

respect to the subjective tests.  In the 0 dB SNR test the information transmitted for all cues 

was close to the subjective test, except for the information for the F1 acoustic cue which 

was much too high. 

 

The FITA analyses for the two objective models and the subjective tests are compared in 

the following figures to show the downward trend approximation for each acoustic cue 

separately. This is done to show a more direct comparison for each acoustic cue. 

  
Figure 5.38.  Direct comparison of FITA analyses for the vowel duration acoustic cue. 

No Noise                  40dB                    20dB                       0dB 
,  

           SNR

Subjective Test
Frequency Variation Model 
Spectral Contrast Model 
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Figure 5.39.  Direct comparison of FITA analyses for the F1 acoustic cue. 

 

 
Figure 5.40.  Direct comparison of FITA analyses for the F2 acoustic cue. 

 

The duration and F1 cue show information transmitted decreases as noise is added (once 

again ignoring the 0dB SNR test).  One anomaly, however, is that in the subjective test the 

F2 acoustic cue transmitted more information in the 40dB test than in the test with no 

noise.  This was unexpected since the general trend of the correct identification scores and 

No Noise                40dB                    20dB                       0dB 
,  
           SNR

No Noise                  40dB                    20dB                       0dB 
,  

          SNR

Subjective Test
Frequency Variation Model 
Spectral Contrast Model 
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the other cues shows a constant decrease as noise is added.  Both the objective models 

show a rapid decrease for the F2 cue information transmitted from the no noise to the 40dB 

SNR test.  This suggests that the lack of spectral contrast or increased frequency variation 

do not necessarily mean that the cue is unusable in identification.  There are other factors 

which still allow the information of cues to be transmitted and used to identify the vowel. 

 

Another interesting observation is that the rate of change for the subjective test increases 

with the addition of noise.  This is not reflected in the results of the two objective models, 

that show a sharp decrease in information transmitted initially which slows down as more 

noise is added.  This shows that the information transmitted by all of the acoustic cues is 

not directly related to the measure of spectral contrast and frequency variation, or at least 

that the relationship is not linear. 

 

From these graphs the Sum of Squared Error (SSE) was calculated to show quantitatively 

which of the two methods provided the closest approximation to the subjective tests.  The 

following equation is used to calculate the SSE. 

      



n

i
ii YYSSE

1

2)ˆ( ,            (5.3) 

 

where n is the number of tests, Ŷ is the amount of information transmitted for the specific 

cue by the  prediction model and Y is the information transmitted for the specific cue in the 

subjective test.  The results from the SSE calculation for each acoustic cue are shown in 

Table 5.27. 

Table 5.27. Sum of Squared Error comparison between the two objective methods and the 

subjective tests. 

 Acoustic Cues 

Sum of Squared Errors Duration  F1 F2 

Frequency Variation Method 1675 1595 2311 

Spectral Contrast Method 745 838 1649 
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The SSE calculations show clearly that the Spectral Contrast Model provides a better 

approximation to the subjective method.  For the vowel duration cue and the F1 frequency 

cue the Spectral Contrast Model has only half the error in prediction compared to the 

Frequency Variation Model.  For the F2 frequency cue it performs almost two-thirds more 

accurately than the Frequency Variation Model.  The conclusion can be drawn that spectral 

contrast plays a larger role in approximating the masking of acoustic cues than the 

variation of the formant frequency.  The frequency variation does not seem to camouflage 

the identity of the formant frequencies as much as was assumed at the outset.  

 

For further analysis of the role of frequency variation and spectral contrast, the following 

figures give a comparison between frequency variation and spectral contrast in relation to 

the percentage correct answers.  The graphs were scaled so that they could be plotted on 

the same set of axes; the y-axis on the left gives the percentage correct answers and the y-

axis on the right gives the uncertainty factor measurements in dB. 

 

 

Figure 5.41.  Trend comparison of percentage answers correct for the subjective test and the 

measured frequency variation of the objective models. 

Answers Correct 
F1 Frequency Variation 
F2 Frequency Variation 

No Noise                    40dB                       20dB                        0dB 
,  
                SNR
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Figure 5.42.  Trend comparison of percentage answers correct for the subjective test and the 

measured spectral contrast of the objective models. 

