
Applying min-max k postmen problems to the routing of security
guardsI,II

Elias J. Willemse∗,a,1, Johan W. Joubertb,2

aLogistics and Quantitative Methods, CSIR: Built Environment, PO Box 395, Pretoria, South Africa, 0001
bIndustrial and Systems Engineering, University of Pretoria, South Africa, 0002

Abstract

The most essential and alluring characteristic of a security estate is the estate’s ability to provide 24-hour
security to its residents, of which the continual patrolling of roads and paths is vital. The objective of
this paper is to address the lack of sufficient patrol route design procedures by presenting a tabu search
algorithm capable of generating multiple patrol routes for an estate’s security guards. The paper shows that
the problem of designing these routes can be modelled as an Arc Routing Problem, specifically as min-max
k postmen problems. The algorithm is illustrated with a real problem instance from an estate in Gauteng,
South Africa. The patrol routes generated by the algorithm provide a significant improvement in the even
patrolling of the road network, and a more balanced work distribution among guards. The algorithm is also
tested on several benchmark problems from literature.

Key words: Arc routing, Chinese postman problem, Rural postman problem, Tabu search algorithm,
Security guard routing.

1. Introduction

Gated communities are a growing phenomenon in South Africa, reflecting an attempt by members
of the public and developers to counteract the high levels of crime recorded within the country. Of the
gated communities, security estates have become a popular choice for residence, mostly because of the
estates’ ability to provide 24-hour security to its inhabitants. Security systems of estates are designed using
crime prevention through environmental design principles that rely upon the ability to influence offenders’
decisions before they embark on criminal acts. The security system’s main objective is not to identify and
punish criminal activities, but to enhance the perceived risk of detection and apprehension. This approach
requires highly visual security initiatives such as the patrolling of the estate’s inner road and path network
by security guards.

Designing patrol routes for security guards can become extremely complex as a result of the multitude
of roads and paths that connect the estate’s properties. The patrolling complexity is increased even further
when certain essential conditions are taken into consideration: security guards cannot follow the same
patrolling route every day as this predictable routing information could be used by unlawful parties to side-
step the security guards. Moreover, all roads and paths have to be patrolled evenly as information regarding
lesser patrolled roads and paths can be exploited. Patrolling of the roads and paths should also be evenly
distributed among the guards to avoid discontentment and possible work overload.

A similar patrol route design problem, the overnight security service problem, is introduced by Wolfler
Calvo and Cordone (2003). The problem deals with similar issues to security estate patrolling such as fair
task assignment among the guards and unpredictable patrolling. However, the security service problem
requires specific buildings and yards situated in a road network of a city to be inspected. Our application
requires the complete road network of an estate to be patrolled, hence inspected.

IThis paper has been published in the Journal of the Operational Research Society, 63(2), 245–260.
IILast updated by: jwjoubert; Revision: 227 (2012-02-16 13:18:44 +0200 (Thu, 16 Feb 2012))
∗Corresponding author
Email addresses: ewillemse@csir.co.za (Elias J. Willemse), johan.joubert@up.ac.za (Johan W. Joubert)

1Tel: +27 12 841 3934; Fax: +27 12 841 3037 (E.J. Willemse)
2Tel: +27 12 420 2843; Fax: +27 12 362 5103 (J.W. Joubert)

Preprint submitted to Journal of the Operational Research Society February 16, 2012

Willemse, E.J. & Joubert, J.W. Applying min-max k postmen problems to the routing of security guards

In this paper we describe the practical objectives and constraints of designing patrol routes, and show
that the problem can be formulated as an Arc Routing Problem (ARP), more specifically as a min-max
k-Rural Postmen Problem (MM k-RPP) or a min-max k-Chinese Postmen Problem (MM k-CPP). A tabu
search algorithm capable of solving both these problems is proposed, and is illustrated with a real problem
instance from an estate in Gauteng, South Africa. Results are compared with existing routes and schedules
implemented in the estate. Our proposed solutions provide both a significant improvement in the even
patrolling of the road network, and a more balanced work distribution among guards. The algorithm is also
tested on benchmark problems found in literature. The solution quality for the real problem instance and
the benchmark problems are assessed through lower bounds.

The remainder of this section presents a problem definition for designing patrol routes and discusses re-
lated work and solution approaches based on heuristic and metaheuristic strategies. Section 2 describes the
proposed tabu search algorithm. In Section 3 we introduce three lower bounds and in Section 4 we illustrate
the application of the tabu search algorithm on a real problem instance. Section 5 reports on computational
results for the benchmark problems. Finally, we draw a few principal conclusions in Section 6 and provide
directions for future work.

1.1. Problem definition and related work

Figure 1 shows a map of Midfield-Estate with roads and paths that can be traversed in any direction.
The problem of designing patrol routes for such an estate can be formulated as an undirected Arc Routing

Midfield-Estate
Road network
Properties
Guard house

Figure 1: Midfield-Estate

Problem (ARP). Let GGG = (VVV ,EEE,RRR) be a connected graph without loops, where VVV = {v1, . . . , vn} is the vertex
set, representing the street intersections and dead-ends of the estate; EEE = {(vi, v j) : vi, v j ∈ VVV and i < j} is the
edge set, representing the road segments of the estate; and RRR ⊆ EEE representing the road segments that have
to be patrolled (traversed) by the guards. Edges that have to be traversed are termed required edges, with
the remaining edges EEE\RRR termed non-required edges. The resulting network representation for the estate is
given in Figure 2. Every edge (vi, v j) is associated with a nonnegative distance or length di j, assuming that
di j = ∞ if (vi, v j) is not defined.

The aim of an ARP is defined by Eiselt et al. (1995a) as determining a least-cost traversal of a specified
subset of a graph, with or without constraints. Other ARP applications include, for example, the routing of
postmen, meter readers and power line inspectors. For a review of ARPs the reader is referred to Corberán
and Prins (2010); Wøhlk (2008); Dror (2000); and Eiselt et al. (1995a,b).

Two important ARPs can be derived from general routing problems: the well known Chinese Postman
Problem (CPP) and Rural Postman Problem (RPP). For the CPP the complete edge set EEE has to be traversed
by a single postman (or a guard for our application), whereas the RPP requires that only the subset RRR of
edges (with RRR ⊆ EEE) be traversed. Note that the RPP transforms into the CPP if RRR = EEE. The objective of both
these problems is to find a closed route of minimum length that traverses the required edges. Edmonds and
Johnson (1973) show that the CPP can be solved optimally in polynomial time through a matching based
algorithm. The RPP is N P-hard (Lenstra and Rinnooy Kan, 1976), but a polynomial solvable case occurs
when the graph induced by the required edge set, ḠGG = (VVV ,RRR), is connected. The problem can then be solved

Author: jwjoubert; Revision: 227; Last updated: 2012-02-16 13:18:44 +0200 (Thu, 16 Feb 2012) 2

Willemse, E.J. & Joubert, J.W. Applying min-max k postmen problems to the routing of security guards

!

!

!

! !
!

!

!

!

!

!

!

!

!

!

!
!

!

!

! !

!

!

!

!

!

!

!

!

!

!

! !
! !

!
!

!

!

!

!

!

!

!

!
!

!

!

!
!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
! ! ! ! !

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!!

!
!

!

!

!

!

!

!
!

!
!

!
!

!

!

!

!

!
!

!
!

!
!

!

!!

!

!

!
!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!!

!
! ! ! ! ! !

!

! !

!

!

!

!

!

!

!

! !

! !

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!!

!
!

!
!

!
!

!

!

!!

!
!

!
!

!
!

!
!

!

!
!

!
!

!!! !

!
!

!
!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!
!

!

!!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

l

l
ll

l l l
l

l l
ll

l

l
l

l ll
l

l
l

l
l

l

l l l l l l

l l
l l l l l
l

l l l ll l l l

l
l l

l l l
l

l
ll lll l
ll

l
l

lll

l

l

9
8

765

4 3
2

1

69

68

6766
65

64
63

62 61
6059

58 57
56 55

54
53

525150

4948
47

464544
43

42
414039

38

3736353433

3231

302928272625

24

23
22

21
20

19
18 1716

15
14

13
12 11

10

Midfield Estate
l Vertex

Edges requiring service
! ! ! Edges not requiring service

Figure 2: Network representation of Midfield-Estate

by computing shortest chains (in GGG) between odd-degree vertices and then proceeding as for the CPP (Eiselt
et al., 1995b).

