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Abstract

Let {xk,n}n
k=1 and {xk,n+1}n+1

k=1 , n ∈ N, be two given sets of real
distinct points with x1,n+1 < x1,n < x2,n+1 < · · · < xn,n < xn+1,n+1.

Wendroff (cf. [3]) proved that if pn(x) =
n∏

k=1

(x− xk,n) and pn+1(x) =

n+1∏
k=1

(x − xk,n+1) then pn and pn+1 can be embedded in a non-unique

infinite monic orthogonal sequence {pn}∞n=0. We investigate the con-
nection between the zeros of pn+2 and the two coefficients bn+1 ∈ R
and λn+1 > 0, which are chosen arbitrarily, that define pn+2 via the
three term recurrence relation

pn+2(x) = (x− bn+1)pn+1(x)− λn+1pn(x).
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1 Introduction

In 1961, Burton Wendroff (cf. [3]) proved that given any n real points x1,n <

x2,n < . . . < xn,n and any n+1 real points x1,n+1 < x2,n+1 < . . . < xn+1,n+1,
satisfying

x1,n+1 < x1,n < x2,n+1 < x2,n < · · · < xn,n+1 < xn,n < xn+1,n+1 (1)
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then if

pn(x) =
n∏

k=1

(x− xk,n) and pn+1(x) =
n+1∏
k=1

(x− xk,n+1), (2)

the polynomials pn and pn+1 can always be embedded in an infinite sequence
of monic polynomials that is orthogonal with respect to some positive Borel
measure on R. His proof shows that, given (1) and (2), all the polynomials
of lower degree, namely p1, p2, . . . , pn−1, in any monic orthogonal sequence
that contains pn and pn+1, are completely and uniquely determined by pn

and pn+1. This is most easily seen by observing that, since any monic
orthogonal sequence must satisfy a three term recurrence relation of the
form (cf. [2])

pn+1(x) = (x− bn)pn(x)− λnpn−1(x), n ∈ N (3)

where p0(x) = 1, p−1(x) = 0, λn > 0 and bn ∈ R, we have

bn =
n+1∑
k=1

xk,n+1 −
n∑

k=1

xk,n (4)

and λn is clearly also determined by the original configuration of {xk,n}n
k=1

and {xk,n+1}n+1
k=1 satisfying (1).

In contrast, the polynomials pk+1, k ≥ n + 1, in any monic orthogonal
sequence {pn}∞n=0 containing pn and pn+1, are constructed successively and
are defined by using the three term recurrence relation (3) and choosing
constants bk ∈ R and λk > 0 for k = n + 1, n + 2, . . . . In [3], Wendroff
states that if a < x1,n+1 < · · · < xn+1,n+1 < b, in order to retain (a, b) as
the interval of orthogonality, the coefficients bn+j and λn+j > 0 should be
chosen in such a way that the zeros of pn+j+1, j ≥ 1 lie in (a, b) but he gives
no indication of the connection between bn+j , λn+j and the zeros of pn+j+1.

In this paper, we discuss how the choices of λn+1 and bn+1 influence
the location of the zeros of pn+2. Since each polynomial pk, k > n + 1, in
an infinite monic orthogonal sequence {pn}∞n=0 that includes pn and pn+1

is constructed iteratively using the three term recurrence relation, one can
apply the results we prove here for pn+2 recursively to the polynomials pn+3,
pn+4, ...

2 The coefficient bn+1

We begin with a general lemma whose proof is an adaptation of the fa-
miliar proof that the zeros of a polynomial are continuous functions of its
coefficients.
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Lemma 1 Let p and q be complex, monic polynomials of degrees n and
n + 1, respectively, and let

r(z) = (z − β)q(z)− λp(z),

where β and λ are complex numbers. Let ζ1, . . . , ζt be the distinct zeros of q

with multiplicities m1, . . . ,mt, respectively. For fixed λ, given any positive
ε, there is a positive R such that if |β| > R then there are mj zeros of r

within a distance ε of ζj.

Proof. Let C1, . . . , Ct be circles centered at ζ1, . . . , ζt, each of radius δ,
where 0 < δ < ε, and where δ is sufficiently small so that the Cj are exterior
to each other. Since q 6= 0 on each Cj , we can find R such that if |β| > R then
|(z−β)q(z)| > |λ p(z)| on each Cj . Thus, by Rouché’s Theorem, (z−β)q(z)
and r(z) have the same number of zeros inside each Cj .

Given pn and pn+1 defined by (1) and (2), the first polynomial in the
(non-unique) orthogonal sequence that we construct is given by

pn+2(x) = (x− bn+1)pn+1(x)− λn+1pn(x), λn+1 > 0, bn+1 ∈ R. (5)

We exclude the choice bn+1 = xk,n for any k ∈ {1, 2, . . . , n} where {xk,n}n
k=1

are the zeros of pn(x) which ensures that pn+2 and pn have no common
zeros. Our first result considers the zeros of pn+2 as functions of bn+1 with
λn+1 > 0 fixed.

Theorem 2 Let (1), (2) and (5) hold with bn+1 6= xk,n for any k ∈ {1, . . . , n}
and suppose λn+1 > 0 is fixed. Then, for each n,

(i) x1,n+2 < bn+1 < xn+2,n+2;

(ii) each zero of pn+2 is an increasing function of bn+1;

(iii) lim
bn+1→∞

(xk,n+2 − xk,n+1) = 0 for each k ∈ {1, 2, . . . , n + 1};

(iv) lim
bn+1→∞

(xn+2,n+2 − bn+1) = 0.

