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Moment Balancing Templates for (d, k) Constrained
Codes and Run-Length Limited Sequences

Ling Cheng, Hendrik C. Ferreira and Izak Broere

Abstract—The first-order moment of (d, k) constrained codes
is investigated in this paper. A generalized moment balancing
template is proposed to encode a (d, k) sequence into a single
insertion or deletion correcting codeword without losing the
constraint property. By relocating 0’s in moment balancing runs,
which appear in a pairwise manner, of a (d, k) sequence, the
first-order moment of this sequence can be modified to satisfy
the Varshamov-Tenengolts construction. With a reasonably large
base in the modulo system introduced by the Varshamov-
Tenengolts construction, this generalized moment balancing
template can be applied to run-length limited sequences. The
asymptotic bound of the redundancy introduced by the template
for (d, k) sequences is of the same order as the universal template
for random sequences, and therefore the redundancy is small and
suitable for long sequences of practical interest.

Index Terms—(d, k) constrained code, insertions/deletions,
moment balancing template, number theoretic codes, run-length
limited sequence.

I. Introduction

The (d, k) constrained codes and run-length limited se-
quences are widely used in magnetic and optic recording
systems. However, as shown in [1], insertion or deletion errors
cause catastrophic problems for these systems. To protect
a transmission system from a single insertion/deletion error,
Ferreira et al. [2] presented a moment balancing scheme, in
which a linear error correcting codeword is further encoded
in order to obtain a single insertion/deletion error correcting
capability. However, preserving the constraint properties and
keeping the redundancies within a practical-interest range
make moment balancing templates of constrained codes more
complicated.

Ferreira et al. [2] also presented the moment balancing
template for DC-free sequences and the template for (d, k)
sequences with d = 1 and d = 2. Cheng, Ferreira and Ouahada
[3], [4] presented the moment balancing template for further
spectral null codes as introduced in [5]. In this paper, we will
generalize the template to (d, k) constrained codes and run-
length limited sequences.
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The paper is organized as follows. Section II starts with
definitions, notations and a brief introduction of (d, k) con-
strained codes and moment balancing templates. The general-
ized moment balancing template for (d, k) constrained codes
is presented in Section III. In Section IV, an approach to apply
this template to run-length limited sequences is presented.
The encoding and decoding procedures of implementing this
template are presented in Section V. The redundancy of the
new templates is discussed in Section VI. We conclude the
paper with Section VII.

II. Preliminaries
A. (d, k) constrained codes and run-length limited sequences

Here we define the weight of a sequence as follows.
Definition 1: The weight of a binary sequence is equal to

the number of 1’s in the sequence.
The definition of runs is as follows.
Definition 2: A 0 run is a maximal subsequence that con-

sists of consecutive 0’s.
A power notation is used to represent a run of symbols,

such as 0a. Here a denotes the number of the repeating 0’s.
Following the arguments presented in [6] and [7], we define

the reduced length sequence of a (d, k) sequence as follows.
Definition 3: The reduced length sequence of the w-weight

(d, k) sequence 0a1 10a2 1 . . . 0aw 1 is the sequence a1a2 . . . aw,
where ai ∈ {d, d + 1, . . . , k} for each i with 1 ≤ i ≤ w.

Note that we assume that all (d, k) sequences we consider in
this paper terminate with a 1. Evidently, (d, k) sequences are in
a one-to-one correspondence with reduced length sequences.

Let n denote the length of the (d, k) sequence. Based on
Definition 3, we have

n =

w∑
i=1

(ai + 1),

and
(d + 1)w ≤ n ≤ (k + 1)w. (1)

In the modulation stage, a (d, k) sequence is converted to
a run-length limited sequence and sent over the channel. In
a bipolar modulation system, signals can be represented by
sequence z1z2 . . . zi . . . and zi ∈ {−1, 1}. A bit one in the (d, k)
sequence represents a transfer from signals -1 to 1 or 1 to -1,
and a bit zero represents a transfer from -1 to -1 or 1 to 1.
A (d, k) sequence can be converted into a run-length limited
sequence with the same length, if it is assumed that the first
bit of the (d, k) sequence indicates the transfer of z1 from a
known signal. Except for the first run of a run-length limited
sequence, the run-lengths of this sequence converted from a
(d, k) sequence are between d + 1 and k + 1.
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B. Moment Balancing Template

Definition 4: For a binary sequence v = v1v2 . . . vn, the first-
order moment function is defined as

σ(v) =

n∑
i=1

ivi. (2)

Given fixed non-negative integers r and m, the Varshamov-
Tenengolts codes [8] consist of all binary sequences v satis-
fying

σ(v) =

n∑
i=1

ivi ≡ r (mod m). (3)

By taking m = n + 1, the corresponding codes can correct
one single asymmetrical error. Levenshtein [9] noted that by
taking m ≥ n + 1, the corresponding codes are single insertion
or deletion error correcting codes.

Based on the Varshamov-Tenengolts construction in (3),
we propose a moment balancing template to encode a binary
code C of length K into a single insertion or deletion error
correcting code. As shown in [2], [3] and [4], the binary code
C can be any one of: an arbitrary random sequence, or an
error correcting code, or a DC-free code, or a spectral null
code, or a (d, k) constrained sequence with d = 1 or d = 2.
Each codeword u = (u1u2 · · · uK) is encoded into a sequence
v = (v1v2 · · · vn), where n ≥ K. The encoding is done in such
a way that, if u and u′ are different, then the sequences v and
v′ resulting from them are also different. When the first-order
moment of the sequence v satisfies (3) with m ≥ n + 1, v
can correct a single insertion or deletion error. For practical
interest, in the moment balancing templates we propose, bits
of u appear in v at predetermined positions.

