Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N-Dimethylethane-1,2-diaminium bis(3-hydroxybenzoate)

Anindita Sarkar and Ignacy Cukrowski*

Department of Chemistry, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa

Correspondence e-mail: ignacy.cukrowski@up.ac.za

Received 27 May 2011; accepted 3 October 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.077; data-to-parameter ratio = 17.9.

In the title compound, $C_4H_{14}N_2^{2+} \cdot 2C_7H_5O_3^{-}$, both the N,Ndimethylethylenediamine N atoms are protonated and two 3hydroxybenzoate anions act as counter-ions. In the crystal, anions and cations are linked by a network of $N-H \cdots O$ and $O-H \cdots O$ hydrogen bonds.

Related literature

For bond lengths in fully protonated polyamines, see: Bujak & Angel (2006); Bujak & Zaleski (2002); Doran et al. (2003); Thorn et al. (2005); Zhang et al. (2007).

Experimental

Crystal data

 $C_4H_{14}N_2^{2+} \cdot 2C_7H_5O_3^{-1}$ $M_r = 364.39$ Monoclinic, Cc a = 14.5439 (3) Å b = 17.5881 (4) Å c = 7.7104 (2) Å $\beta = 114.777 \ (1)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: integration (XPREP; Bruker, 2001) $T_{\rm min} = 0.952, \ T_{\rm max} = 0.997$

V = 1790.76 (7) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K $0.49 \times 0.12 \times 0.03~\text{mm}$

14114 measured reflections 4292 independent reflections 3635 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.048$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	H-atom parameters constrained
$wR(F^2) = 0.077$	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
S = 0.96	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
4292 reflections	Absolute structure: Flack (1983)
240 parameters	2119 Friedel pairs
2 restraints	Flack parameter: 0.00 (7)

Table 1		
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N7-H8C\cdotsO5^{i}$	0.89	1.94	2.7169 (18)	145
$N7 - H9A \cdots O1^{ii}$	0.89	2.12	2.8904 (18)	145
$N7 - H19B \cdot \cdot \cdot O1^{iii}$	0.89	1.90	2.7657 (19)	164
$N10-H1\cdots O4^{iv}$	0.91	1.84	2.7367 (17)	168
O3−H3···O4 ^{iv}	0.82	1.84	2.6415 (16)	164
$O6-H6\cdots O2^{v}$	0.82	1.80	2.5897 (16)	161

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) $x - \frac{1}{2}, y + \frac{1}{2}, z$; (iii) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (iv) x, y, z - 1; (y) x - 1, y, z.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

The authors thank the University of Pretoria for financial support and research facilities. The XRD facilities of the University of Witwatersrand, South Africa are gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2425).

References

- Bruker (2005). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bujak, M. & Angel, R. J. (2006). J. Phys. Chem. B, 110, 10322-10331.
- Bujak, M. & Zaleski, J. (2002). Main Group Met. Chem. 25, 571-573.

Doran, M. B., Norquist, A. J. & O'Hare, D. (2003). Inorg. Chem. 42, 6989-6991. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Thorn, K. J., Narducci Sarjeant, A. & Norquist, A. J. (2005). Acta Cryst. E61, m1665-m1667.

Zhang, M., Sheng, L. T., Huang, X. E., Fu, R. B., Wang, X., Hu, S. M., Xiang, S. C. & Wu, X. T. (2007). Eur. J. Inorg. Chem. pp. 1606-1612.