 

Figure 5.41 shows that the variation measured for the F1 frequency on average does not 

decrease consistently with the addition of noise.  The frequency variation of F2 seems to be 

consistent with the downward trend of the percentage answers correct, except for the 0dB 

SNR test.  On the contrary, the F1 frequency variation decreases from the 40dB to the 

20dB SNR test which creates an anomaly in the trends (note that the scale is reversed for 

frequency variance – higher frequency variance should create less correct answers.)  This 

anomaly could be as a result of new spectral peaks introduced by the background noise, 

which has a speech-like nature.  At low frequency ranges the peak-picking of the model 

selects new peaks which are introduced around the frequency of the first formant and, 

therefore, the standard deviation decreases.  This does give an indication as to why the 

Frequency Variation Model did not perform adequately.  

 

In Figure 5.42, spectral contrast for the first and second formant is shown in comparison to 

the percentage correct scores for each SNR test.  Similar to the results for frequency 

variation, the F2 uncertainty corresponds well to the trend of the percentage correct 

No Noise                     40dB                         20dB                         0dB 
,  
                       SNR
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F1 Spectral Contrast 
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answers.  The F1 spectral contrast is also consistent with the percentage answers correctly 

given.  The figure suggests that there is a relationship between the spectral contrast in the 

signal and the intelligibility of vowel sounds.  It also supports the methodology of using 

spectral contrast in the speech intelligibility model as an uncertainty factor allowing for 

different SNRs to be predicted by the model. 

5.4 RESEARCH INSIGHTS 

 

The vowel perception model developed in this study allows for various hypotheses to be 

tested in terms of human perception of noisy speech.  The specific cues used for the 

evaluation of the model were the F1 and F2 formant frequencies. Literature studies 

indicated vowel duration to be the most important.  The results of tests conducted in this 

study, showed that using only the three acoustic cues is not enough to predict all the vowel 

confusions properly.  The model, however, did give a first approximation to the results of 

subjective tests suggesting that this is a viable approach to predict confusions. From the 

less successful results in predicting all the confusions, deductions can be made about the 

acoustic cues used in the model. 

 

It can be deduced that the acoustic cues did not contain all of the information used by a 

listener to identify vowel sounds in the presence of background noise.  Secondary cues 

probably aid vowel identification if the primary cues are masked by noise.  This accounts 

for the fact that the percentage correct scores of the objective models were always lower 

than the results of the subjective test (with the exception of the 0dB SNR test where the 

results can be attributed to chance alone). 

 

Furthermore, the model was implemented so that each of the three acoustic cues had an 

equal effect on vowel identification.  This is not necessarily the case, and experimentation 

can be done by applying weights to the acoustic cues.  It was also assumed that the 

acoustic cues are independent from each other and the spectral contrast measurements.  

From the subjective results it seemed that the duration cue was more important in the 

presence of noise and it may be beneficial to put a greater weighting on the duration cue. 
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The unique contribution made with the current study is the addition of variances to the 

vowel space. The use of individual variances in a vowel space has not been implemented in 

other models.  Usually Euclidean distances between the vowels in a vowel space are used 

to calculate vowel relationship manually (Pretorius et al., 2005; Remus and Collins, 2005; 

Van Wieringen and Wouters, 1999).  The variances allow factors other than the acoustic 

cues alone to be incorporated in the decision criteria.  It is important to include a variance 

in the form of an uncertainty factor, since the model would not be able to predict the 

deterioration of identification if this were not included in the model; that is, the model 

would have predicted the same level of confusion for all levels of SNR.  This would 

happen since the location of the formants and the duration of the vowel do not change 

much as noise is added.  Although tweaking of the uncertainty factors is still needed, the 

inclusion of the frequency variation and spectral contrast allowed for different SNR 

conditions to be tested.  

 

The results in the present study showed that using spectral contrast as a masking factor 

allowed for an approximation of speech intelligibility.  In a broad sense, vowel confusions 

were able to be predicted especially for vowels that were separated by the duration cue.  

The model, however, in its current form, still has shortcomings and improvement is needed 

to properly predict cochlear implant speech perception under conditions of background 

noise.  