Both the CPP and RPP can be further expanded to include multiple (k) postmen. The objective is then
to either minimise the total distance travelled by the k postmen, subject to a maximum single route length
restriction, or to minimise the length of the longest route. The latter are known as the min-max k-RPP and
min-max k-CPP. As stated in Ahr and Reinelt (2006) the min-max objective function, abbreviated MM, is
ideal when each edge has to be served as early as possible and when more balanced routes are required.
Subsequently the problem of designing patrol routes for an estate can best be formulated as either an MM k-
CPP, when all edges have to be patrolled, or an MM k-RPP. Both problems have to our knowledge received
minimal attention in literature. The most extensive work on the MM k-CPP is by Ahr (2004). Other
contributions are by Ahr and Reinelt (2002), Ahr and Reinelt (2006) and Frederickson et al. (1978). The
only contributions for the MM k-RPP that we found relevant are by Arkin et al. (2006) and Benevant et al.
(2009).

1.2. Solution approaches for min-max multiple Postmen Problems

The MM k-CPP, introduced by Frederickson et al. (1978), and the MM k-RPP are N P-hard. The
MM k-CPP was shown N P-hard by a reduction from the k-partition problem (Frederickson et al., 1978),
whereas the MM k-RPP with a single guard reduces to the RPP, which is N P-hard. As such, solution
strategies for these problems are primarily based on heuristic and metaheuristic methods. Two exceptions
are the branch-and-cut algorithm by Ahr (2004) for the MM k-CPP and another branch-and-cut algorithm
by Benevant et al. (2009) for the MM k-Windy RPP. The MM k-Windy RPP is an extension of the MM
k-RPP where each edge is assigned different traversal costs for the two directions in which the edge can
be traversed. Due to the difficulty of the problems the solution approaches of Ahr (2004) and Benevant
et al. (2009) failed to solve certain instances of the problems within specified time limits. For patrol guard
routing the solution approach must be capable of generating multiple feasible solutions, thus making exact
solution approaches impractical.

To our knowledge the only heuristic for the MM k-RPP is the 7-approximation algorithm of Arkin
et al. (2006). For the MM k-CPP, Frederickson et al. (1978) developed the Frederickson-Hecht-Kim (FHK)
heuristic. Ahr and Reinelt (2002) developed four heuristics for the same problem: an Augment-Merge
heuristic, based on the work of Golden and Wong (1981); a Cluster algorithm; as well as two improvement
heuristics. Their initial solution heuristics with the improvement procedures outperform the FHK-heuristic
on all test instances.

Currently, the only metaheuristic solution algorithm for the MM k-CPP is the tabu search of Ahr and
Reinelt (2006). Tabu search is a local search-based solution strategy that starts from an initial feasible
solution and progressively attempts to improve it by applying a series of local modifications. At each

Author: jwjoubert; Revision: 227; Last updated: 2012-02-16 13:18:44 +0200 (Thu, 16 Feb 2012) 3

Willemse, E.J. & Joubert, J.W. Applying min-max k postmen problems to the routing of security guards

iteration the algorithm moves, according to specified criteria, to a feasible solution that differs only slightly
from the current one. The search repeats for a fixed number of iterations. What distinguishes it from
a greedy local search is that it uses memory to intelligently guide the search. The algorithm deals with
cycling by temporarily forbidding moves that would return to recently visited solutions. Although solutions
may be revisited after numerous iterations, short-term cycling is prevented. An overview of tabu search is
given by Glover (1989, 1990) and a detailed description by Glover and Laguna (1998). To date the best
solutions for MM k-CPP test instances are found by the tabu search of Ahr and Reinelt (2006), which uses
the solutions of Ahr and Reinelt (2002) as starting point. Tabu search-based solution strategies are also used
to solve a similar problem to the MM k-CPP, the Capacitated Arc Routing Problem (CARP).

The CARP, introduced by Golden and Wong (1981), is essentially the k-RPP where each required edge
(vi, v j) ∈ RRR has a nonnegative demand that must be collected by a postman or more accurately, by a vehicle.
Required edges in RRR may still be traversed without service, referred to as deadheading, and the sum of
demand for serviced edges on any vehicle route may not exceed the vehicle’s capacity. Examples of the
CARP include the routing of urban waste collection vehicles, street sweepers, and snow removal vehicles.
There are numerous successful applications of tabu search to solve the CARP. A tabu search algorithm called
CARPET was introduced by Hertz et al. (2000), while Greistorfer (2003) uses a scatter search variant. Other
variations on the tabu search include the deterministic tabu search (Brandão and Eglese, 2008); and the use
of capacitated trees to solve a Multiple Centre CARP (Amberg et al., 2000). In the next section we build on
the successful tabu search contributions, and propose a variation of the algorithm suited for security guard
routing.

2. A tabu search algorithm for patrol route generation

In this section we introduce basic terminology and give a high-level description of our proposed algo-
rithm for patrol route generation with reference and detailed descriptions of its embedded procedures.

Our tabu search algorithm is influenced by and contains elements of the algorithm of Ahr and Reinelt
(2006) for the MM k-CPP. What distinguishes our work is, firstly, that our algorithm is designed to be
applied to both the MM k-CPP and MM k-RPP, whereas the algorithm of Ahr and Reinelt (2006) is designed
for the MM k-CPP. In their implementation all edges that form part of a route are explicitly modelled and
subjected to removal and insertion procedures. An improvement procedure is further used to check if edges
are unnecessarily traversed in a route, i.e., they are already traversed in another route, in which case they
are removed. This approach works well if all the edges are required, as with the MM k-CPP, but the MM
k-RPP consists of required and nonrequired edges and applying the procedures to nonrequired edges are
ineffective. Our algorithm uses the encoding scheme of Lacomme et al. (2004) for the CARP in which
only required edges are explicitly modelled per route and it is assumed that the shortest path, consisting
of required and non-required edges, is always followed between consecutive required edges. Applying
any sort of removal and insertion procedure to a nonrequired edge will only worsen a route, hence the
procedures are only applied to required edges. The second distinguishing factor is that our algorithm uses a
more involved improvement procedure and different neighbourhood constructors that are more appropriate
to the MM k-RPP. Lastly, our algorithm is capable of generating multiple solutions for the same problem
instance. Different solutions are essential for our application since guard patrolling has to be unpredictable
and requires different routes.

Our algorithm, called Tabu-Guard, works in three phases. During the first phase it generates a spec-
ified number of different initial solutions using a constructive heuristic called Generate-Random-Initial-
Solutions. In the second phase it improves the initial solutions by calling Improve-Solutions, and during
the third phase it improves the solutions further by calling on a tabu search algorithm simply called Tabu-
Search.

2.1. Basic terminology and algorithm encoding scheme
For the MM k-RPP and MM k-CPP we have the following input data: a connected graph GGG = (VVV ,EEE,RRR),

length or distance matrix DDD = {di j}, a distinguished depot vertex v1 and a fixed number of k > 1 guards; for
our application we refer to guards instead of postmen. Consistent with the work of Lacomme et al. (2004)
for the CARP the graph GGG is transformed into a fully directed graph GGG′ = (VVV ,AAA′,RRR′) by replacing each
edge (vi, vi) ∈ RRR with two opposite arcs {(vi, v j), (v j, vi)} ∈ AAA′, both with the same traversal cost. Arcs in
AAA′ are indentified by indices from 1 to m where m = |AAA′| and the traversal cost of arc u is given by c(u).
The required edges RRR correspond in GGG′ to a subset of required arcs RRR′ ⊆ AAA′, such that |RRR′| = 2|RRR|. Each

Author: jwjoubert; Revision: 227; Last updated: 2012-02-16 13:18:44 +0200 (Thu, 16 Feb 2012) 4

Willemse, E.J. & Joubert, J.W. Applying min-max k postmen problems to the routing of security guards

required arc u has a pointer inv(u) corresponding to the inverse arc of u, which is the second orientation of
the original edge. Thus if u and v represent opposite arcs (vk, vl) and (vl, vk), respectively, then inv(u) = v,
inv(v) = u and c(u) = c(v). Lastly, the depot is modelled by including in AAA′ a fictitious loop σ = (v1, v1),
with c(σ) = 0 and inv(σ) = σ. Since GGG′ is directed, we refer to required and nonrequired arcs in the
remainder of this section, where each arc represents one of the traversal directions of the corresponding
edge.

A feasible solution for the MM k-RPP or MM k-CPP is a set TTT of k closed routes TTT = {CCC1, . . . ,CCCk} such
that each route CCCi contains the depot arc σ and all the required edges RRR (where RRR = EEE for the CPP variant)
are covered by at least one route CCCi. With the chosen encoding scheme either arc u or inv(u) ∈ RRR′ must be
covered by a route. Accordingly, if arc u is assigned to a route, inv(u) is automatically marked as covered.
A route CCCi is a string of arc indices, which, in turn, represent arcs that the guard visits in sequence. With this
representation CCCi(t) is defined as the arc in position t in route CCCi. We define a distance function w, where
w(CCCi) is the total length of route CCCi. For a feasible solution, denote the distance of the longest single route
CCCi as wmax(TTT), determined by:

wmax(TTT) = max
i=1,...,k

w(CCCi).