Acta Cryst. (2011). E67, o2901 [doi:10.1107/S1600536811040578]

N,*N*-Dimethylethane-1,2-diaminium bis(3-hydroxybenzoate)

A. Sarkar and I. Cukrowski

Comment

N,N-Dimethylethane-1,2-diaminium bis 3-hydroxybenzoate [H₂*DM*-en + 2(3HO-BA)] crystallizes in the centrosymmetric space group *Cc*. The molecular structure with the atom numbering scheme is shown in Figure 1. The all N–H bonds in H₂*DM*-en (they are on average close to 0.9 Å) are shorter by about 0.1 Å when compared with those in other fully protonated polyamines (Thorn *et al.*, 2005; Doran *et al.*, 2003) but comparable with (Zhang *et al.*, 2007; Bujak *et al.*, 2002). At the same time, the three N—H bonds on N7 (primary N-atom) are equal in length (0.89 Å) and they are shorter by 0.02 Å than the N—H bond on tertiary N-atom (N10). In this crystal the polyammonium ion adopts an extended, all anti-conformation that minimizes electrostatic repulsions between protonated nitrogen atoms. There is a self-assembly pattern in the crystal through intermolecular noncovalent interactions (the hydrogen bonds of a type N—H···O and O—H···O). The O-atoms are known to participate as donors in intramolecular as well as intermolecular hydrogen-bonding interactions to provide various types of self-assembled networks. As an example, the O4-atom of the carboxylate group forms two intermolecular H-bonds, one with the diamine, N10—H1···O4, and another with hydroxy group of the benzoic acid, O3—H3···O4; both H-bonds are about 1.84 Å. The other O-atom of the carboxylic group is involved in only one intramolecular H-bond, namely N7—H19B···O5 involving terminal N-atom. In general, all O-atoms and H-atoms bonded to the N-atoms are involved in intramolecular interactions.

Experimental

DM-en (0.83 ml, 8.97*M*) was mixed with 3-Hydroxy Benzoic acid (1 g m, 7.24 mmol) in water (1 ml). Colourless crystals obtained after 15 days of slow evaporation.

Refinement

H atoms bonded to N and O atoms were located in a difference map and refined with distance restraints of O—H = 0.84 (2) and N—H = 0.87 (2) Å, and with $U_{iso}(H) = 1.2U_{eq}(N,O)$. Other H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethanol C—C bond), with C—H = 0.95–0.99 Å and with $U_{iso}(H) = 1.2$ (1.5 for methyl groups) times $U_{eq}(C)$.

Figures

Fig. 1. Molecular structure of *N*,*N*–dimethylethane-1,2-diaminium bis 3-hydroxybenzoate with atom labels and 50% probabilty ellipsoids.

Fig. 2. The H– bonded packing of *N*,*N*–dimethylethane-1,2-diaminium bis 3-hydroxybenzoate.

N,*N*-Dimethylethane-1,2-diaminium bis(3-hydroxybenzoate)

Crystal data	
$C_4H_{14}N_2^{2+}\cdot 2C_7H_5O_3^{-}$	F(000) = 776
<i>M_r</i> = 364.39	$D_x = 1.352 \text{ Mg m}^{-3}$ $D_m = 1.352 \text{ Mg m}^{-3}$ D_m measured by not measured
Monoclinic, Cc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: C -2yc	Cell parameters from 4375 reflections
a = 14.5439 (3) Å	$\theta = 2.3 - 27.2^{\circ}$
b = 17.5881 (4) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 7.7104 (2) Å	T = 293 K
$\beta = 114.777 \ (1)^{\circ}$	Needle, colourless
$V = 1790.76 (7) \text{ Å}^3$	$0.49\times0.12\times0.03~mm$
Z = 4	

Data collection

Bruker APEXII CCD diffractometer	4292 independent reflections
Radiation source: fine-focus sealed tube	3635 reflections with $I > 2\sigma(I)$