 

The results show that with multi-babble background noise added at a level of 0dB vowel 

identification can be attributed to chance (13% in the subjective tests).  At this level the 

objective methods do not produce useful results.  When analyzing the spectra it is seen that 

the spectral contrast does not diminish any further and cannot be used as an uncertainty 

factor.  The spectral contrast is still visible, but now the stability of the frequency and 

amplitude of spectral peaks play a role in creating uncertainty.  The variance in formant 

frequency also is not useful as an uncertainty factor. This is because either the movement 

in frequency is random at this stage or the algorithm does not pick up any increase of 

variance.  Therefore, it is not recommended that these algorithms be utilized for tests 

where speech perception is no longer possible and correct results fall below 15%. 
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In retrospect multi-talker babble background noise was not the best type of noise to initiate 

experimentation.  Multi-talker babble noise has an extreme masking effect on the speech 

tokens and produces the best real-world simulations.  The unpredictable nature of the 

acoustic model, along with the extremely degraded spectral information, offered the 

algorithm a realistic, yet difficult challenge. It might have been a better approach to first do 

experimentation with Gaussian noise (which has less masking effect on speech) and use 

the results from this testing to improve on the model.  Once the model’s predictions were 

acceptable, further experimentation could be done with multi-babble noise.  By testing 

with the multi-talker babble noise, the model was evaluated thoroughly in an appropriate 

real-world scenario.  Pilot experiments performed with white noise (Pollack and Pickett, 

1957) also showed that speech recognition in white noise did not deteriorate as it did in the 

presence of speech-like noise, therefore white noise is not an appropriate type of noise to 

use to simulate real-world conditions.   

 

Rather than using multi-talker babble noise and the complete range of vowel sounds, this 

study shows that experimentation should first have been done with a smaller set of vowels.  

The fact that some confusion could be predicted showed that the basis of the model had 

merit.  It is realistic to say that human speech perception is a highly resilient process and 

that it is to be expected that only a first approximation is possible with the limited set of 

elements employed.   

5.5 COMPARISON WITH OTHER COCHLEAR IMPLANT RESEARCH 

 

The literature shows that using actual listeners as subjects in cochlear implant research is 

still the most common means of testing specific hypotheses regarding cochlear implants 

(Parikh and Loizou, 2005; Pretorius et al., 2005; Van Wieringen and Wouters, 1999).  This 

is either done with cochlear implantees or with normal-hearing listeners listening to an 

acoustic CI model as performed for the subjective test in this study.  Confusion matrices 

have been used extensively in these tests and are still being used regularly in cochlear 

implant studies to determine cochlear implant performance and to learn more about vowel 

perception of cochlear implantees.  From the confusion matrices, information about 
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problematic vowel and consonant confusions can be learnt and used to gain insight into 

primary acoustic cues and the effect of background noise. Some of the results found in 

these studies can be compared with the findings of the present research. 

 

The choice of acoustic cues used in the present model is based on previous studies done 

with normal-hearing listeners and cochlear implantees (see literature study in chapter 2).  

Only using the three cues chosen for this study, along with uncertainty factors, show 

limited, but promising, results in predicting vowel confusions and general correct answer 

trends (with changes in background noise levels).  Inconsistencies still remain regarding 

the manner in which cues are used; and which cues are the most important in speech 

identification.  For instance, Hillenbrand and Gayvert (1993) showed that vowels 

synthesized from the Peterson and Barney (1951) study typically achieved considerably 

lower identification rates in listening tests.  There are also many arguments against formant 

representation of speech.  Zahorian and Jagharghi (1993), for example, favoured a 

representation based on gross spectral shape.  Lindblom and Studdert-Kennedy (1967) 

suggested that direction and rate of change of formants aid in identifying vowel sounds.  

Therefore although formant frequencies and vowel duration are found to be the most 

important acoustic cues there are other factors that need to be included in the model to 

accurately predict human vowel perception.  

  

The study by Van Wieringen and Wouters (1999) concluded that the vowel duration and 

the F1 formant frequency are the most important acoustic cues used by Laura cochlear 

implantees for vowel identification.  Van Wieringen and Wouters also commented that 

duration was especially important for the poorer subjects (cochlear implantees with very 

limited speech perception). The results are in line with the results of the present study in 

which the feature analysis showed that the cue which transmitted the most information was 

the duration cue followed closely by the F2 cue for most of the SNR tests.   

 

The present study showed that the F2 cue was the second-most used acoustic in vowel 

identification. This also correlated with findings from Van Wieringen and Wouters (1999) 

and Pretorius et al. (2005).  Although Van Wieringin and Wouters stated that the F2 and 

F3 frequencies were hardly used by the poorer subjects.  
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Contrary to these findings, Hillenbrand et al. (2000) established that changing the vowel 

duration had a small effect on vowel identification (with only a reported 5% decrease in 

the study).  Their tests were done with normal hearing listeners.  It seems then that 

cochlear implantees rely more on the duration cue than normal hearing listeners because of 

the inherent loss of spectral resolution due to the cochlear implant. 