The objective of the MM k-RPP and MM k-CPP is to find a solution TTT ∗ that minimises wmax among all
feasible solutions.

Finally, denote by S PS PS P(u, v) the set of arcs on the shortest path between but excluding arcs u and v.
The distance of such a path is given by DDDS P(u, v), which again excludes the traversal cost of u and v. The
Shortest-Path between all arcs can be efficiently pre-computed using an adaption of Dijkstra’s shortest path
algorithm (Lacomme et al., 2004). We further denote by S PS PS PR(u, v) the set of required arcs that form part of
the shortest path between u and v. Lastly we denote by QQQ(CCCi,TTT) the set of required arcs that form part of
the shortest paths within route CCCi and that are currently not assigned to any route in solution TTT . This can be
easily determined using the current solution TTT , route CCCi and S PS PS PR.

2.2. Phase 1: Generating random initial solutions
The first phase of Tabu-Guard entails generating a multitude of different initial solutions using Generate-

Random-Initial-Solutions. To create a single feasible solution, the algorithm first creates {CCC1, . . . ,CCCk}

routes by finding the untraversed required arcs that are furthest from the depot (guard house), and creating
k closed routes that traverse these arc.

Initially let RRR′′ = RRR′. The arc that is the furthest from the depot is determined through

u = arg max{DDDS P(σ, v) + c(v) + DDDS P(v, σ) : v ∈ RRR′′}.

The required arcs that are traversed in the shortest paths from σ to u and from u back to σ, given by
S PS PS PR(σ, u) and S PS PS PR(u, σ), respectively, are spliced together to form a closed route

CCCi = {σ,S PS PS PR(σ, u), u,S PS PS PR(u, σ), σ}.

All the required arcs in route CCCi, together with their inverse arcs, are then removed from RRR′′. The route
is scanned and if there are two entries for a required arc in the same route, the second entry is removed.
During the scan a required arc is also removed if it is already assigned to another route, thus if the arc is not
in RRR′′. This process is repeated k times, resulting in k closed routes.

The resulting solution is most likely still infeasible, so next the algorithm iteratively adds required arcs
not yet serviced to the existing routes. The algorithm produces a random order of RRR′′ and the first entry
is temporarily added to each of the {CCC1, . . . ,CCCk} routes through the procedure Insert-Arc (Appendix A,
Algorithm 6). The procedure adds an arc u to CCCi in position t, which is always between the begin and
end depot arcs, that results in the minimum route cost increase. The procedure also determines the best
orientation by testing the insertion of both u and inv(u) in each position. The temporary route that is the
least affected by the insertion, i.e., the route with the least cost increase, is then made permanent.

Once a required arc u has been added to a route CCCi, all newly traversed required arcs in CCCi are determined
through QQQ(CCCi,TTT) and added in their current positions to the route. These required arcs and arc u, together
with their inverse arcs are then removed from RRR′′. The route is then scanned for duplicate arc entries
and the second entries are removed. The process is then repeated with the new first arc from RRR′′ and the
process terminates when RRR′′ is empty and all required arcs are traversed, with TTT the resulting solution.

Author: jwjoubert; Revision: 227; Last updated: 2012-02-16 13:18:44 +0200 (Thu, 16 Feb 2012) 5

Willemse, E.J. & Joubert, J.W. Applying min-max k postmen problems to the routing of security guards

Importantly, each required arc or its inverse is assigned to only one route. Since a different sequence for
the required edges in RRR′′ will be generated each time this process is invoked, Generate-Initial-Solutions is
capable of generating multiple initial solutions. The complete pseudo code for the algorithm is presented in
Algorithm 1.

Algorithm 1: Generate-Random-Initial-Solutions
Input : Number of guards k and number of solutions to generate n.
Output: Multiple feasible initial solutions {TTT 1, . . . ,TTT n}.

for i← 1 to n do
RRR′′ ← RRR′;
for j← 1 to k do

Let u← arg max{DDDS P(σ, v) + c(v) + DDDS P(v, σ) : v ∈ RRR′′};
CCCi

j ←
{
σ,S PS PS PR(σ, u), u,S PS PS PR(u, σ), σ

}
;

Remove from CCCi
j all arcs not in RRR′′, and if an arc is in the route more than once, either in its

original or inverse orientation, remove the second entry;
Remove from RRR′′ all the newly traversed arcs, including u, and their inverse arcs;

Generate a random order of the remaining untraversed required arcs RRR′′;
while RRR′′ , ∅ do

Let u be the first entry in RRR′′;
for j← 1 to k do

CCC′j ← Insert-Arc(CCCi
j, u);

∆Θ j ← w(CCC′j) − w(CCCi
j)

Find CCC′j where j← arg min{∆Θt : t ∈ (1, . . . , k)};
Let CCCi

j ← CCC′j and TTT ′ ← {CCCi
1, . . . ,CCC

i
k};

Let LLL← QQQ(CCCi
j,TTT
′) and add all the arcs in LLL to route CCCi

j;
Remove u, the arcs in LLL and their respective inverse arcs from RRR′′;
Scan CCCi

j and if an arc is in the route more than once, either in its original or inverse
orientation, remove the second entry;

TTT i = {CCCi
1, . . . ,CCC

i
k};

return
(
{TTT 1, . . . ,TTT n}

)
2.3. Phase 2: Improving the initial solutions

Given the simplistic nature of Generate-Random-Initial-Solutions the initial solutions are usually ex-
cessively long. In response we developed Improve-Solution and Improve-Single-Route. Improve-Solution
incrementally tries to improve an initial solution TTT by improving each of its guard routes {CCC1, . . . ,CCCk} in
such a way that longest route is improved the most.

Improve-Solution works in two phases. First it lets RRR′′ = RRR′ and sorts TTT from the shortest to longest
route. It then takes the shortest route CCC1 and uses S PS PS PR to determine all the required arcs that are traversed
in CCC1, regardless if they are assigned to other routes. The required arcs are then formally assigned to CCC1
and removed from RRR′′, together with their inverse arcs. The same is then applied to the second shortest
route CCC2, but required arcs are only assigned to CCC2 if they are in RRR′′, after which they are removed from RRR′′.
The process is repeated for the remaining routes and finishes with CCCk. The net result is that the minimum
number of required arcs are assigned to the longest route CCCk. Since shortest paths are always followed
between assigned arcs, the cost of the routes are usually reduced, and at worst stays the same.

In the second phase Improve-Solution tries to find a better sequence in which each route’s assigned arcs
are traversed. Two move procedures are used for this purpose. The first, Exchange-Arcs (Appendix A,
Algorithm 7), takes CCCi and performs a pair-wise exchange in the sequence in which the assigned arcs are
traversed. The pair-wise exchange is performed between all arcs in CCCi and the algorithm also determines
the best orientation for the exchanged arcs.

The second procedure, Remove-Insert-Arcs (Appendix A, Algorithm 8), simply removes arc v from
CCCi and uses Insert-Arc to determine if the arc can be inserted in a better position in the route. Remove-
Insert-Arcs is also applied to each arc in CCCi. Both procedures return the route resulting from the best

Author: jwjoubert; Revision: 227; Last updated: 2012-02-16 13:18:44 +0200 (Thu, 16 Feb 2012) 6

Willemse, E.J. & Joubert, J.W. Applying min-max k postmen problems to the routing of security guards

move. The route CCCi is then set to the best of the two routes returned, but only if it is better than original CCCi.
Exchange-Arcs and Remove-Insert-Arcs are then again applied to CCCi. If no improving move can be made,
the algorithm tries to improve the next route in TTT . The second phase terminates when none of the routes
can be improved any further.

If any route was improved in the second phase, Improve-Solution returns to the first phase and the im-
provement process is repeated, otherwise the algorithm terminates. The pseudo code for Improve-Solution
is shown in Algorithm 2. Improve-Solution is also imbedded in Tabu-Search, which we describe next.