graphite	$R_{\rm int} = 0.048$
ϕ and ω scans	$\theta_{\text{max}} = 28.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: integration (<i>XPREP</i> ; Bruker, 2005)	$h = -19 \rightarrow 19$
$T_{\min} = 0.952, \ T_{\max} = 0.997$	$k = -23 \rightarrow 23$
14114 measured reflections	$l = -9 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.036$	H-atom parameters constrained
$wR(F^2) = 0.077$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.037P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 0.96	$(\Delta/\sigma)_{max} < 0.001$
4292 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
240 parameters	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$
2 restraints	Absolute structure: Flack (1983), 2119 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.00 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O6	-0.04233 (9)	0.58513 (7)	0.31587 (16)	0.0236 (3)
H6	-0.0877	0.6024	0.3410	0.035*
O4	0.24002 (8)	0.70635 (7)	1.07125 (16)	0.0235 (3)
N7	0.41688 (11)	0.92211 (8)	0.40647 (19)	0.0192 (3)
H9A	0.4078	0.9518	0.4914	0.029*
H19B	0.3910	0.9446	0.2926	0.029*
H8C	0.4828	0.9142	0.4427	0.029*
N10	0.19982 (10)	0.78889 (8)	0.3324 (2)	0.0202 (3)
H1	0.2057	0.7653	0.2325	0.024*
C7	0.05796 (12)	0.62591 (9)	0.6407 (2)	0.0174 (3)
H005	0.0023	0.6493	0.6479	0.021*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C1	0.25729 (12)	0.86195 (9)	0.3681 (2)	0.0189 (3)
H3A	0.2578	0.8860	0.4817	0.023*
H2B	0.2238	0.8961	0.2611	0.023*
O5	0.08907 (9)	0.66203 (7)	1.02369 (18)	0.0284 (3)
C6	0.04672 (12)	0.58805 (9)	0.4740 (2)	0.0177 (3)
C8	0.15193 (12)	0.62880 (8)	0.7962 (2)	0.0170 (3)
C4	0.36527 (12)	0.84847 (9)	0.3943 (3)	0.0225 (4)
H6A	0.4014	0.8195	0.5102	0.027*
H5B	0.3652	0.8193	0.2875	0.027*
C19	0.16091 (12)	0.66816 (9)	0.9766 (2)	0.0186 (3)
C9	0.23557 (12)	0.59331 (9)	0.7864 (2)	0.0190 (3)
H012	0.2989	0.5961	0.8888	0.023*
C10	0.22300 (13)	0.55372 (9)	0.6214 (2)	0.0215 (4)
H013	0.2780	0.5287	0.6155	0.026*
C5	0.12971 (12)	0.55123 (9)	0.4663 (2)	0.0206 (4)
H014	0.1224	0.5249	0.3566	0.025*
C15	0.09028 (13)	0.80408 (11)	0.2764 (3)	0.0297 (4)
H18C	0.0823	0.8318	0.3766	0.044*
H16D	0.0544	0.7567	0.2557	0.044*
H17E	0.0636	0.8336	0.1610	0.044*
C11	0.24122 (15)	0.73670 (10)	0.4997 (3)	0.0305 (4)
H13F	0.2456	0.7630	0.6119	0.046*
H14G	0.3075	0.7199	0.5180	0.046*
H12H	0.1973	0.6935	0.4770	0.046*
01	0.80917 (9)	0.53105 (7)	0.53286 (16)	0.0231 (3)
O2	0.78810 (9)	0.62504 (7)	0.32384 (18)	0.0267 (3)
O3	0.43039 (9)	0.70905 (7)	0.11670 (19)	0.0272 (3)
Н3	0.3697	0.7025	0.0857	0.041*
C23	0.60027 (13)	0.52862 (10)	0.4403 (2)	0.0229 (4)
H020	0.6388	0.4881	0.5111	0.027*
C26	0.75606 (12)	0.57987 (9)	0.4128 (2)	0.0192 (3)
C25	0.58608 (13)	0.64466 (10)	0.2662 (2)	0.0199 (4)
H022	0.6158	0.6824	0.2222	0.024*
C24	0.64459 (12)	0.58440 (9)	0.3717 (2)	0.0184 (3)
C22	0.49872 (13)	0.53375 (10)	0.4027 (3)	0.0256 (4)
H024	0.4694	0.4966	0.4493	0.031*
C20	0.48344 (12)	0.64932 (9)	0.2253 (2)	0.0204 (4)
C21	0.43992 (13)	0.59385 (10)	0.2960 (2)	0.0235 (4)
H026	0.3718	0.5969	0.2719	0.028*
Atomic displaceme	nt parameters $(Å^2)$			