 

The fact that spectral contrast performed better than frequency variation as an uncertainty 

factor is to be expected, since various investigations have shown that spectral contrast is an 

important requirement for formant identification (Loizou and Poroy, 2001b).  Studies have 

shown that hearing-impaired listeners need a larger spectral contrast compared to normal 

hearing listeners to achieve high vowel recognition performance (Leek et al., 1987).  The 

study by Loizou and Poroy (2001) suggests that a spectral contrast of between 4 – 6% is 

needed for proper vowel identification. The findings of the present study are in line with 

these previous findings.  The study found that when the spectral contrast for the first two 

formants was above 5dB the percentage correct vowel recognition was close to 70%.  The 

percentage correct vowel recognition dropped to below 50%, however, when the spectral 

contrast dropped below 4dB for both formants (see Figure 5.42). 

 

The theory behind the Frequency Variation Model was based on the fact that formant 

frequencies in vowels are defined as being stable frequency peaks (Hillenbrand et al., 

1995; Peterson and Barney, 1952).  Inspection of the spectrograms of the vowels in this 

study however showed erratic fluctuation in formant frequency in the processed vowels. 

The fact that the variation in frequency increased as the SNR increased supported this 

theory and an assumption was made that the frequency variation causes vowel confusions.  

In spite of this, the frequency variation method did not perform well when used in the 

vowel intelligibility model. No research was found to specifically measure the perceived 

threshold of unpredictable formant movement.  Evidence do however exist which shows 

that static spectral characteristics, using only the average formant frequencies of vowels, 

provide very good speech perception (Hillenbrand and Gayvert, 1993; Kirk et al., 1992).  It 

was found that speech perception is however significantly lower than the 94.4% obtained 

by Peterson and Barney, but still suggests that static formant frequencies are very 
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important in vowel identification.    

 

Related research has been done into the effect of poor frequency resolution.  It has been 

shown that poor frequency resolution strongly contributes to CI users’ difficulty in speech 

recognition in noisy listening situations (Fu and Nogaki, 2005).  A study by Fu and 

Shannon (1999b) evaluated the recognition of spectrally degraded vowels; the study 

showed that spectral degradation and frequency shifting influenced the recognition of 

vowels negatively.  Numerous studies have also investigated the minimum number of 

channels needed for speech recognition for a cochlear implant (Dorman, Loizou and 

Rainey, 1997; Fu and Shannon, 1999a; Shannon, Zeng, Kamath, Wygonski and Ekelid, 

1995).  Overall, the results from these studies indicate that a high level of speech 

recognition is possible with four to six bands of spectral information between 0 Hz and 4 

kHz.  This works out to between 666 Hz and 1000 Hz cover per cochlear implant channel.  

The frequency variation measured in all the SNR tests was never above 300 Hz, indicating 

that it is not beneficial as an uncertainty factor in light of the findings of the above studies.    

 

As stated by Svirsky (2000), investigations into psychophysical variables and speech 

perception provide important information, but any correlations between psychophysics and 

speech perception, by their very nature, cannot explain the mechanisms CI users employ to 

identify speech sounds. Simply stating that speech perception is related to one specific 

psychophysical variable does not explain how listeners may actually use acoustic 

information to arrive at a higher-level decision.  An objective speech intelligibility model 

such as the one developed in this study, once refined, can provide a more complete picture 

into speech perception than separate studies into single variables. 

5.6 COMPARISON WITH OTHER MODELS 

 

Speech prediction models for cochlear implants are not very common.  Only two objective 

vowel intelligibility models which predict vowel confusions in confusion matrices were 

found in literature (Remus and Collins, 2005; Svirsky, 2000). Direct comparison of the 

performance of the model developed in the present study with these other models is 

compounded by the following: 
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 Different sets of vowels were evaluated in each of the studies. The present study 

was done with Afrikaans vowels, where Remus and Collins (2005) performed their 

experiments with English vowel sounds. 

 Different methodologies where utilized to calculate predicted confusions. For 

instance Remus and Collins applied HMMs which are trained algorithms.  The 

present study used a mathematical model based on signal detection theory.   

 The literature studies either tested a subset of vowels or compared the most 

frequent confusions found. This study predicted confusions for all possible 

Afrikaans vowel sounds. 

 The model developed in the present study was evaluated under different noise 

conditions.  Other authors evaluated their model results under ideal noise 

conditions. 