The moment distribution of code C can be represented by
a generating function as

g(X) = n0 + n1X + n2X2 + · · · + nrXr + · · · + nm−1Xm−1.

Here nr is the number of codewords v in C that have σ(v) ≡ r
(mod m). A universal moment balancing template is defined
in [2] for the code C with an arbitrary moment distribution, in
which the number of moment balancing bits n−K is bounded
from below by dlog2 me. For a code having a certain narrower
range of moment values, such as one in which for some r’s
we have nr = 0, we can implement an optimized moment
balancing template, which may introduce less redundancy than
that of the universal template. In [3] and [4], an optimized
template is implemented on spectral null codes. However,
when a universal template is applied to a constrained code,
the moment balanced codewords do not always maintain the
property of the constrained code. It prompts the research on
designing certain templates for constrained codes.

III. Moment Balancing Template for (d, k) Constrained
Codes

In the sequel, unless stated otherwise, the reduced length
sequences will be used to present the properties of the corre-
sponding (d, k) sequences in a moment balancing template.

From (2) it follows that the first-order moment of a (d, k)
sequence is completely determined by the indices of the 1’s.

Given a (d, k) sequence v with the corresponding reduced
length sequence a = a1a2 . . . aw, we have

σ(v) =

w∑
i=1

i∑
j=1

(a j + 1)

=

w∑
i=1

i∑
j=1

1 +

w∑
i=1

i∑
j=1

a j

=
(w + 1)w

2
+

w∑
i=1

ai(w − i + 1). (4)

Therefore, the first order moment function of a binary (d,
k) sequence v can be presented as the function φ(·) in terms
of the corresponding reduced length sequence a = a1a2 . . . aw

σ(v) = φ(a) =
(w + 1)w

2
+

w∑
i=1

ai(w − i + 1). (5)

We define a relocation of a 0 in a (d, k) sequence represented
by the reduced length sequence as follows.

Definition 5: A relocation operation of a 0 denoted by
S ,T
→

with S , T inserts a 0 in the T ’th run of 0’s and deletes a
0 from the S ’th run of 0’s. It transforms the (d, k) sequence
. . . aS . . . aT . . . into a sequence . . . aS − 1 . . . aT + 1 . . ., or it
transforms . . . aT . . . aS . . . into a sequence . . . aT + 1 . . . aS −

1 . . ..
Let S and T denote the indices of runs the transform affects

where we assume S , T and aS ≥ 1, since it is impossible
for the relocation operation to affect a non-existing 0.

Lemma 1: The first-order moment value defined by (2) of a
(d, k) sequence is increased by S −T as a result of a relocation
operation

S ,T
→.

Proof: For S > T , let a = a1a2 . . . aT . . . aS . . . aw. After
moving a 0 from the S ’th run to the T ’th run, we have a′ =

a1a2 . . . aT + 1 . . . aS − 1 . . . aw. According to (5), we have

φ(a′) − φ(a) = (aS − 1)(w − S + 1) + (aT + 1)(w − T + 1)
− aS (w − S + 1) − aT (w − T + 1)

= S − T.

A similar argument is used for S < T .
Given an original (d, k) sequence x = a1a2 . . . aw, the

moment balancing template is an approach to encode x into
x′ = b1b2 . . . bw′ . Each ai with 1 ≤ i ≤ w appears in x′ with a
predetermined index, which can be represented explicitly by
the function

β : {1, 2, . . . ,w} → {1, 2, . . . ,w′},

which is order-preserving, i.e., which satisfies the implication
that if i < j in {1, 2, . . . ,w}, then β(i) < β( j) in {1, 2, . . . ,w′}.
Therefore, we have

1 ≤ β(1) < β(2) < · · · < β(w) ≤ w′.

The sequence x is a subsequence of x′, and the remaining
part in x′ is composed of moment balancing runs. The moment
balancing runs c1c2 . . . cw′−w appear in this order in x′, i.e., with
indices which are represented by an order-preserving function

γ : {1, 2, . . . ,w′ − w} → {1, 2, . . . ,w′}.
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Note that we have

1 ≤ γ(1) < γ(2) < · · · < γ(w′ − w) ≤ w′

and that the sets {β(1), β(2), . . ., β(w)} and {γ(1), γ(2), . . .,
γ(w′ − w)} satisfy

{β(1), β(2), . . . , β(w)}∪{γ(1), γ(2), . . . , γ(w′−w)} = {1, 2, . . . ,w′}

and

{β(1), β(2), . . . , β(w)} ∩ {γ(1), γ(2), . . . , γ(w′ − w)} = ∅.

Note that for a given (d, k) sequence x = a1a2 . . . aw and
a sequence of balancing runs c = c1c2 . . . cw′−w, the moment-
balanced sequence x′ = b1b2 . . . bw′ with increased weight w′

can be generated by a one-to-one mapping relation x → x′,
where in x′, bβ(i) = ai and bγ( j) = c j for each 1 ≤ i ≤ w,
1 ≤ j ≤ w′ − w.

We will show that, for every x and for any given non-
negative integers r and m, one can find a c such that the
first-order moment of x′ satisfies (3).