Algorithm 2: Improve-Solution
Input : Initial solution TTT = {CCC1, . . . ,CCCk}.
Output: Improved solution TTT .

repeat
Improve← False;
Sort TTT from the shortest to the longest route. Let RRR′′ ← RRR′ and TTT temp ← ∅;
for i← 1 to k do

foreach u ∈ CCCi do if u < RRR′′ then remove u from CCCi;
Add CCCi to TTT temp;
LLL← QQQ(CCCi,TTT temp);
Add all the arcs in LLL to CCCi;
Remove the arcs in CCCi and their inverse arcs from RRR′′;

for i← 1 to k do
repeat

RouteImproved ← False;
CCC′1 ← Exchange-Arcs(CCCi);
CCC′2 ← Remove-Insert-Arcs(CCCi);
if min

{
w(CCC′1),w(CCC′2)

}
< w(CCCi) then

Let RouteImproved ← True and Improve← True;
Let CCCi ← CCC′j where j← arg min{w(CCC′j) : j ∈ (1, 2)};

until RouteImproved = False;
TTT ← {CCC1, . . . ,CCCk};

until Improve = False;

return
(
TTT
)

2.4. Phase 3: Tabu search
During the last phase of Tabu-Guard the algorithm calls Tabu-Search to further improve the initial

solutions. Tabu-Search starts by generating multiple neighbourhood solutions by performing modification
procedures on an initial solution. The algorithm then moves to the best non-tabu solution (the solution is in
effect chosen for the next iteration). The chosen solution does not have to be better than the previous one,
it merely has to be the best neighbour. During the search the algorithm continuously keeps track of and
updates the best solution found, referred to as the incumbent solution . Since worse solutions are chosen the
algorithm avoids getting stuck at a local optimum. However, without governing the search the algorithm
may cycle by moving back to already visited solutions, including the local optimum. To prevent short-
term cycling, the algorithm uses a tabu list that temporarily stores information pertaining to neighbourhood
moves recently made. If characteristics of a potential neighbourhood move are consistent with information
stored on the list, the move is considered tabu and cannot be chosen. There is, however, one exception to
this rule. Since the list only stores information of the recent moves made to construct solutions, and does
not contain the complete solutions, a new solution not previously visited may still be constructed using a
tabu move. Consequently, a tabu move may be chosen and implemented, but only if it results in a new
incumbent solution.

2.4.1. Constructing neighbourhood solutions
Tabu-Search constructs neighbourhood solutions by removing edges from one route, and adding them

to another. Two modification procedures, Remove-Insert-Neighbourhood and Exchange-Neighbourhood,

Author: jwjoubert; Revision: 227; Last updated: 2012-02-16 13:18:44 +0200 (Thu, 16 Feb 2012) 7

Willemse, E.J. & Joubert, J.W. Applying min-max k postmen problems to the routing of security guards

are used for this addition and removal. As their names suggest, they are extensions of Remove-Insert-Arcs
and Exchange-Arcs. The modification procedures are applied to two routes at a time: the longest route CCCi

and any other route CCC j. Remove-Insert-Neighbourhood generates neighbouring solutions by taking each
arc in route CCCi, removing it from the route and inserting it in route CCC j through Insert-Arc (Appendix A,
Algorithm 6). Similarly, Exchange-Neighbourhood removes an arc u from CCCi, but it then also removes
an arc v from CCC j. It then calls Insert-Arc and inserts v in CCCi and u in CCC j. The process is repeated for
each two-arc combination with u in CCCi and v in CCC j. The overall best neighbouring solution and the best
non-tabu neighbouring solution are then improved with Improve-Solution and returned. The procedures
are presented in Algorithms 3 and 4. Note that the test to check if a move is tabu, Tabu-Test, is described
in the latter part of the section. Tabu-Search uses one or both of the modification procedures and moves
to the best solution returned that is non-tabu, or to the overall best solution if it is better than the current
incumbent solution.

Algorithm 3: Remove-Insert-Neighbourhood
Input : Solution TTT = {CCC1, . . . ,CCCk}.
Output: Overall best neighbouring solution T̂TT all and best non-tabu neighbouring solution T̂TT nt.

Sort TTT from the longest to the shortest route and let T̂TT nt ← TTT ;
Let w∗1 ← ∞ and w∗2 ← ∞;

foreach u ∈ CCC1 do
Let CCC′1 ← CCC1 and remove u from CCC′1;
for i← 2 to k do

CCC′i ← Insert-Arc(CCCi, u);
Tabu← Tabu-Test(u,CCC1,CCCi);
if max{CCC′1,CCC

′
i} < w∗1 then

w∗1 ← max{CCC′1,CCC
′
i};

T̂TT all ← {CCC′1, . . . ,CCC
′
k};

if max{CCC′1,CCC
′
i} < w∗2 and Tabu = False then

w∗2 ← max{CCC′1,CCC
′
i};

T̂TT nt ← {CCC′1, . . . ,CCC
′
k};

CCC′i ← CCCi;
T̂TT all ← Improve-Solution

(
T̂TT all

)
;

T̂TT nt ← Improve-Solution
(
T̂TT nt

)
;

return (T̂TT all, T̂TT nt)

2.4.2. Tabu list and stopping criteria
After moving to a neighbourhood solution, Tabu-Search adds solution criteria of the chosen neighbour-

hood solution to the tabu list. The criteria are then removed from the tabu list after a certain number of
iterations, referred to as the tabu tenure, α, has passed. We developed three different tabu list strategies that
use different criteria to determine if a move is a tabu. The first, Complex-Tabu, which is also used by Ahr
and Reinelt (2006), uses the following criteria: the arc u removed route from CCCi; the route i from which it
was removed; and the route j to which the arc was added. Since a solution’s routes are continuously sorted
during the search, the original position of the route is saved prior to the execution of Tabu-Search. Subse-
quently, the original position of CCCi and CCC j, given by the functions o(CCCi) and o(CCC j), instead of the current
positions, i and j, are used by the strategy. In the following iterations a neighbouring solution constructed
by removing arc u or inv(u) from route o(CCCi) or route o(CCC j) and adding them to o(CCC j), if removed from
o(CCCi), or adding them to o(CCCi), if removed from o(CCC j), will constitute a tabu neighbourhood solution.

The second strategy, Simple-Tabu, is simpler and more aggressive. The only criteria used is the arc
u removed from route CCCi. Any other move that involves arc u or inv(u) constitutes a tabu neighbouring
solution. The third strategy, Simple-Aggressive-Tabu, is the same as Simple-Tabu, but it also enforces the
tabu criteria in the first phase of Improve-Solution by prohibiting tabu arcs from being removed from their
current routes.

Tabu-Search terminates when all the neighbourhood solutions are tabu, and the best tabu solution does
not improve on the incumbent solution. The algorithm may also terminate if the incumbent solution has

Author: jwjoubert; Revision: 227; Last updated: 2012-02-16 13:18:44 +0200 (Thu, 16 Feb 2012) 8

Willemse, E.J. & Joubert, J.W. Applying min-max k postmen problems to the routing of security guards

Algorithm 4: Exchange-Neighbourhood
Input : Solution TTT = {CCC1, . . . ,CCCk}.
Output: Overall best neighbouring solution T̂TT all and best non-tabu neighbouring solution T̂TT nt.

Sort TTT from the longest to the shortest route and let T̂TT nt ← TTT ;
Let w∗1 ← ∞ and w∗2 ← ∞;

foreach u ∈ CCC1 do
Let CCC′1 ← CCC1 and remove u from CCC′1;
for i← 2 to k do

foreach v ∈ CCCi do
Let CCC′i ← CCC1 and remove v from CCC′i ;
Let CCC′1 ← Insert-Arc(CCC′1, v) and CCC′i ← Insert-Arc(CCC′i , u);
Let Tabu1← Tabu-Test(u,CCC1,CCCi) and Tabu2← Tabu-Test(v,CCCi,CCC1,);
if max{CCC′1,CCC

′
i} < w∗1 then

w∗1 ← max{CCC′1,CCC
′
i};

T̂TT all ← {CCC′1, . . . ,CCC
′
k};

if max{CCC′1,CCC
′
i} < w∗2 and Tabu1 = False and Tabu2 = False then

w∗2 ← max{CCC′1,CCC
′
i};

T̂TT nt ← {CCC′1, . . . ,CCC
′
k};

T̂TT all ← Improve-Solution
(
T̂TT all

)
;

T̂TT nt ← Improve-Solution
(
T̂TT nt

)
;

return
(
T̂TT all, T̂TT nt

)
not been improved for a certain number of iterations, tmax. The complete pseudo code for Tabu-Search is
presented in Algorithm 5.

To generate patrol routes Tabu-Guard executes the following three steps. First it generates multiple
random initial solutions by calling Generate-Random-Initial-Solutions. Next it uses Improve-Solution to
improve each initial solution and then, lastly, it uses Tabu-Search to improve the solutions even further.

3. Lower bounds

To assess the solution quality of the routes generated with Tabu-Guard we use three lower bounds from
Ahr and Reinelt (2002).

The first lower bound considered is the Shortest Path Tour Lower Bound (SPT-LB). In the optimal
solution the required arc, u, that is the furthest away from the depot arc, σ, must be traversed by one of the k
guard routes. The longest route must have at least the length of the shortest route,

(
S PS PS P(σ, u), u, S PS PS P(u, σ)

)
,

traversing the arc furthest from the depot.
The second lower bound is the CPP Tour Lower Bound (CPP/k-LB) and is computed by finding the

optimal Chinese postman route, and dividing its weight by k. We only consider the bound for the MM
k-CPP, and for the MM k-RPP if the required edges RRR form a connected subgraph. MM k-RPP instances
with RRR disconnected would involve finding the optimal rural postman tour, thus solving the RPP which is
N P-hard.