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O6	0.0184 (6)	0.0337 (7)	0.0185 (6)	-0.0004 (5)	0.0076 (5)	-0.0060 (5)
O4	0.0171 (6)	0.0275 (7)	0.0248 (7)	-0.0043 (5)	0.0078 (5)	-0.0107 (5)
N7	0.0191 (7)	0.0217 (7)	0.0169 (7)	-0.0024 (6)	0.0077 (6)	-0.0010 (5)
N10	0.0213 (7)	0.0201 (7)	0.0199 (7)	-0.0032 (6)	0.0094 (6)	-0.0044 (6)
C7	0.0177 (8)	0.0160 (8)	0.0207 (8)	0.0001 (6)	0.0103 (7)	-0.0004 (7)

C1	0.0221 (8)	0.0167 (8)	0.0165 (8)	-0.0013 (7)	0.0068 (7)	-0.0007 (7)
O5	0.0234 (6)	0.0402 (8)	0.0262 (7)	-0.0092 (6)	0.0149 (6)	-0.0120 (6)
C6	0.0193 (8)	0.0163 (8)	0.0177 (8)	-0.0025 (6)	0.0081 (7)	0.0016 (6)
C8	0.0204 (8)	0.0130 (8)	0.0193 (8)	-0.0026 (6)	0.0099 (7)	0.0002 (6)
C4	0.0220 (9)	0.0171 (9)	0.0286 (10)	-0.0005 (7)	0.0107 (8)	-0.0008 (7)
C19	0.0180 (8)	0.0188 (8)	0.0168 (8)	0.0033 (7)	0.0051 (7)	0.0010 (7)
C9	0.0161 (8)	0.0180 (8)	0.0199 (8)	-0.0001 (6)	0.0047 (7)	0.0008 (7)
C10	0.0202 (8)	0.0196 (8)	0.0262 (10)	0.0041 (7)	0.0112 (7)	0.0001 (7)
C5	0.0248 (9)	0.0166 (8)	0.0224 (9)	-0.0012 (7)	0.0118 (8)	-0.0039 (7)
C15	0.0216 (9)	0.0359 (11)	0.0332 (11)	-0.0053 (8)	0.0132 (9)	-0.0075 (9)
C11	0.0375 (11)	0.0220 (9)	0.0344 (11)	-0.0023 (8)	0.0173 (10)	0.0045 (8)
O1	0.0219 (6)	0.0241 (6)	0.0191 (6)	0.0058 (5)	0.0046 (5)	0.0003 (5)
O2	0.0213 (6)	0.0294 (7)	0.0322 (7)	0.0044 (5)	0.0139 (6)	0.0091 (6)
O3	0.0149 (6)	0.0242 (6)	0.0393 (8)	0.0024 (5)	0.0081 (6)	0.0063 (6)
C23	0.0261 (9)	0.0210 (9)	0.0197 (9)	0.0017 (7)	0.0078 (7)	0.0026 (7)
C26	0.0190 (8)	0.0213 (9)	0.0151 (8)	0.0007 (7)	0.0050 (7)	-0.0051 (7)
C25	0.0202 (8)	0.0216 (8)	0.0198 (9)	-0.0031 (7)	0.0103 (7)	-0.0013 (7)
C24	0.0197 (8)	0.0196 (8)	0.0143 (8)	-0.0009 (6)	0.0057 (7)	-0.0034 (6)
C22	0.0271 (9)	0.0246 (9)	0.0271 (10)	-0.0066 (8)	0.0134 (8)	0.0003 (8)
C20	0.0194 (8)	0.0203 (9)	0.0187 (9)	0.0000 (7)	0.0053 (7)	-0.0034 (7)
C21	0.0174 (8)	0.0286 (9)	0.0240 (10)	-0.0042 (7)	0.0083 (7)	-0.0043 (7)

Geometric parameters (Å, °)