Without losing generality, we only consider (d, k) sequences
with constant weight, in other words, w and w′ here are given
with w′ > w. Among w′ runs in the above template, there are
s pairs of balancing runs, that is, 2s runs. The idea behind
the moment balancing template we present in this paper is to
manipulate the first-order moment value of a (d, k) sequence to
a constant positive integer r modulo a constant positive integer
m > n by redistributing 0’s within the balancing pairs of runs
while maintaining the total number of 0’s of each balancing-
run pair as a constant. We need to consider m ≥ n + 1, which
guarantees a single insertion/deletion correcting capability of
a sequence. Note that m = n + 1 is the least value which
guarantees this error correcting capability, and the cardinality
bound from below of the corresponding code is known to drop
(see [9]) with higher values of m.

Let ci,1 and ci,2 denote a pair of balancing runs, where
1 ≤ i ≤ s. Using this notation, we have c =

c1,1c2,1 . . . ci,1 . . . cs,1cs,2 . . . ci,2 . . . c2,2c1,2. Each pair of balanc-
ing runs ci,1 and ci,2 appears in c in a mirror-symmetric way.
It is evident that in the natural order of the balancing runs, ci,1
appears in position i, and ci,2 appears in position 2s − i + 1.

As mentioned earlier, each balancing-run pair has a constant
sum. It is evident that when

ci,1 + ci,2 = d + k,

ci,1 and ci,2 reach their maximum dynamic range. Since the
moment balance template is composed of the original w runs
and 2s balancing runs, we have

w′ = 2s + w.

We introduce a symbol for non-negative integer α, of which
the value is to be decided later. A two-step moment balancing
process is as follows. In the first step the first α pairs of
balancing runs are processed with relocation operations, and
in the second step, a further ξ pairs of balancing runs are
processed. We have

s = α + ξ.

c1,1

c2,2

c1,2
c3,1

c2,1

c3,2

1 → α

cα,1 cα,2

α → 1
α+ 1 → s

s → α+ 1

Fig. 1. Layout of balancing runs.

Symbolically, the template can be described in more detail
as follows. Given a (d, k) sequence x = a1a2 . . . aw and a
sequence of balancing runs c = c1,1c2,1 . . . cs,1cs,2 . . . c2,2c1,2,
the moment balanced sequence is

x′ = c1,1c2,1 . . . cs,1cs,2

a1a2 . . . ak−d+1−3cs−1,2

ak−d+1−2ak−d . . . a(k−d+1)2−5cs−2,2

a(k−d+1)2−4 . . . a(k−d+1)3−7cs−3,2 . . .

. . . a(k−d+1)i−2i . . . a(k−d+1)i+1−2i−3cs−i−1,2 . . .

. . . a(k−d+1)ξ−2−2(ξ−2) . . . a(k−d+1)ξ−1−2(ξ−2)−3cs−ξ+1,2

a(k−d+1)ξ−1−2(ξ−1) . . . awcα,2cα−1,2 . . . c2,2c1,2

(6)

We have the following specifications of the indices of balanc-
ing runs in the template

γ(i) =


i for 1 ≤ i ≤ s
2s − i + 1 + (k − d + 1)i−s−1 for s + 1 ≤ i ≤ s + ξ

w′ + i − 2s for s + ξ + 1 ≤ i ≤ 2s
(7)

The layout of balancing runs in the template can be illustrated
by Fig 1.

An example to describe the moment balancing process
follows.

Example 1: The reduced length sequence x =

16474645247656534377 (d = 1, k = 7) has length
w = 20. Let α = 1 and ξ = 2. Let underlined digits denote
the balancing runs. Inserting the balancing reduced length
sequence c = 111777 with indices as described in (7), we
obtain x′ = 11171647746452476565343777 with length
w′ = 26 and length 146. Taking m = 147, we have φ(x′) ≡ 35
(mod 147). The aim of redistributing 0’s in the balancing runs
is to obtain φ(x′) ≡ 0 (mod 147). There are various choices
to make up the deficiency 147 − 35 = 112. We only present
one, i.e., 112 = 4 × 25 + 1 × 7 + 5. As a result of changing
x′ into 52621647646452476565343773, four 0’s for the first
pair of balancing runs, one 0 for the second pair and five 0’s
for the third pair are relocated.

Lemma 2: If ci,1 = d and ci,2 = k, where i ∈ {1, 2, . . . α}, by
relocating the 0’s from ci,2 to ci,1, the maximum modification in
the moment value that can be attained through the processing
of α pairs is (k − d)(αw′ − α2).
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Proof: Initially, let ci,1 = d and ci,2 = k for each i ∈
{1, 2, . . . α}.

By relocating the 0’s from ci,2 to ci,1, the maximum modi-
fication in the moment value that can be attained through the
processing of α pairs is

∆ = φ(x′) − φ(x) ≤ (k − d)(w′ − 1) + (k − d)(w′ − 3) + · · ·

+ (k − d)(w′ − 2α + 1)

= (k − d)(αw′ − α2),

where φ(x) and φ(x′) denote the moment values before and
after. Note that to preserve the constraint property of the
(d, k) sequence, the maximum number of 0’s which can be
moved from ci,2 to ci,1 is k − d. It is evident that if the
original template starts with ci,1 = d and ci,2 = k, by moving
the 0’s between pairwise balancing runs, the moment value
monotonically increases. Therefore, we have

0 ≤ ∆ ≤ (k − d)(αw′ − α2).