The last lower bound is the IP Relaxation Lower Bound (IP-LB). The bound is computed by solving a
relaxed integer programming formulation for the MM k-RPP. For simplicity we define e = (vi, v j) where
(vi, v j) ∈ EEE, vi and v j ∈ VVV , and i < j. We define Lmax as the total distance of the longest guard route. The
decision variables for the MM k-RPP are

xi(e) ,

1 if edge e is serviced by route CCCi, where i = {1, . . . , k} and e ∈ RRR,
0 otherwise,

yi(e) , Number of times edge e is traversed by route CCCi without being serviced, where i =

{1, . . . , k} and e ∈ EEE.

Other model parameters are

Author: jwjoubert; Revision: 227; Last updated: 2012-02-16 13:18:44 +0200 (Thu, 16 Feb 2012) 9

Willemse, E.J. & Joubert, J.W. Applying min-max k postmen problems to the routing of security guards

Algorithm 5: Tabu-Search

Input : Starting solution T̃TT ; neighbourhood construction procedure to use Construct (can either be
Exchange-Neighbourhood, Remove-Insert-Neighbourhood or both); max number of
iterations without improvement tmax; tabu tenure α; and a tabu list strategy Tabu-Strategy
(can either be Complex-Tabu, Simple-Tabu or Simple-Aggressive-Tabu).

Output: Incumbent solution TTT ∗.

Let TTT ∗ ← TTT and w∗max ← wmax(TTT);
Let the tabu list be ΠΠΠ, which is initially empty;
t ← 0;
while t < tmax do

Remove move criteria from ΠΠΠ that have been on the list for more than α iterations;(
T̂TT all, T̂TT nt

)
← Construct(TTT);

if wmax(T̂TT all) < w∗max then
t ← 0;
w∗max ← wmax(TTT all);
TTT ∗ ← TTT all;

else if T̂TT nt , TTT then
t ← t + 1;
TTT ← T̂TT nt;
According to Tabu-Strategy add the appropriate move criteria to ΠΠΠ;

else t ← tmax

return
(
TTT ∗

)
d(e) , Length or cost of edge e, where e ∈ EEE.

For the MM k-RPP we have the following mathematical model

min z = Lmax (1)

subject to

k∑
i=1

xi(e) = 1 ∀ e ∈ RRR, (2)∑
e∈EEE

d(e)yi(e) +
∑
e∈RRR

d(e)xi(e) ≤ Lmax ∀ i = {1, . . . , k}, (3)∑
e∈δ(v)

xi(e) + yi(e) ≡ 0 (mod 2) ∀ v ∈ VVV , i = {1, . . . , k}, (4)

xi
(
δ(SSS)

)
+ yi

(
δ(SSS)

)
≥ 2xi(e) ∀SSS ⊆ VVV\{v1}, e ∈ EEE(SSS), i = {1, . . . , k}, (5)

xi ∈ {0, 1}, yi(e) ≥ 0 and integer ∀e ∈ EEE, i = {1, . . . , k}. (6)

Constraints (2) ensure that all the required edges are serviced, thus traversed exactly once by a guard.
The length of the longest guard route, Lmax, is captured through constraints (3). Note that its value is
calculated based on the decision variables xi(e) and yi(e). Each guard route must be a closed walk containing
the depot, which is enforced with constraints (4) and (5). For the lower bound, we solve the relaxation of
the proposed model by omitting (5).

In the next section we illustrate how Tabu-Guardwas used to generate patrol routes for an actual security
estate.

4. An illustrative case: developing routes for Midfield Estate using Tabu-Guard

Midfield-Estate (Figure 1) forms part of the greater Midrand-Estates situated in Gauteng, South Africa.
In terms of size Midfield-Estate is fairly large and contains 404 properties, a golf course, and a cricket

Author: jwjoubert; Revision: 227; Last updated: 2012-02-16 13:18:44 +0200 (Thu, 16 Feb 2012) 10

Willemse, E.J. & Joubert, J.W. Applying min-max k postmen problems to the routing of security guards

ground. The road network (Figure 2) of the estate consists of 68 vertices and 126 edges, of which 74 are
required edges and 52 non-required edges. The 24-hour patrolling of the estate was divided into ten three-
guard shifts with the same three patrol routes traversed per shift. During the analysis of the patrol routes
certain major deficiencies were identified. Figure 3 indicates the frequency of traversals of the various road
segments with the old patrol routes. Some of the street segments were not being patrolled by the routes,

30 0

30

0

4050
0 20

0

0

20

10

0

0

20

0

0

10

0

10

10

20

20

0

10

10

0

0

10

20

10

20

50

0
20

10

10

10

10

20

10

10 10

10

50

20

10

10

10

20

20

20

1010

20

20

20

20

20

10

20

20

10 20

20

10

10

10

10

10

10

20

20

Midfield-Estate
Number of traversals

0
10
20
30
40
50

Figure 3: Number of street traversals through 24-hour patrolling for three guards with the old patrol routes

and are indicated by the black segments. In contrast, other segments were being over-patrolled as much
as fifty times during a day, indicated in the figure by the white segments. The structure of the estate’s
road network and the decentralised location of the depot partly contributed to the over patrolling of certain
edges. However, the main contributor was that the guards were forced to only traverse required edges,
thus resulting in the edges close to the depot being over patrolled, whereas more balanced patrol routes can
be generated by allowing required and non-required edges to form part of a guard’s patrol tour. Another
deficiency was the large difference between the length of the longest and shortest of the three routes. The
longest route was 4624m and the shortest only 3051m with a difference of 1573m. Lastly, the patrolling of
the estate was too predictable and inflexible since the same three patrol routes were being followed per shift
and the routes assumed that there would always be exactly three guards available. Management indicated
that guard availability varied per shift from two to six guards.

4.1. Lower bounds
Before illustrating how new routes were generated we first calculate the three MM k-RPP lower bounds

for the range k = 2, . . . , 6 available guards. The lower bounds are used for solution evaluation and are
reported in Table 1. All results are given in meters and the tightest bounds shown in bold. Even though
the network consists of non-required edges, CPP/k-LB is valid since the required edges form a connected
subgraph. For k ≤ 4, IP-LB performs best (tightest), while SPT-LB dominates the other bounds for k = 5, 6.

In the remainder of this section Lower Bound (LB) always refers to the tightest of the three lower bounds
for each k. All algorithms were coded in Python version 2.6 and run on a 3 GHz Intel(R) Core(TM)2 Duo
CPU with 3.25 GB of RAM, and all computations were performed on the range k = 2, . . . , 6 available
guards.

4.2. Computational results and analysis
For the case study the Tabu-Guard algorithm was used to generate a pool of high quality patrol routes,

enabling the security manager to randomly choose which patrol routes to implement during a shift while

Author: jwjoubert; Revision: 227; Last updated: 2012-02-16 13:18:44 +0200 (Thu, 16 Feb 2012) 11

Willemse, E.J. & Joubert, J.W. Applying min-max k postmen problems to the routing of security guards

Table 1: Lower bounds for Midfield-Estate road network.

k SPT-LB (m) CPP/k-LB (m) IP-LB (m)

2 2295 4288 4401
3 2295 2858 3009
4 2295 2144 2365
5 2295 1715 2002
6 2295 1429 1620

taking in consideration guard availability. The routes were generated as follows. First Tabu-Guard gener-
ated nine different initial solutions for each k by calling Generate-Random-Initial-Solutions and improving
them with Improve-Solution. The solutions were evaluated based on the longest route distance wmax and
the lower bound gap, which is calculated as

[
wmax(T̃TT 0) − LB

]
/
[
wmax(T̃TT 0)

]
. As shown in Table 2, Generate-

Random-Initial-Solutions was able to generate and improve 45 different solutions in a total time of 0.33
seconds. For each k the total time of generating and improving nine initial solutions was always less than

Table 2: Summary results for nine initial solutions for k = 2, . . . , 6 generated and improved by Tabu-Guard for Midfield-Estate.
The nine initial solutions for k guards were generated with Generate-Random-Initial-Solutions and each was then improved with
Improve-Solution. The reported CPU time is the total time of generating and improving the nine solutions.

Best solution Worst solution Average Total

k wmax (m) LB gap (%) wmax (m) LB gap (%) LB gap (%) CPU time (s)

2 5635 21.90 6584 33.16 29.27 0.11
3 3728 19.38 4336 30.60 24.31 0.06
4 3112 24.00 3290 28.12 25.71 0.06
5 3081 25.51 3267 29.75 27.24 0.05
6 3070 25.24 3377 32.04 27.56 0.05

Total 0.33s

0.1 seconds, giving an average time per solution of less than 0.01 seconds. However, the large LB gaps
observed, in spite of the application of Improve-Solution, and the large differences between the best and
worst solutions indicated that further improvement was possible.