 

Rather than comparing the results directly, the methodology followed for the present 

model is compared with the methodologies used in the other models.  The conclusions 

made in the other studies are also compared with the present study’s conclusions. 

 

At the time of writing, Svirsky (2000) was the only study found to use acoustic cues to 

produce prediction confusion matrices for cochlear implantees.  There are a few 

differences between Svirsky’s model and the model used in the present study.  Svirsky did 

not use the acoustic cues from a reconstructed input spectrum as in this study, but rather 

the output of the channels of the cochlear implant as acoustic cues.  The most important 

cue used was the F1 temporal cue encoded by the first implant channel; the other cue used 

was the difference between the amplitudes of the implant channel (simulating F1/F2 

amplitude ratios). Svirsky used the acoustic cues to form a Cartesian vowel space, the same 

as was done also in the present study.  Signal detection theory was used to calculate the 

perceptual distance between each vowel in the vowel space and the probabilities calculated 

were used to produce a confusion matrix. 

 

The model developed in the present study was similarly implemented but instead of using 
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the output directly from the implant channel (as Svirsky did) to calculate the acoustic cues, 

the reconstructed speech spectrum was used to calculate the acoustic cue values in order to 

predict a decision.  This was done to emulate human decision-making as a whole on the 

entire signal.  The acoustic cues were then extracted from the signal and also used to 

produce a perceptual vowel space. The reason the present study based its calculation on the 

reconstructed speech is that this mimics more closely the vowel sound as a whole. This 

approach also allows for comparison with subjective testing which has been done in other 

studies.  Svirksy’s results where better than the results of the present study.  It must follow 

then that the improvements attempted by the present study does not provide a more 

accurate model of speech perception. 

 

The present model attempted to improve on Svirsky’s methodology in two ways.  Firstly, 

the present study’s model was designed to derive an uncertainty factor from the physical 

signal. Svirsky did not measure an uncertainty factor from the signal but rather used the jnd 

(just noticeable difference) as measure of uncertainty. The jnd had to be estimated for each 

acoustic cue or it had to be measured by subjective psychophysical testing.  The reasons 

the present study measured the uncertainty factor is to allow time-saving and to give a 

more quantitative measure for each dimension.  In the Svirsky (2000) study, these 

measures were estimated and manipulated to improve the resulting predictions.  Svirsky 

only showed the performance of the model for one test, where the present study showed 

that the model could function for various levels of SNR.   

 

The use of spectral contrast as a measure produced results that indicate that this is a 

plausible method.  However, this approach did not necessarily improve on Svirsky’s 

method, since a direct comparison cannot be made because different acoustic cues were 

used and Svirsky only tested with three vowel sounds.  Svirsky only showed that the model 

provided predictions for speech without background noise.  If other SNRs were to be 

tested, measurements or estimations have to be made to find the jnd values.  The present 

study’s model calculated a specific measurement for each vowel sound.  The accurate 

results produced by Svirksy’s model in comparison with the less accurate results of the 

present study suggest that it is more accurate to use equal variance throughout.   
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Secondly, Svirsky implemented a reference vowel space where the acoustic cue 

information is inserted manually into the model.  The model developed in this study 

extracts the vowel sound automatically from the token and generates the corresponding 

vowel space.  This allowed that the vowel space would be specific to the test conditions 

(background noise, speaker, and language for instance).   The model developed in this 

study also needs an unprocessed clean token as a guide for the model as to where to start 

searching for the formant frequencies. 

 

The only other study found to use an objective model to predict the vowel intelligibility for 

cochlear implantees was by Remus and Collins (2005).  These researchers also used an 

acoustic CI model which summed the separate channels back into a full spectrum 

(however, it is not apparent that they included the biophysical interface, which our acoustic 

model does). Remus and Collins developed three models.  The first model predicted 

confusions by finding the Euclidean distances between the cepstrum coefficients of the 

stimulus and the possible response.  The second model used the normalized inner product 

of the discrete envelopes of two processed speech tokens.  The third model used a 

continuous-observation HMM which was trained for each speech token using a training set 

of 100 tokens. All training data were collected from a single male speaker in quiet 

conditions. 