However, ∆ does not take on all the values from 0 to (k −
d)(αw′ − α2). The value distribution of ∆ can be explicitly
described by a generating function as follows

g(X) = (1 + Xw′−1 + X2(w′−1) + · · · + X(k−d)(w′−1))

(1 + Xw′−3 + X2(w′−3) + · · · + X(k−d)(w′−3))
...

(1 + Xw′−2α+1 + X2(w′−2α+1) + · · · + X(k−d)(w′−2α+1))

= 1 + Xw′−2α+1 + Xw′−2α+3 + · · · + X(k−d)(αw′−α2). (8)

In (8), the last occurrence of · · · represents all power terms
higher than Xw′−2α+3 and less than X(k−d)(αw′−α2) with coef-
ficients greater than 0, in increasing order of powers of X.
We consider the absolute values of the difference δ, called
deficiency, of every two consecutive exponents of the power
series, and we investigate the maximum deficiency, δmax,
which cannot be balanced by 2α balancing runs.

Lemma 3: If α ≥ 1 and w′ ≥ 2(k − d)α + 1, then δmax =

w′ − 2α + 1.
Proof: According to (8), it is observed that between 1 and

Xw′−2α+1 there is no term. Therefore we have a deficiency w′−
2α+1. Given a positive integer 1 ≤ λ ≤ k−d, between Xλ(w′−1)

and X(λ−1)(w′−1), it is guaranteed to have Xλ(w′−3), Xλ(w′−5), . . .,
Xλ(w′−2α+1). Therefore, between Xλ(w′−1) and X(λ−1)(w′−1), we
have maximum deficiency

δ ≤ max(2λ, λ(w′ − 2α + 1) − (λ − 1)(w′ − 1)).

It is evident that we have

δ ≤ λ(w′ − 2α + 1) − (λ − 1)(w′ − 1),

when
w′ ≥ 2(k − d)α + 1.

Comparing δ with w′ − 2α + 1, we have

w′ − 2α + 1 − δ ≥ w′ − 2α + 1
−

(
λ(w′ − 2α + 1) − (λ − 1)(w′ − 1)

)
= 2(λ − 1)(α − 1).

Therefore, when α ≥ 1 and w′ ≥ 2(k − d)α + 1, we have
δmax = w′ − 2α + 1.

In (6), ξ pairs of balancing runs are implemented to com-
pensate for the deficiency.

Lemma 4: The maximum deficiency δmax in (8) can be
attained by ξ pairs of balancing runs, where ξ is an integer
that satisfies (k − d + 1)ξ−1 − 2ξ < w ≤ (k − d + 1)ξ − 2ξ − 2.

Proof: Let τi denote the number of 1’s between the pair
of the balancing runs cα+i+1,1 and cα+i+1,2, where 0 ≤ i ≤ ξ−1.
According to (7), we have

τi = (k − d + 1)i.

Only the 0’s in any balancing run can be relocated to the cor-
responding paired-up balancing run. According to Lemma 1,
as a result of the relocations between ξ pairs of balancing runs,
the difference of the first-order moment value can be presented
as

φ(x′) − φ(x) =

ξ−1∑
i=0

qi(k − d + 1)i,

where 0 ≤ qi ≤ k − d.
Therefore, φ(x′)−φ(x) can take on the values of all integers

between 0 and (k − d + 1)ξ − 1.
According to Lemma 3, the maximum first-order moment

value deficiency for balancing a moment template is w′−2α+1.
The condition

(k − d + 1)ξ − 1 ≥ w′ − 2α + 1 (9)

is necessary for the moment balancing template (6) to stand.
From (9), we have

w′ ≤ 2α + (k − d + 1)ξ − 2. (10)

Furthermore, all indices of balancing runs need to be
disjoint. Based on the observation of (7), γ(i) increases mono-
tonically for 1 ≤ i ≤ s. For s + 1 ≤ i ≤ s + ξ,

γ(i + 1) − γ(i) = (k − d)(k − d + 1)i−s−1 − 1.

This shows that the indices of balancing runs specified by (7)
also increase monotonically, except that, when k − d = 1, in
which case γ(s + 1) = γ(s + 2). In this case, we can move the
s’th pair of balancing runs to any consecutive positions that
are not occupied by other balancing runs. For s+ξ+1 ≤ i ≤ 2s,
γ(i) decreases monotonically.

Moreover, it is evident that γ(s + 1) > γ(s). If

γ(s + ξ + 1) > γ(s + ξ), (11)

all indices of balancing runs are disjoint. From (11), we can
obtain

w′ + s + ξ + 1 − 2s > 2s − (s + ξ) + 1 + (k − d + 1)ξ−1,

and
w′ > 2α + (k − d + 1)ξ−1. (12)

Therefore, based on (10) and (12), the necessary condition
for this template to stand is

2α + (k − d + 1)ξ−1 < w′ ≤ 2α + (k − d + 1)ξ − 2. (13)
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Since
w′ = w + 2s = w + 2(α + ξ), (14)

Substituting (14) into (13), we have

(k − d + 1)ξ−1 − 2ξ < w ≤ (k − d + 1)ξ − 2ξ − 2. (15)

Theorem 1: Let α and ξ pairs of balancing runs be chosen
to satisfy (15) and

(k − d)(αw′ − α2) + (k − d + 1)ξ − 1 ≥ (k + 1)w′. (16)

Then, the sequence (6) is a valid moment balancing template
that can be used to encode any (d, k) sequence of weight w
and k − d , 1, by relocating 0’s among balancing runs, into a
(d, k) constrained code of weight w′ that can correct a single
insertion or deletion error.