Proof. It is clear that (iii) follows immediately from Lemma 1 (as does a
similar result as bn+1 → −∞). Also, (iv) follows from (4) and (iii). (4) may
be written as

bn+1 = (x1,n+2 + · · ·+ xn+2,n+2)− (x1,n+1 + · · ·+ xn+1,n+1),

and since

x1,n+2 < x1,n+1 < x2,n+1 < · · · < xn+1,n+1 < xn+2,n+2,

3



(i) follows immediately.
Finally, we prove (ii). Suppose that Bn+1 > bn+1, and define

Pn+2(x) = (x−Bn+1)pn+1(x)− λn+1pn(x)

= pn+2(x)− (Bn+1 − bn+1)pn+1(x). (6)

By Wendroff’s result (cf. [3]) the polynomials p0, p1, . . . , pn+1 are orthogonal
to Pn+2 for some Borel measure on R so we can conclude that Pn+2 has
n + 2 real, distinct zeros which we denote by X1 < . . . < Xn+2. We need to
show that xk,n+2 < Xk for each k = 1, . . . , n + 2. It follows from (6) that
Pn+2(xk,n+2)pn+1(xk,n+2) < 0. Since xn+2,n+2 > xn+1,n+1 (the largest zero
of pn+1), and pn+1 is monic, we see that pn+1(xn+2,n+2) > 0, and hence that
Pn+2(xn+2,n+2) < 0. Since Pn+2 is monic, this implies that Pn+2 has a zero
in (xn+2,n+2,+∞). A similar argument (which we omit) shows that Pn+2

has a zero in each of the intervals (xk,n+2, xk+1,n+2) and this implies that
Xk ∈ (xk,n+2, xk+1,n+2) and Xn+2 ∈ (xn+2,n+2,+∞) which completes our
proof of Theorem 2.

3 The coefficient λn+1

In this section we consider the zeros of pn+2 as we vary λn+1 > 0.

Theorem 3 Let (1), (2) and (5) hold. Then

0 < λn+1 ≤ (xn+2,n+2 − x1,n+2)2.

Thus if xk,n ∈ (a, b) for all k, n ∈ N, then 0 < λn+1 ≤ (b− a)2 for all n.

Proof. Since the zeros of pn and pn+1 are interlacing, it is clear that if
t > xn+1,n+1 then

pn+1(t) = (t− x1,n+1)(t− x2,n+1) · · · (t− xn+1,n+1)

≤ (t− x1,n+1)(t− x1,n) · · · (t− xn,n)

= (t− x1,n+1)pn(t).

In particular, this inequality holds with t = xn+2,n+2. Since pn+2(xn+2,n+2) =
0, we see from (5) that

(xn+2,n+2 − bn+1)pn+1(xn+2,n+2) = λn+1pn(xn+2,n+2).

This, together with the inequality just established and Theorem 2(i) leads
to the result since pn(xn+2,n+2) > 0.
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4 The zeros of pn and pn+2

We now consider the role of bn+1 in determining the relative positions of the
zeros of pn and pn+2. First, there is an alternative argument which yields
more detailed information than Theorem 2(i). Suppose that u and v are
consecutive zeros of pn+2 with u < v. Then, from (3), we see that

(u− bn+1)(v − bn+1)pn+1(u)pn+1(v) = λ2
n+1pn(u)pn(v).

It follows that bn+1 ∈ (u, v) if and only if(
pn(u)

pn+1(u)

) (
pn(v)

pn+1(v)

)
< 0.

Now, by interlacing, there is exactly one zero of pn+1 in (u, v), and the
function pn(x)/pn+1(x) changes sign as x passes through this zero of pn+1.
Since bn+1 ∈ (u, v) for exactly one choice of consecutive zeros u and v, we
now see that each of the n + 1 intervals (xi,n+2, xi+1,n+2) contains either (i)
exactly one zero of pn but not bn+1, or (ii) bn+1 and no zeros of pn. This
result is related to Stieltjes Theorem [2, p.46], and is discussed further in
[1].

Next, each interval (xk,n+1, xk+1,n+1), k = 1, . . . , n, contains exactly one
zero of pn+2 (namely xk+1,n+2), and exactly one zero of pn (namely xk,n);
this follows directly from the interlacing property. The ordering of these two
zeros within (xk,n+1, xk+1,n+1) is not immediately clear but, as we shall now
show, it is completely determined by bn+1.

Theorem 4 In the notation given above, for k = 1, . . . , n,

xk,n+1 < xk+1,n+2 < xk,n < xk+1,n+1 if and only if bn+1 < xk,n; (7)

xk,n+1 < xk,n < xk+1,n+2 < xk+1,n+1 if and only if xk,n < bn+1. (8)

Proof. We begin with the observation that pn(xk,n+1) and pn+1(xk,n),
k ∈ {1, 2 · · · , n} have the same sign. Since λn+1 > 0, and

pn+2(xk,n+1) = −λn+1pn(xk,n+1),

pn+2(xk,n) = (xk,n − bn+1)pn+1(xk,n),

it follows that pn+2 has opposite signs at xk,n+1 and xk,n if and only if
bn+1 < xk,n. Since xk+1,n+2 is the only zero of pn+2 that lies between xk,n+1

and xk,n, this implies (7). Finally, (8) is logically equivalent to (7).
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