 

Remus and Collins used their model to predict confusions for nine English vowel sounds 

and fourteen English consonants under various SNR levels from 10dB to -2dB.  Remus 

and Collins used generated speech shaped noise which is a synthetic replica of the multi-

babble noise used in the present study’s tests.  Remus and Collins combined the confusion 

matrices across noise levels, which were justified by information transmission analyses, 

which indicated that increasing the amount of additive noise most significantly affected the 

rate of confusions rather than the pattern of confusions.  The results of the present study 

showed that confusions did vary slightly as noise was added.  This suggests that it is 

necessary to do discrete testing at different noise levels to properly assess the objective 

model.  The present study assessed each of the noise levels separately and found that the 

relationship of acoustic cue transmission changed as noise was added to the stimulus.   
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The results from Remus and Collins’ study showed that the discrete envelope comparison 

failed for all their tests.  The method which compared cepstrum coefficient distances and 

the HMM method performed the best (close to 78% accuracy) for both models.  Linear 

regression showed that the HMM method performed very well for vowel recognition 

ranking (at 96%).  These results show much better correlation to the subjective testing than 

shown in the present study.  Hidden Markov Models could have been used to improve the 

present model; however, this was decided against and will not be considered in future work 

because of the black-box nature of this approach. HMMs provide no insight into the 

psychophysical processing and decision-making process of in vowel perception.   

 

 

In the Remus and Collins model, the cepstrum distance model was the only method that 

appeared to have any success predicting the correct identification trends for different token 

sets (for the confusion test).  The one method that Remus and Collins implemented using 

MFCC might have been used to improve the present study’s model. Mel-Frequency 

Cepstrum coefficients approximates the human auditory system's response more accurately 

than the normal linear frequency scale.   

 

Remus and Collins concluded that their research did prove the concept but that future work 

was needed to improve the accuracy of the confusion predictions.  Remus et al took the 

initial study further by using modifications of the original models to predict impaired 

channels in a cochlear implant (Remus, Throckmorton and Collins, 2007). This new study 

concluded that there is still significant improvement needed for all the results, but this 

method provided potential for expediting the identification of impaired channels of 

cochlear implants (Remus et al., 2007).   

 

The present model and the models described above go beyond the single answer score 

produced by traditional speech intelligibility models (Beerends et al., 2002; Kamm, Dirks 

and Bell, 1985; Rix et al., 2001; Steeneken and Houtgast, 1980; Voran, 1999b).  No 

comparison is made with these models since the results produced is fundamentally 

different to the results and objectives of the present study. 
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The prediction of an entire confusion matrix allows for specific predictions about patterns 

of perceptual behaviour to be tested and also the testing of specific hypotheses. 

Consequently, the approach represented by the current model may be helpful in advancing 

our understanding of the role of sensory discrimination abilities and their relation to speech 

perception by CI users. 

5.7 RESEARCH QUESTION FINDINGS 

 

With respect to the research questions posed in chapter 1, the following conclusions can be 

drawn: 

 Most speech intelligibility or assessment models found in literature provide single 

score results and are designed to predict normal-hearing performance under specific 

conditions.  A small number of current speech prediction models were found that 

predict speech intelligibility for cochlear implant users.  Only two studies were 

found that produced confusion matrices as output and only one of these studies was 

found to use acoustic cues to determine the outcome.  These models are still in 

development and only give approximations of subjective tests and only for specific 

groups of confusions.  

 The model developed in the present study showed that it is possible to use acoustic 

cue analysis to approximate the percentage of correct answers by CI users.  The 

acoustic cues were shown to be correctly extracted from the speech token and used 

to generate a vowel space with variances calculated from uncertainty factors. 

 The trends of confusions could be predicted to a certain extent when spectral 

contrast was used as an uncertainty factor. The prediction of percentage correct 

scores fell within the standard deviation of all noise tests except at a SNR of 0dB.  

The frequency variation implementation was unsuccessful in predicting any trends 

in confusions.  It was concluded that frequency variation does not produce 

confusion in vowel identification, but spectral contrast plays a definitive role.  

 The hypotheses that three important acoustic cues, namely the F1 and F2 formant 

frequencies and vowel duration, are satisfactory to predict vowel perception was 
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found to be true to a certain degree.  The fact that only some confusions could be 

predicted led to the conclusion that other secondary acoustic cues also aid listeners 

in identifying vowels in the presence of noise.  

 Feature analysis showed that the predictions made by the objective model 

transmitted less information in comparison to the results in the subjective testing.  

The relationship between the acoustic cues for the Spectral Contrast Model was 

found to be similar to the subjective test.  For the tests where the SNR was 0 dB, 

the objective model no longer followed the trend of the subjective test.  