Proof: According to Lemma 2, 3 and 4, the first-order
moment value of the template (6) can be adjusted for a
difference ranging from 0 to (k−d)(αw′ −α2) + (k−d + 1)ξ −1
by relocating 0’s among balancing runs.

In (3), we choose m = n + 1. Then, m ≤ (k + 1)w′ + 1.
If (k − d)(αw′ − α2) + (k − d + 1)ξ − 1 ≥ (k + 1)w′, we have
(k − d)(αw′ −α2) + (k − d + 1)ξ − 1 ≥ m− 1. Therefore, (3) can
be satisfied for any given value of r.

Note that, in the case of k − d = 1, Theorem 1 still stands
if the s’th balancing pair in (6) can be placed in any two
consecutive positions that are not occupied by other balancing
runs.

IV. Moment Balancing Template for Run-Length Limited
Sequences

Due to the importance of run-length limited sequences
in practice, there is great interest in proposing an adaptive
approach to implement the moment balancing templates on
this type of sequences. As mentioned before, a (d, k) sequence
is converted into a (d + 1, k + 1) run-length limited sequence
and sent over the channel. Here the analogous notation,
i.e., (d + 1, k + 1), is used to indicate that the run-lengths
of the sequences over the channel are between d + 1 and
k+1. The following example enumerates all possible scenarios
for a single insertion or deletion error occurring in a run-
length limited sequence. Note that, in this section, the (d, k)
sequences are presented in binary format. It is convenient to
assume that all (d, k) sequences in the following example start
with a run of zeros. For example, the first run of the (d, k)
sequence 111001 is a zero run with length 0 (d = 0).

Example 2: Given a (d, k) sequence 111001, if it is assumed
that the known (dummy) signal before the first signal is 1,
the (d, k) sequence is converted into the run-length limited
sequence −1, 1,−1,−1,−1, 1 and sent over the channel.

1) If the received sequence is −1, 1,−1,−1, 1 as a result
of the deletion of the third signal, the corresponding
corrupted (d, k) sequence is 11101. Due to the deletion
of a signal from a run of repeating signals with length
not less than two (d ≥ 1), one of the zeros is deleted in
the (d, k) sequence.

2) If the received sequence is −1,−1,−1,−1, 1 as a result
of the deletion of the second signal, the corresponding

corrupted (d, k) sequence is 10001. Due to the deletion
of a signal from a run of repeating signals with length
one (d = 0), the (d, k) sequence has a deletion error
and an adjacent substitution error. A subsequence in the
original (d, k) sequence 11 turns into a subsequence 0
in the corrupted (d, k) sequence. Moreover, it can be
considered to be the same scenario that if the received
sequence is 1,−1,−1,−1, 1 as a result of the deletion
of the first signal, the corresponding corrupted (d, k)
sequence is 01001. Due to the deletion of a signal from
a run of repeating signals with length one (d = 0), a
subsequence in the original (d, k) sequence 11 also turns
into a subsequence 0 in the corrupted (d, k) sequence.

3) If the received sequence is −1, 1, 1,−1,−1,−1, 1 as a
result of the insertion of 1 after the first signal, the
corresponding corrupted (d, k) sequence is 1101001.
Due to the insertion of a signal between −1 and 1, one
zero is inserted in the (d, k) sequence.

4) If the received sequence is −1, 1,−1, 1,−1,−1, 1 as a
result of the insertion of 1 after the third signal, the
corresponding corrupted (d, k) sequence is 1111101.
Due to the insertion of a different signal in a run of
repeating signals, this inserted signal breaks a run and
the corrupted (d, k) sequence has an insertion error and
an adjacent substitution error. From the original (d, k)
sequence, a subsequence 0 turns into a subsequence 11
in the corrupted (d, k) sequence.

Lemma 5: If d ≥ 1, a single deletion error in the run-length
limited sequence can cause a single deletion of zero in the
corresponding (d, k) sequence; if d = 0, a single deletion
error in the run-length limited sequence can cause a single
deletion of zero or a single deletion error and an adjacent
substitution error, which turn a subsequence from 11 into 0 in
the corresponding (d, k) sequence; for any given d, a single
insertion error in the run-length limited sequence can cause
a single insertion of zero or an insertion and an adjacent
substitution error, which turn a subsequence 0 into 11.

Proof: The proof is straightforward and is well illustrated
in Example 2.

Based on Lemma 5, the following theorem shows the
moment balancing template for (d, k) sequences can be applied
to run-length limited sequences.

Theorem 2: A valid moment balancing template for (d, k)
sequences with d ≥ 1 can guarantee single deletion error
correction for the corresponding run-length limited sequences;
if

(k − d)(αw′ − α2) + (k − d + 1)ξ ≥ 2(k + 1)w′, (17)

this template can further guarantee a single deletion error
correction for the corresponding run-length limited sequences
with d = 0; if

(k − d)(αw′ − α2) + (k − d + 1)ξ ≥ 2(k + 1)w′ + 2, (18)

it can also guarantee a single insertion error correction for the
corresponding run-length limited sequences.

Proof: In the case of Scenario 1 or 3 illustrated by
Example 2, there is only a single insertion or deletion error
in the corresponding corrupted (d, k) sequences. Therefore,
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a valid moment balancing template designed to correct a
single insertion or deletion error for (d, k) sequences also
can guarantee the correction of the corresponding run-length
limited sequences.