Next Tabu-Guard called Tabu-Search to improve the initial solutions. Tabu-Search has two parameters:
the tabu tenure, α, and the number of iterations without improvement, tmax. For all our experiments the latter
was fixed at 500 iterations. There is also a choice of using one of three neighbourhood exchange procedures:
Remove-Insert-Neighbourhood (RIN); Exchange-Neighbourhood (EN); and RIN and EN combined, simply
referred to as RINEN. There is then a further choice between using Complex-Tabu, Simple-Tabu and Simple-
Aggressive-Tabu as tabu list criteria. To determine the best tabu search setup and tabu criteria, the different
setup combinations were tested over the nine initial solutions for each k, with the tabu tenure ranged from
α = {1, 2, . . . , 16}.

With the experiments the best performances of EN, RIN and RINEN always fell within a small range
of α values, irrespective of the tabu criteria used. The best range for RIN and RINEN was α = {4, 5, 6}
and the best for EN was α = {6, 7, 8}. Results further showed that EN performs best with Simple-Tabu,
whereas both RIN and RINEN perform best with Simple-Aggressive-Tabu. Subsequent analysis and the
results reported in Table 3 are limited to these combinations.

In the table, LB gaps are calculated as
[
wmax(T̃TT i) − LB

]
/
[
wmax(T̃TT i)

]
and the reported minimum and

average values are taken over all 27 solutions (nine initial solutions times three different tabu tenures) for
each k = 2, . . . , 6. The average LB gaps of the 27 executions were the lowest with RINEN, except for k = 2
where EN produced the lowest average LB gaps. RIN performed the worst for all k values, in terms of both
the average and best LB gaps; the latter is calculated with the best solution resulting from the 27 Tabu-
Search setup executions for each k. EN and RINEN both produced the same best LB gaps for k = 3, . . . , 6,
with EN finding a slightly better solution for k = 2. Overall, the LB gaps of the solutions found with all
three Tabu-Search setups differed by less than 1%, with the exception of k = 2 where the difference between
RIN and EN was less than 2%. Large lower bound gaps were still observed for k = 2, . . . , 5, especially for
k = 4, but as pointed out by Ahr and Reinelt (2006), the lower bounds tend to be weak for this range. In

Author: jwjoubert; Revision: 227; Last updated: 2012-02-16 13:18:44 +0200 (Thu, 16 Feb 2012) 12

Willemse, E.J. & Joubert, J.W. Applying min-max k postmen problems to the routing of security guards

Table 3: Summary results for nine initial Midfield-Estate solutions for k = 2, . . . , 6 improved by Tabu-Search using one of three
neighbourhood exchange procedures. The average and minimum values are taken over 27 executions of the Tabu-Search setup.

Average LB gap (%) Best LB gap (%) Average time per solution (s)

k RIN EN RINEN RIN EN RINEN RIN EN RINEN

2 12.71 9.56 10.86 7.66 6.52 6.94 11.75 114.04 98.83
3 12.32 12.26 12.13 10.84 10.84 10.84 14.14 61.9 84.47
4 19.52 19.07 19.05 18.17 18.14 18.14 15.94 39.35 50.91
5 12.74 12.71 12.62 11.56 11.66 11.66 18.27 31.47 54.91
6 6.80 6.60 6.66 5.52 5.52 5.52 20.38 21.04 34.34

Average 12.82% 12.04% 12.26% 10.75% 10.54% 10.62% 16.10s 53.56s 64.69s

terms of computational time RIN was the quickest and took, on average, 16.1 seconds to improve a single
solution. EN and RINEN were much slower, taking on average 53.6 and 64.7 seconds, respectively, per
solution. The differences between execution times were expected since EN and RINEN construct larger
solution neighbourhoods than RIN, which also explains why EN and RINEN found better solutions.

4.3. Choosing routes for implementation

With a sufficiently large, good quality solution pool the final step was to choose the actual routes to
implement. For each k we evaluated all 81 final solutions—27 solutions from each of the three Tabu-
Search setups. The even patrolling of the 81 solutions were measured by taking the difference between the
number of times that the most and least traversed edges are traversed, and the five solutions with the smallest
differences were chosen for implementation. In case of a tie, the length of the longest route of each solution
was calculated, and the first solution with the minimum longest route chosen. Subsequent solutions with
the same minimum longest route were then disqualified for selection, ensuring that five unique solutions
were always chosen for implementation.

Depending on the guard availability, ranging from two to six, the security manager can now randomly
choose which of the five patrol route combinations to implement, the sequence in which they are imple-
mented, and which of the patrol routes should be followed in a clockwise or counter-clockwise direction.
Patrolling through the new routes is thus much more unpredictable and flexible than the single three-route
combination used previously. Furthermore, Tabu-Guard’s solutions outperform the old routes in terms of
the length of the longest route and the even work distribution among the guards (Table 4). The latter is
measured as the difference between the length of the longest and shortest route. The average length of the
old routes is slightly less than that of the new ones, but then not all required edges were being patrolled
through the old routes. Note that the average, longest and shortest routes were taken over all five solutions
generated by TabuGuard. Lastly, the degree to which the estate’s road network is evenly patrolled can be

Table 4: Comparison between old Midfield-Estate routes and Tabu-Guard routes for three available guards.

Old patrol routes TabuGuard patrol routes

Average route length (m) 3342 3372
Longest route wmax (m) 3775 3381
Shortest route wmin (m) 2764 3359

wmax − wmin (m) 1011 22

analysed by counting the number of times that each required edge is patrolled during a day. Each edge’s
traversal count for the old and new routes are shown in Figures 3 and 4. For the comparison we assumed
that each of the five solutions of Tabu-Guard will be implemented twice during a day, and that the three old
routes were patrolled ten times during a day. The difference between the most and least patrolled edges for
the old routes was fifty traversals, while the difference for the Tabu-Guard routes is only ten. The analysis
for all k solutions generated by Tabu-Guard is presented in Table 5. Due to space limitations we only show
the number of traversals for the most and least patrolled edges, and not the complete traversal graphs.

As shown in the case study Tabu-Guard is capable of generating improved patrol routes for a security
estate. However, the case study consists of only one test instance. To further evaluate Tabu-Guard’s poten-

Author: jwjoubert; Revision: 227; Last updated: 2012-02-16 13:18:44 +0200 (Thu, 16 Feb 2012) 13

Willemse, E.J. & Joubert, J.W. Applying min-max k postmen problems to the routing of security guards

10

20

1010
10
20

20

10

10

10

20

10

10

10

20

10

20

10

1010

20

10

20

20

20

10

10

10

10

10

20

20

10

20

10

10

10

10

10

20

10

10

20

10

10

20

10

20

1010

20

20

10
20

20

20

10

20

10

20

20

20

20

10 20

10

20

20

10

10

20

20

20

Midfield-Estate
Number of traversals

10
20

Figure 4: Number of street traversals through 24-hour patrolling for three guards with the new patrol routes.

Table 5: Results for the five Tabu-Guard solutions for each k = 2, . . . , 6 chosen for implementation at Midfield-Estate.

Average route Longest Shortest Most Least
k length (m) route (m) route (m) Difference (m) traversals traversals Difference

2 4740 4780 4701 79 20 10 10
3 3372 3381 3359 22 20 10 10
4 2881 2897 2849 48 30 10 20
5 2588 2613 2527 86 30 10 20
6 2425 2447 2377 70 40 10 30

tial to solve MM k-CPP and MM k-RPP instances, we tested the algorithm on benchmark CARP instances
from literature. The results are reported in the next section.

5. Further algorithm testing

For further evaluation of Tabu-Guardwe tested the algorithm on networks of eight CARP instances from
Li and Eglese (1996). The complete set contains 21 instances, but since the MM k-RPP and MM k-CPP
do not model edge demand the problem set is reduced to eight instances with the others being duplicates.
The eight instances used ranged in size from the smallest, containing 77 vertices, 51 required edges and 47
non-required edges, to the largest, having 140 vertices and 190 required edges. These ranges are consistent
with network sizes of actual security estates that implement continuous guard patrolling. For two instances
the complete edge set is required, i.e. RRR = EEE. The two instances are classified as MM k-CPP instances and
the remaining six instances classified as MM k-RPP instances. To our knowledge this is the first work on
MM k-RPP benchmark problems. The two MM k-CPP instances are solved by Ahr (2004) and Ahr and
Reinelt (2006) with two tabu search algorithms called T10m and T-infinity (the latter is abbreviated T-INF
in the remainder of this section), though the only difference between the algorithms is that a time limit of
10 minutes is imposed on T10m, after which the algorithm automatically terminates, whereas no time limit
is imposed on T-INF.