 Although the model struggled to predict all confusions made by CI users, it was 

good enough to prove the concept that the model can be useful for confusion 

testing.  Not all confusions were predicted correctly but trends of group confusions 

could be predicted.  For instance, groups with larger duration differences were 

predicted well and vowels with specific confusions were predicted well. Other, 

more random, confusions (for example, vowels which were confused with more 

than three other vowels) were not predicted correctly. 

 The model could predict the deterioration of results in the subjective evaluation test 

when noise was added to the speech being evaluated.  Once again the Spectral 

Contrast Model performed to a level that fell within the standard deviation of the 

subjective results.  The results of the Frequency Variation Model did deteriorate as 

noise was added, but not to the same degree as the subjective results. 
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The goal of the current study was to investigate the methodology of designing a vowel 

intelligibility perception model that can predict objectively the outcome of a vowel 

confusion test performed with a cochlear implantee.  The output of the model is the 

calculated probability of a cochlear implant user identifying vowel tokens correctly and the 

probability of specific vowel confusions occurring.  Instead of using training mechanisms 

to produce more accurate answers, the model attempts to mimic vowel perception 

mathematically.   

 

The model was developed based on the primary acoustic cues shown in the literature to aid 

vowel identification.  Two versions of the model were developed and tested.  The first 

variant of the model measured an uncertainty factor in terms of formant frequency 

variation and the second variant measured an uncertainty factor in terms of spectral 

contrast.  This allowed the model to track vowel perception under real-world conditions; it 

was tested in the presence of various levels of additional multi-talker babble background 

noise. 

 

The results from the Frequency Variation Model did not provide answers which correlated 

well with subjective tests done using persons with normal hearing listening to an acoustic 

cochlear implant model.  The measurement of frequency variation did not increase 

continuously when background noise was added, and the model did not provide a proper 

representation of the vowel space.  

 

The Spectral Contrast Model showed more promising results.  Some of the most frequent 

confusions could be predicted.  Using spectral contrast as a variance in the vowel space 

showed good correlation with the average answers correctly given for the different SNR 

tests.  The spectral contrast measurement added value in that it showed that the model 

adapts its answers according to the noise level.  This feature allowed for the modest 
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successes. 

 

In summary, the following conclusions can be drawn from this study. 

 The present model successfully extracted acoustic cues and used these to create 

three-dimensional vowel perception spaces. 

 FITA analysis showed that the transmitting of the acoustic cues in the Spectral 

Contrast Model had similar trends to that in the subjective test.  (This does not 

apply to the Frequency variation Model.) 

 The hypotheses that three important acoustic cues in terms of F1 and F2 formant 

frequencies and vowel duration are satisfactory to predict vowel perception was 

found to be true to a certain degree, since the most frequent confusions could be 

predicted in some tests.   

 The Spectral Contrast Model produced results which were satisfactory as a first 

approximation for the most frequent confusions.  

 The Frequency Variation Model did not produce accurate predictions for vowel 

confusions.  This shows that the use of variation in frequency is not adequate as an  

uncertainty factor. 

The Spectral Contrast Model could predict the deterioration of results in the subjective 

evaluation test when noise was added to the speech being evaluated. (Again, this does not 

apply to the Frequency variation Model.)  

 

Although the objective vowel intelligibility model (using spectral contrast) was, at best, 

only partially successful at predicting vowel confusions, the methodology followed in the 

development of the new model forms a framework from which further study is possible.  

 

Once the objective model presented in this study is refined it may be used to speed up 

research into cochlear implant speech processing strategies.  Various scenarios can be set 

up and the effect of changing specific CI parameters can be determined by analysing the 

output of the acoustic model.  The model may also lead to new means of quantitative 

research into speech recognition of cochlear implantees.  In such a way, the developed 
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model could make a contribution in the improvement of current cochlear implant 

processors. Models such as the present one may in future aid cochlear implant research by 

replacing or complementing subjective listening tests.  By experimenting with different 

acoustic cues, the model can then also be used to gain more insight into the elements in a 

vowel sound that provide information of the vowel’s identity to a cochlear implant listener.  

6.1 FUTURE WORK 

 

The vowel perception model is essentially based on the measurement and processing of 

acoustic cues and uncertainty factors using signal detection theory in order to predict 

vowel confusion probabilities.  There are various modifications which can be done to 

improve on the current implementation. 

 

The model can be improved by taking into account other acoustic cues that have been 

identified in the literature as aids to human sound perception.  For instance, instead of 

using only the frequency of the first two formants, the direction of the glide of the formant 

frequency in time can also be taken into account (Hillenbrand and Nearey, 1999).  