In the case of Scenario 2, the original (d, k) sequence v turns
into v′ with a subsequence 11 replaced by 0. If we choose
m ≥ 2n, the correct sequence can still be retrieved. Without
losing generality, we can assume σ(v) ≡ 0 (mod 2n). Then

σ(v′) − σ(v) ≡ i + i + 1 + nR (mod 2n), (19)

where i is the index of the first bit of the corrupted subsequence
11 and nR denotes the number of ones after the corrupted
subsequence. Choosing m ≥ 2n is due to the fact that the
maximum value of σ(v′)−σ(v) is 2n−1. Let W(v′) denote the
weight of the sequence v′. We have 2i+nR +1 > W(v′), which
can be used to distinguish Scenario 2 from Scenario 1, since in
Scenario 1 σ(v′)−σ(v) ≡ nR (mod 2n) and nR ≤ W(v′). From
the value of σ(v′) − σ(v) (mod 2n), the solution of index i
can be uniquely determined. It can be proved by contradiction:
We assume there is another solution i′ , i that satisfies (19).
Then σ(v′) − σ(v) ≡ i′ + i′ + 1 + n′R (mod 2n) and nR , n′R.
If nR < n′R, we have i − i′ ≥ n′R − nR. If nR > n′R, we have
i′ − i ≥ nR − n′R. In either case, it is impossible to satisfy (19).
Therefore the solution of i is unique. By reusing (16) with
m = 2n, the condition (17) ensures all values from 0 to m − 1
can be enumerated by α and ξ pairs moment balancing runs
proposed in (6).

In the case of Scenario 4, the original (d, k) sequence x turns
into x′ with a subsequence 0 replaced by 11. If m ≥ 2n+2, the
error correction is guaranteed. Assume σ(v) ≡ 0 (mod 2n+2).
Then

σ(v′) − σ(v) ≡ i + i + 1 + nR (mod 2n + 2), (20)

where i is the index of the corrupted subsequence 0 and nR

denotes the number of ones after the corrupted subsequence.
Note that, in this case, the maximum value of σ(v′) −σ(v) is
2n + 1. Therefore it is necessary to choose m ≥ 2n + 2. Here
2i+nR +1 > W(v′), which can be used to distinguish Scenario
4 from Scenario 3, since in Scenario 3 σ(v′) − σ(v) ≡ nR

(mod 2n + 2) and nR ≤ W(v′). Based on the value of
σ(v′)−σ(v) (mod 2n+2), the index i can be derived. A similar
argument used in Scenario 2 can prove the uniqueness of the
index i.

V. Encoding and Decoding Procedures of Implementing
Moment Balancing Templates and Their Complexities

A. Encoding and Decoding Procedures

Let x = x1x2 . . . xw be the corresponding reduced length
sequence of the original (d, k) constrained sequence, and let
s = α + ξ denote the number of pairs of balancing runs.
Follow the steps described in Algorithm 1 to create a moment
balanced (d, k) constrained sequence with the corresponding
reduced length sequence x′ = x′1x′2 . . . x′w+2s.

Algorithm 1: 1) Set i = 1, j = 1 and t = 1.
2) If t > w + 2s, go to Step 5).
3) Else,

a) If t ≤ s, set x′t = d and i = i + 1.

b) Else if t = 2s − i + 1 + (k − d + 1)i−s−1, set x′t = k
and i = i + 1.

c) Else if t = w + i, set x′t = k and i = i + 1.
d) Else set x′t = x j and j = j + 1.

4) t = t + 1 and go to Step 2).
5) Calculate ∆ = 0−

∑w+2s
l=1 x′l (w + 2s− l + 1)− (w+2s+1)(w+2s)

2
(mod

∑w+2s
l=1 (x′l + 1) + 1).

6) Set q = 1.
7) If q > α, go to Step 8).

a) Calculate p =
⌊

∆
w+2s−2q+1

⌋
.

b) If k − d ≥ p > 0, set x′q = x′q − p, x′w+2s−q+1 =

x′w+2s−q+1 + p, and ∆ = ∆ − p(w + 2s − 2q + 1).
c) Else if p > k − d, set x′q = x′q − k + d, x′w+2s−q+1 =

x′w+2s−q+1 +k−d, and ∆ = ∆−(k−d)(w+2s−2q+1).
d) q = q + 1 and go to Step 7).

8) Set p = 1.
9) If ∆ ≥ (k − d + 1)ξ−p,

a) Set q =
⌊

∆
(k−d+1)ξ−p

⌋
.

b) Set x′α+p = x′α+p − q, x′
α+p+(k−d+1)ξ−p =

x′
α+p+(k−d+1)ξ−p + q, and ∆ = ∆ − q(k − d + 1)ξ−p.

10) p = p + 1.
11) If p ≤ ξ, go to Step 9).
12) Else, exit.
From Step 1) to Step 4), Algorithm 1 initiates a moment

balancing template according to (6). The initial values of
balancing runs have been set according to ci,1 = d and ci,2 = k
for i = 1, 2, . . . , s. In Step 5), the algorithm calculates the
deficiency of the moment value of the template with the initial
setup. From Step 6) to Step 7), the algorithm adjusts the
moment value of the template roughly by relocating 0’s in the
α pairs of moment balancing runs. From Step 8) to Step 12),
the algorithm makes a fine adjustment of the moment value
of the template by relocating 0’s in the ξ pairs of moment
balancing runs.

To make this paper as much self-contained as possible,
we also present the decoding algorithms for a single dele-
tion/insertion error. The following decoding algorithms were
first presented by Levenshtein [9].