For the benchmark problems Tabu-Guard generated and improved five initial solutions for each k, where
we always considered the range k = 2, . . . , 10 guards. The three Tabu-Search setups using RIN, EN and

Author: jwjoubert; Revision: 227; Last updated: 2012-02-16 13:18:44 +0200 (Thu, 16 Feb 2012) 14

Willemse, E.J. & Joubert, J.W. Applying min-max k postmen problems to the routing of security guards

RINEN, respectively, were then called to further improve each initial solution. Each setup used a single
tabu tenure and the number of iterations without improvement was fixed at 500. RIN and RINEN were
coupled with Simple-Aggressive-Tabu and executed using a tabu tenures of α = 6 and α = 8, respectively,
whereas EN was coupled with Simple-Tabu and used a tabu tenure of α = 6.

5.1. Results for MM k-CPP instances
Results for Tabu-Guard on the egl-e4-A instance, with a comparison to the solutions found by Ahr

(2004) and Ahr and Reinelt (2006), are shown in Table 6. The table shows the wmax value of the best so-

Table 6: Computational results of three Tabu-Guard (TG) setups on the egl-e4-A instance of Li and Eglese (1996), with |VVV | = 77,
|EEE| = 98 and |RRR| = 98. The execution times reported are the total time taken to generate and improve five solutions for each k. The
average wmax values are calculated in terms of lower bound gap values for each k.

TG-RIN TG-EN TG-RINEN T-10m T-INF

k LB wmax Time (s) wmax Time (s) wmax Time (s) wmax wmax

2 1685 1878 137.91 1810 1388.45 1828 886.25 1827 1816
3 1124 1311 178.54 1309 1020.21 1309 805.37 1352 1333
4 843 1112 229.12 1089 577.17 1090 613.76 1151 1102
5 820 966 235.97 951 446.63 956 523.34 1066 958
6 820 879 238.54 877 272.50 877 371.61 954 916
7 820 865 243.56 866 95.93 865 157.60 906 872
8 820 839 84.81 839 11.20 843 33.95 872 870
9 820 826 33.54 827 5.45 827 11.75 872 826
10 820 820 24.83 820 8.78 820 7.33 836 820

Average LB gap (%) 8.75% 156.31s 8.04% 425.15s 8.24% 379.00s 12.43% 9.30%
and time (s)

lution found by each of the three Tabu-Guard algorithm setups over the five initial solutions. The reported
computational times are then the total time of generating and improving all five initial solutions. Unfor-
tunately, no execution times are given by Ahr (2004) and Ahr and Reinelt (2006) for T-10m and T-INF,
though we can infer that the execution time of T-10m is always less than 600 seconds.

On average all three Tabu-Guard setups outperformed both T-10m and T-INF. Tabu-Guard found one
optimal, one existing best and six new best solutions. Both Tabu-Guard-EN and Tabu-Guard-RINEN
outperformed T-10m and T-INF for k = 3, . . . , 8, whereas Tabu-Guard-RIN outperformed T-INF for k =

3, 4, 6, 7, 8 and T-10m for k = 3, . . . , 10. In terms of solution quality Tabu-Guard-EN performed the best,
followed closely by Tabu-Guard-RINEN and then Tabu-Guard-RIN. The latter dominates the other two
setups in terms of execution time, where Tabu-Guard-EN, on average performs, the worst.

Results for Tabu-Guard on the egl-s4-A instance are presented in Table 7. Again, on average, all three

Table 7: Computational results of three Tabu-Guard (TG) setups on the egl-s4-A instance of Li and Eglese (1996), with |VVV | = 140,
|EEE| = 190 and |RRR| = 190. The execution times reported are the total time taken to generate and improve five solutions for each k. The
average wmax values are calculated in terms of lower bound gap values for each k.

TG-RIN TG-EN TG-RINEN T-10m T-INF

k LB wmax Time (s) wmax Time (s) wmax Time (s) wmax wmax

2 2607 2761 775.89 2736 11451.37 2753 6349.09 2682 2651
3 1738 1894 1058.92 1874 7202.03 1875 6244.68 2053 1901
4 1304 1609 1309.34 1570 4516.17 1584 4103.79 1688 1552
5 1043 1379 1668.21 1322 3245.65 1315 3689.13 1470 1332
6 1027 1179 1519.03 1174 2485.17 1167 3357.80 1366 1241
7 1027 1107 1866.17 1107 2082.88 1101 3148.44 1255 1126
8 1027 1065 1630.70 1057 869.90 1056 1777.58 1208 1082
9 1027 1027 1404.71 1036 479.86 1027 665.54 1158 1053
10 1027 1027 400.07 1027 120.71 1027 153.45 1141 1050

Average LB gap (%) 8.98% 1292.56s 8.16% 3605.97s 8.05% 3276.61s 16.58% 9.30%
and time (s)

Tabu-Guard setups outperformed both T-10m and T-INF. Tabu-Guard found two optimal and six new best

Author: jwjoubert; Revision: 227; Last updated: 2012-02-16 13:18:44 +0200 (Thu, 16 Feb 2012) 15

Willemse, E.J. & Joubert, J.W. Applying min-max k postmen problems to the routing of security guards

solutions. Tabu-Guard-EN and Tabu-Guard-RINEN outperformed T-10m and T-INF for k = 3, 5, . . . , 10,
whereas Tabu-Guard-RIN outperformed T-10m for all k values. There does seem to be inconsistencies
between the results reported by Ahr (2004) and Ahr and Reinelt (2006) on instance egl-s4-A. Though both
use the same algorithm, Ahr and Reinelt (2006) report the average LB gap of T-INF to be 11.88%, whereas
results reported by Ahr (2004) and shown in Table 7 show the average to be 9.30%. Tabu-Guard-RINEN
produced slightly better solutions than Tabu-Guard-EN, followed by Tabu-Guard-RIN. The computational
times of Tabu-Guard were much higher for the egl-s4-A instance than with egl-e4-A. Tabu-Guard-EN took
on average more than 3600 seconds to generate and improve five solutions, whereas the quickest setup,
Tabu-Guard-RIN, took on average 1293 seconds. The execution times can be reduced by generating mul-
tiple initial solutions, and improving only the best initial solution; or by reducing the number of allowed
moves without improvement.

5.2. Results for MM k-RPP instances

Summary results for Tabu-Guard on the six MM k-RPP instances adapted from Li and Eglese (1996)
are shown in Table 8. We only report on the average results over k = 2, . . . , 10; for the complete results

Table 8: Average computational results calculated over k = 2, . . . , 10 of three Tabu-Guard (TG) setups on the MM k-RPP egl instances
of Li and Eglese (1996). The average execution times reported are calculated over the total time taken to generate and improve five
solutions for each k.

TG-RIN TG-EN TG-RINEN

File VVV EEE RRR LB Gap (%) Time (s) LB Gap (%) Time (s) LB Gap (%) Time (s)

egl1-e1 77 98 47 2.51 14.90 2.11 44.90 2.49 43.01
egl1-e2 77 98 72 5.58 52.12 5.16 138.14 5.64 135.69
egl1-e3 77 98 87 7.95 115.37 7.46 263.13 8.02 278.71
egl1-s1 140 190 115 8.40 49.65 7.75 152.10 8.01 137.80
egl1-s2 140 190 147 13.31 560.16 11.61 1531.34 12.21 1570.17
egl1-s3 140 190 159 13.26 773.48 10.62 2169.72 11.12 2135.04

please contact the authors. Since these are the first reported results on MM k-RPP benchmark problems,
analysis of the Tabu-Guard setups are limited to LB gaps. As with the previous tests, the Tabu-Guard-EN
setup produced the best quality solutions, with a worst average LB gap of 11.61%. Again we observed large
LB gaps for small k values, which can be partly attributed to the weakness of the bounds. The execution
time of Tabu-Guard-EN and Tabu-Guard-RINEN were very similar, whereas Tabu-Guard-RIN is by far
the quickest of the three setups. Furthermore, its LB values are within 3% of the other strategies, making
the setup ideal when solutions have to be generated under time constraints. Based on the test results, when
no time constraints are present, we recommend using Tabu-Guard-EN to solve the MM k-CPP and MM
k-RPP.

6. Conclusion

This paper has demonstrated how the problem of designing patrol routes for security estates can be
modelled as MM k-RPPs and MM k-CPPs. A tabu search algorithm capable of solving both problems
was developed and tested on the road network of a a security estate, and solutions showed a significant
improvement on the old patrol routes. Furthermore, the tabu search was used to generate a multitude of
solutions, which resulted in the patrolling of the estate being unpredictable. As a final evaluation, our
algorithm was tested on benchmark problems for the MM k-CPP. Results obtained show the algorithm to
outperform the only existing algorithm for the MM k-CPP. We also tested our algorithm on new benchmark
instances for the MM k-RPP. Results on both the MM k-CPP and MM k-RPP instances show that the
algorithm is robust enough to generate quality patrol routes on different road networks.