Researchers have also shown that relative amplitude of the first two frequencies in the 

presence of noise also aid in vowel identification (Ito, Tsuchida and Yano, 2001b).  If this 

suggestion is implemented, the scaling of the vowel space would change, which would, in 

turn, influence the outcome.  Whole spectrum models have also been proposed to be an 

acoustic cue in vowel identification (Hillenbrand et al., 2006; Ito et al., 2001b).  These 

cues can replace the current three acoustic cues if they are found to be more important 

under specific testing conditions or they can be added as secondary cues to supplement the 

current calculation.  It must be noted that adding other acoustic cues to the model will 

increase the vowel space by one dimension for every acoustic cue added.  It is the modular 

nature of the present model that allows for the easy substitution of various types of input. 

 

In the current model the acoustic cues are all assumed to contribute to the same extent to 

the identification of a vowel sound.  Further experimentation should be done to determine 

if the model’s predictions can be improved by changing the weightings for the different 

acoustic cues.  An acoustic cue may also carry a certain impact if it falls in a certain area of 
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the vowel space.  This has been done in previous models, for example, in models using the 

STI (Speech Transmission Index) and the SII (Speech Intelligibility Index).  The STI and 

SII are based on weighted contributions from a number of frequency bands. For this 

purpose, the STI uses a fixed bandwidth (octave bands) with a relative weighting summed 

to provide an intelligibility index between 0 and 1 (Steeneken and Houtgast, 1980; 

Steeneken, 1987).  The same methodology may be implemented to improve the current 

model. 

 

In the present study it was also assumed that no interdependencies existed between the 

acoustic cues.  The absence of interaction between the acoustic cues causes the dimensions 

of the vowel space to be orthogonal to each other.  This is not necessarily the case, as was 

concluded by Van Wieringen and Wouters (1999) after multidimensional scaling in their 

tests did not account for all the confusions in subjective tests.  Further research can be 

carried out into changing the dependency between the acoustic cues and by including co-

variances into the probability equations.  

 

The frequency spectrum was calculated from the FFT of the signal in the implemented 

model.  The frequency spectrum, however, is not the best scale to use in calculating human 

speech recognition.  For various speech perception models the Mel-Frequency Cepstrum 

(as used by Remus and Collins (2005)) has been implemented in calculations instead of the 

frequency spectrum.  This was done because the frequency bands in the Mel-Frequency 

Cepstrum are positioned logarithmically (on the Mel scale) which approximates the human 

auditory system's response more closely. This approach may not aid in determining the 

formant frequencies, but it may give better results for the spectral contrast or other 

measurements. 

 

In future work, the uncertainty factors can be extended to include other distortions in the 

signal that mask the acoustic cues.  Other effects have also been found to affect human 

speech recognition.  The following signal distortions that affect the variances in the vowel 

spaces can be investigated in future, for example, spectral resolution (Fu and Nogaki, 

2005; Fu, Shannon and Wang, 1998b) and amplitude distortion.  There are also uncertainty 

factors which affect the vowel’s position in the vowel space, such as spectral smearing (Fu 
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and Nogaki, 2005), spectral warping (Fu and Nogaki, 2005) and spectral shifting (Fu and 

Shannon, 1999b).  

 

Finally, the methods could be extended to include the evaluation of consonant recognition 

in addition to vowel recognition.  This study only looked at vowel perception because of 

the importance of vowel identification in speech perception.  It is important, however, to 

also extend the study into consonant perception for an overall insight into cochlear 

implantee speech perception. 

 

Once the vowel intelligibility prediction model functions at an acceptable level, it is 

envisioned that the model can be used in an automated program which runs through 

various parameters of the cochlear implant.  All combinations of parameter settings of a 

cochlear implant can then be evaluated with the model and the summed perceptual score 

for each test can be stored.  By ranking the summed results for each of the tests, the best 

parameter settings for a cochlear implant under certain speech input conditions can be 

determined.  The present model was only tested using a cochlear implant model which uses 

the SPEAK speech processing strategy.  Other speech strategies (for example, CIS) can 

also be used in series with the model to evaluate speech perception for individuals fitted 

with those types of cochlear implants. 

 

It is the modular nature of the present model that allows for further fine-tuning.  The scope 

for further research using the present model (particularly the Spectral Contrast Model) is 

vast, and will culminate eventually in real benefits for the users of CI implants. 
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