The decoding algorithm of a deletion error for the (d, k) con-
strained moment balancing template is shown in Algorithm 2.
Let r = r1r2 . . . rn−1 denote the received sequence with one
deletion error, and let N1( j) denote the number of 1’s in r
from index j to n − 1 and N1(n) = 0, where j ∈ {1, 2, . . . , n}.
Note that the length n − 1 of the received (d, k) constrained
sequences is bounded according to (1).

Algorithm 2: 1) Calculate ∆ = 0−
∑n−1

i=1 iri (mod n + 1).
2) If ∆ ≤ N1(1) (a zero is deleted),

a) Insert a zero after the (N1(1) − ∆)’th one.
b) Exit.

3) Else, (a one is deleted)
a) j = 1.
b) If N1( j) + j = ∆, insert a one before the j’th bit

and exit.
c) Else j = j + 1, go to Step 3.b).

The decoding algorithm of an insertion error for the (d,
k) constrained moment balancing template is shown in Algo-
rithm 3. Let r = r1r2 . . . rn+1 denote the received sequence with
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one insertion error, and let N1( j) denote the number of 1’s in
r from index j to n + 1, where j ∈ {1, 2, . . . , n + 1}.

Algorithm 3: 1) Calculate ∆ = 0−
∑n+1

i=1 iri (mod n + 1).
2) If ∆ = 0 (an insertion at the last position)

a) Delete the last bit.
b) Exit.

3) Else if ∆ ≥ N1(1) (a zero is inserted),
a) Delete the zero after the (n + 1 − ∆)’th one.
b) Exit.

4) Else, (a one is inserted)
a) j = 1.
b) If r j = 1 and n + 1 − N1( j + 1) − j = ∆, delete the

one at the j’th position and exit.
c) Else j = j + 1, go to Step 4.b).

B. Implementation and Complexities

(d, k) Encoder

(d, k) Decoder

Channel

Moment Balancing
Template Encoder

Moment Balancing
Template Decoder

Insertion/Deletion

Sync. Loss

Sync. Recovery

Fig. 2. Implementation of moment balancing template for (d, k) encoding
system.

The implementation of the moment balancing template
for a (d, k) encoding system is illustrated in Fig. 2. The
computational complexity and memory requirements of the
template implementation can be estimated as follows.

Both the encoder and the decoder have memory require-
ments for the encoding and decoding procedures. The memory
requirement depends on the length of the template. The
template can introduce less redundancy by increasing the
template length. As a result, the memory requirement needs
to be increased.

The moment balancing template encoding procedure is
systematic. In other words, parity bits are located at pre-
determined indices, which can be separated easily from the
original (d, k) sequences. Thus, this property is a benefit to
the decoding procedure as well.

We assume multiplication operations have the same com-
putational complexity as division operations and addition
operations have the same complexity as subtraction operations.
In this paper the computational complexity is estimated by
counting how many multiplication and addition operations
processed by the procedure. To simplify the estimation, all
division operations are counted as multiplication operations,

and all subtraction operations are counted as addition opera-
tions.

At the encoder, the first-order moment value needs to be
calculated once. This calculation needs one multiplication
operation and maximum n addition operations, where n is the
length of the (d, k) sequence. Note that calculating the first-
order moment of a binary sequence requires no multiplication
operation but n−1 addition operations, and the modulo opera-
tion requires one multiplication operation and one addition op-
eration. To balance a template, further maximum

⌈
logk−d+1 n

⌉
multiplication operations and

⌈
logk−d+1 n

⌉
addition operations

are required. Therefore, the total computational complexity of
encoding is maximum

⌈
logk−d+1 n

⌉
+1 multiplication operations

and
⌈
logk−d+1 n

⌉
+ n addition operations.

For the decoding of a template, the first-order moment value
also needs to be calculated once. If the inserted or deleted bit is
0, further two addition operations are required. However, when
the received sequence has the format of 1010 . . . 10101 with
an inserted 1 at the underlined position, maximum 2

⌈
n−1

2

⌉
+ 1

addition operations are required to detect the error. Therefore,
the total computational complexity of decoding is maximum
one multiplication operation and 2

⌈
n−1

2

⌉
+ n + 1 addition

operations.

VI. Analysis and Discussion

We assume that the moment balancing encoder can judi-
ciously choose a (d, k) sequence with weight w = (k−d+1)ξ−
2ξ − 2, since the weight w can achieve the maximum value
to partially satisfy the condition (15) and therefore achieve
the minimum redundancy. If (k − d)(k − d + 1)ξ−1 − 2 > 0,
the condition (15) is completely satisfied. It is evident that if
k > d and ξ > 1, (k − d)(k − d + 1)ξ−1 − 2 > 0 always stands.

As w→ ∞, for fixed integers k > d we have

logk−d+1 w − ξ = logk−d+1

(
(k − d + 1)ξ − 2ξ − 2

)
− ξ

= logk−d+1

(
1 −

2ξ + 2
(k − d + 1)ξ

)
= o(1). (21)

When w → ∞, ξ → ∞. Since limξ→∞
2ξ+2

(k−d+1)ξ = 0, we can
obtain the asymptotic result in (21).

Moreover, we can derive an asymptotic lower bound for α
as follows.

Lemma 6: Choose w = (k − d + 1)ξ − 2ξ − 2. As w → ∞,
for fixed integers k > d,

α ≥
k

k − d
+ o(1).