There still exist opportunities to improve the patrolling of the estate even further. Most notable are the
improvement of unpredictable patrolling and the placement of checkpoints. The strategy presented in this
paper for unpredictable patrolling was to generate a multitude of solutions and then randomly choose and
implement these solutions. Unfortunately, there were no measurement criteria in terms of the diversification
of the chosen solutions. For unpredictable patrolling, solutions should be significantly dissimilar, while still
being of high quality. This can be accomplished by finding local optima in the solution space that are

Author: jwjoubert; Revision: 227; Last updated: 2012-02-16 13:18:44 +0200 (Thu, 16 Feb 2012) 16

Willemse, E.J. & Joubert, J.W. Applying min-max k postmen problems to the routing of security guards

sufficiently dissimilar. A possible way to achieve this is by incorporating mechanisms into the tabu search
algorithm that will guide the algorithm to these local optima.

As for the checkpoint placement, the solution in this paper requires all the checkpoints associated to a
guard’s route to be visited by the guard. A better solution would be to determine the minimum amount of
checkpoints to be visited that will still lead to the patrol routes being traversed. Such an approach would be
advantageous as the guards would then be able to concentrate on the actual patrolling of the estate instead
of checkpoint visitations.

Acknowledgements

The authors would like to thank the management of Midfield-Estate for allowing us access to the estate’s
security services and for providing the actual data set. Lastly, we acknowledge the work of the anonymous
referees for their valuable contribution to the improvement of the quality of the paper.

References

Ahr, D. (2004). Contributions to multiple postmen problems. PhD thesis, Ruprecht-Karls-Universität,
Heidelberg.

Ahr, D. and Reinelt, G. (2002). New heuristics and lower bounds for the min-max k-Chinese postman prob-
lem. In Möhring, R. and Raman, R., editors, Algorithms ESA 2002, 10th Annual European Symposium
Rome, Italy, September 1721, 2002 Proceedings, volume 33, pages 7–19. Heidelberg: Springer Berlin.

Ahr, D. and Reinelt, G. (2006). A tabu search algorithm for the min-max k-Chinese postman problem.
Comp Oper Res, 33(12):3403–3422.

Amberg, A., Domschke, W., and Voß, S. (2000). Multiple center capacitated arc routing problems: A tabu
search algorithm using capacitated trees. Eur J Oper Res, 124(2):360–376.

Arkin, E. M., Hassin, R., and Levin, A. (2006). Approximations for minimum and min-max vehicle routing
problems. J Algorithms, 59(1):1–18.

Benevant, E., Corberán, A., Plana, I., and Sanchis, J. M. (2009). Min-max k-vehicles windy rural postman
problem. Netw, 54(4):216–226.

Brandão, J. and Eglese, R. (2008). A deterministic tabu search algorithm for the capacitated arc routing
problem. Comp Oper Res, 35(4):1112–1126.

Corberán, A. and Prins, C. (2010). Recent results on arc routing problems: An annotated bibliography.
Netw, 56(1):50–69.

Dror, M., editor (2000). Arc Routing: Theory, Solutions, and Applications. Boston: Kluwer Academic
Publishers.

Edmonds, J. and Johnson, E. L. (1973). Matching, Euler tours and the Chinese postman. Math Program,
5(1):88–124.

Eiselt, H. A., Gendreau, M., and Laporte, G. (1995a). Arc routing problems, part I: The Chinese postman
problem. Oper Res, 43(2):231–242.

Eiselt, H. A., Gendreau, M., and Laporte, G. (1995b). Arc routing problems, part II: The rural postman
problem. Oper Res, 43(3):399–414.

Frederickson, G., Hecht, M., and Kim, C. (1978). Approximation algorithms for some routing problems.
SIAM J Comput, 7(2):178–193.

Glover, F. (1989). Tabu search – part I. ORSA J Comput, 1(3):190–206.

Glover, F. (1990). Tabu search – part II. ORSA J Comput, 2(1):4–32.

Glover, F. W. and Laguna, M. (1998). Tabu Search. Springer.

Author: jwjoubert; Revision: 227; Last updated: 2012-02-16 13:18:44 +0200 (Thu, 16 Feb 2012) 17

Willemse, E.J. & Joubert, J.W. Applying min-max k postmen problems to the routing of security guards

Golden, B. L. and Wong, R. T. (1981). Capacitated arc routing problems. Netw, 11(3):305–315.

Greistorfer, P. (2003). A tabu scatter search metaheuristic for the arc routing problem. Comp Ind Eng,
44(2):249–266.

Hertz, A., Laporte, G., and Mittaz, M. (2000). A tabu search heuristic for the capacitated arc routing
problem. Oper Res, 48(1):129–135.

Lacomme, P., Prins, C., and Ramdane-Chérif, W. (2004). Competitive memetic algorithms for arc routing
problems. Ann Oper Res, 131(4):159–185.

Lenstra, J. and Rinnooy Kan, A. (1976). On general routing problems. Netw, 6(3):273–280.

Li, L. Y. O. and Eglese, R. W. (1996). An interactive algorithm for vehicle routeing for winter - gritting. J
Oper Res Soc, 47(2):2.

Wøhlk, S. (2008). A decade of capacitated arc routing. In Golden, B., Raghavan, S., and Wasil, E.,
editors, The Vehicle Routing Problem: Latest Advances and New Challenges, volume 43 of Operations
Research/Computer Science Interfaces Series, pages 29–48. Springer US.

Wolfler Calvo, R. and Cordone, R. (2003). A heuristic approach to the overnight security service problem.
Comp Oper Res, 30(9):1269–1287.

A. Tabu-Guard algorithms

Algorithm procedures.

Algorithm 6: Insert-Arc
Input : Route CCCi and arc u.
Output: Route CCCi with arc u assigned to the route.

Let n be the number of arcs, including dummy arcs, serviced in route CCCi;
foreach v ∈

(
u, inv(u)

)
do

for j← 2 to n do
CCC′i ← CCCi;
Insert v in route CCC′i in position j;
∆SSS j ← w(CCCi) − w(CCC′i);

Find t ← arg min{∆SSS k : k ∈ (2, . . . , n)};
Let CCC(v)

i ← CCCi and insert v in CCC(v)
i in position t;

Find CCC(l)
i where l← arg min{w

(
CCC(v)

i
)

: v ∈
(
u, inv(u)

)
};

CCCi ← CCC(l)
i ;

return
(
CCCi

)
With Algorithm 7, CCCi(l) is defined as the arc in position l in route CCCi.

Author: jwjoubert; Revision: 227; Last updated: 2012-02-16 13:18:44 +0200 (Thu, 16 Feb 2012) 18

Willemse, E.J. & Joubert, J.W. Applying min-max k postmen problems to the routing of security guards

Algorithm 7: Exchange-Arcs
Input : Route CCCi.
Output: Potentially improved route CCCi.
Let n be the number of arcs, including dummy arcs, serviced in route CCCi;
Let t ← 0;
for l← 2 to n − 2 do

for m← i + 1 to n − 1 do
t ← t + 1;
CCC(1)

temp,CCC
(2)
temp,CCC

(3)
temp,CCC

(4)
temp,← CCCi;

Let CCC(1)
temp(l)← CCCi(m) and CCC(1)

temp(m)← CCCi(l);
Let CCC(2)

temp(l)← CCCi(m) and CCC(2)
temp(m)← inv

(
CCCi(l)

)
;

Let CCC(3)
temp(l)← inv

(
CCCi(m)

)
and CCC(3)

temp(m)← CCCi(l);
Let CCC(4)

temp(l)← inv
(
CCCi(m)

)
and CCC(4)

temp(m)← inv
(
CCCi(l)

)
;

Find CCC(k)
temp where k ← arg min{CCC(l)

temp : q ∈ (1, . . . , 4)};
CCC′t ← CCC(k)

temp;
Find CCC′k where k ← arg min{w(CCC′q) : q ∈ (1, . . . , q)};
CCCi ← CCC′k;

return
(
CCCi

)

Algorithm 8: Remove-Insert-Arcs
Input : Route CCCi.
Output: Potentially improved route CCCi.

foreach u ∈ CCCi do
Let CCC′i ← CCCi and remove u from CCC′i ;
CCC(u)

temp ← Insert-Arc(CCC′i , u);
Find CCC(k)

temp where k ← arg min
{
w(CCC(u)

temp) : u ∈ CCCi
}
;

CCCi ← CCC(k)
temp;

return
(
CCCi

)

Author: jwjoubert; Revision: 227; Last updated: 2012-02-16 13:18:44 +0200 (Thu, 16 Feb 2012) 19