Proof:
Substitute w′ by w + 2(α + ξ). Then, (16) can be further

simplified as

(k−d)α2+((k − d)(w + 2ξ) − 2k − 2)α−kw−2kξ+1 ≥ 0. (22)

Note that the quadratic polynomial on the left hand side of
(22) is a convex function of α, and has two roots: one is
negative and the other is positive. We are only interested in
the positive root, which decides the least positive number of
α that satisfies (16).
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Choose w = (k − d + 1)ξ − 2ξ − 2. Let

ρ = (k − d)(w + 2ξ) − 2k − 2 (23)

and
τ = kw + 2kξ − 1. (24)

From (22), we obtain

α ≥

√
ρ2 + 4(k − d)τ − ρ

2(k − d)

=
(
√
ρ2 + 4(k − d)τ − ρ)(

√
ρ2 + 4(k − d)τ + ρ)

2(k − d)(
√
ρ2 + 4(k − d)τ + ρ)

=
4(k − d)τ

2(k − d)(
√
ρ2 + 4(k − d)τ + ρ)

=
2τ√

ρ2 + 4(k − d)τ + ρ
. (25)

According to (21), as w → ∞, for fixed integers k > d
ξ = o(w). Then, from (23) and (24), we have

ρ = (k − d)w + o(w) (26)

and
τ = kw + o(w). (27)

Therefore, by substituting (26) and (27) into (25), we obtain

α ≥
2kw + o(w)√

(k − d)2w2 + o
(
w2) + (k − d)w + o(w)

=
2kw + o(w)

(k − d)w + o(w) + (k − d)w + o(w)

=
k

k − d
+ o(1). (28)

For a sufficiently large w, we have two interesting findings
for the moment balancing template of long sequences: first, ac-
cording to (21), ξ can be completely determined by the weight
of the original sequence; second, according to Lemma 6 the
minimum value of α depends on the values of d and k, but
not on the length or the weight of the original sequence. As
w goes to infinity, the minimum value of α tends to

⌈
k

k−d

⌉
.

Now we can derive an asymptotic bound of the redundancy
introduced by the moment balancing template (6) as follows.

Theorem 3: Let n denote the length of the moment bal-
anced (d, k) sequence with the corresponding reduced length
sequence as shown in (6), and let K denote the length of the
original (d, k) sequence. Choose w = (k − d + 1)ξ − 2ξ − 2. As
w→ ∞, for fixed integers k > d,

1 − K/n = Θ(
log w

w
).

Proof:
Since

1 − K/n =
(d + k + 2)(α + ξ)

n
, (29)

we have

1 − K/n ≤
(d + k + 2)(α + ξ)

(d + 1)w + (d + k + 2)(α + ξ)
(30)

TABLE I
Redundancy rates of the moment balancing template of a (1, 7) constrained

code with m = n + 1

Redundancy Rate w K n

42.86–75.00% 5 10–40 40–70
27.27–60.00% 10 20–80 50–110
9.09–28.57% 50 100–400 140–440
4.76–16.67% 100 200–800 240–840
1.23–4.76% 500 1000–4000 1050–4050
0.62–2.44% 1000 2000–8000 2050–8050

and
1 − K/n ≥

(d + k + 2)(α + ξ)
(k + 1)w + (d + k + 2)(α + ξ)

. (31)

From (30), we have

1 − K/n ≤
(d + k + 2)

(
logk−d+1 w + o

(
log w

))
(d + 1)w + o(w)

=
d + k + 2

(d + 1) log(k − d + 1)
log w

w
+ o

(
log w

w

)
. (32)

From (31), we have

1 − K/n ≥
(d + k + 2)

(
logk−d+1 w + o

(
log w

))
(k + 1)w + o(w)

=
d + k + 2

(k + 1) log(k − d + 1)
log w

w
+ o

(
log w

w

)
. (33)

As w→ ∞,

g1
log w

w
≤ 1 − K/n ≤ g2

log w
w

, (34)

for some positive g1 and g2.

For a (d, k) sequence of length n and weight w, we have

log(d + 1)w
(k + 1)w

≤
log n

n
≤

log(k + 1)w
(d + 1)w

. (35)

Hence, we can obtain

log n
n

= Θ

(
log w

w

)
. (36)

Recall that the optimal redundancy of a universal moment
balancing template of arbitrary random sequences is 1−K/n ≈
log n/n [2]. Therefore, we can conclude that the optimal
redundancy introduced by the template for (d, k) sequences
is of the same order as that of the universal template.

Table I gives a numerical example of the redundancy rates
introduced by the generalized moment balancing template for
(d, k) sequences. It shows that the redundancy rate drops
dramatically when information length increases. Given a (d, k)
sequence with the weight w and the length K, we can decide
the number of sufficient balancing runs according to (16). For
long sequences, we can decide ξ based on (21), and choose
α according to Lemma 6. In Table I, the value ranges of K
and n are provided, and the relationship between K and n is
n − K = (α + ξ)(d + k + 2).
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VII. Conclusion

In this paper, we have extended the investigation of the mo-
ment balancing template [2] by applying it to (d, k) constrained
codes and run-length limited sequences in order to implement
the systematic encoding of certain number theoretic codes. We
have also shown how to use the non-binary base to enumerate
the contributed moment values. Since the redundancy added
by our moment balancing templates may be kept small, it
makes the application to longer codes useful and attractive
for certain practical applications, e.g., a magnetic recording
system having a low insertion/deletion error probability [1].
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