O6—C6	1.358 (2)	C10—C5	1.383 (2)
O6—H6	0.8200	С10—Н013	0.9300
O4—C19	1.2664 (19)	С5—Н014	0.9300
N7—C4	1.480 (2)	C15—H18C	0.9600
N7—H9A	0.8900	C15—H16D	0.9600
N7—H19B	0.8900	С15—Н17Е	0.9600
N7—H8C	0.8900	C11—H13F	0.9600
N10-C11	1.489 (2)	C11—H14G	0.9600
N10-C15	1.490 (2)	С11—Н12Н	0.9600
N10—C1	1.494 (2)	O1—C26	1.262 (2)
N10—H1	0.9100	O2—C26	1.260 (2)
С7—С8	1.391 (2)	O3—C20	1.363 (2)
С7—С6	1.395 (2)	О3—Н3	0.8200
С7—Н005	0.9300	C23—C22	1.384 (2)
C1—C4	1.516 (2)	C23—C24	1.394 (2)
С1—НЗА	0.9700	С23—Н020	0.9300
C1—H2B	0.9700	C26—C24	1.518 (2)
O5—C19	1.246 (2)	C25—C24	1.389 (2)
C6—C5	1.393 (2)	C25—C20	1.393 (2)
C8—C9	1.397 (2)	С25—Н022	0.9300
C8—C19	1.510 (2)	C22—C21	1.391 (2)
С4—Н6А	0.9700	С22—Н024	0.9300
С4—Н5В	0.9700	C20—C21	1.392 (2)
C9—C10	1.393 (2)	С21—Н026	0.9300
С9—Н012	0.9300		

С6—О6—Н6	109.5	C5—C10—C9	120.73 (15)
C4—N7—H9A	109.5	С5—С10—Н013	119.6
C4—N7—H19B	109.5	С9—С10—Н013	119.6
H9A—N7—H19B	109.5	C10—C5—C6	120.13 (15)
C4—N7—H8C	109.5	С10—С5—Н014	119.9
H9A—N7—H8C	109.5	C6—C5—H014	119.9
H19B—N7—H8C	109.5	N10-C15-H18C	109.5
C11—N10—C15	110.88 (14)	N10-C15-H16D	109.5
C11—N10—C1	112.24 (13)	H18C—C15—H16D	109.5
C15—N10—C1	110.30 (13)	N10-C15-H17E	109.5
C11—N10—H1	107.7	Н18С—С15—Н17Е	109.5
C15—N10—H1	107.7	H16D—C15—H17E	109.5
C1—N10—H1	107.7	N10-C11-H13F	109.5
C8—C7—C6	120.34 (15)	N10-C11-H14G	109.5
С8—С7—Н005	119.8	H13F—C11—H14G	109.5
С6—С7—Н005	119.8	N10-C11-H12H	109.5
N10-C1-C4	111.00 (13)	H13F—C11—H12H	109.5
N10-C1-H3A	109.4	H14G—C11—H12H	109.5
С4—С1—НЗА	109.4	С20—О3—Н3	109.5
N10-C1-H2B	109.4	C22—C23—C24	119.82 (17)
C4—C1—H2B	109.4	С22—С23—Н020	120.1
H3A—C1—H2B	108.0	С24—С23—Н020	120.1
O6—C6—C5	117.48 (15)	O2—C26—O1	125.20 (15)
O6—C6—C7	123.03 (14)	O2—C26—C24	117.38 (15)
C5—C6—C7	119.49 (15)	O1—C26—C24	117.43 (15)
С7—С8—С9	120.00 (15)	C24—C25—C20	120.85 (16)
C7—C8—C19	119.04 (14)	С24—С25—Н022	119.6
C9—C8—C19	120.92 (15)	С20—С25—Н022	119.6
N7—C4—C1	109.95 (13)	C25—C24—C23	119.48 (15)
N7—C4—H6A	109.7	C25—C24—C26	120.04 (15)
C1—C4—H6A	109.7	C23—C24—C26	120.47 (15)
N7—C4—H5B	109.7	C23—C22—C21	120.72 (16)
C1—C4—H5B	109.7	С23—С22—Н024	119.6
H6A—C4—H5B	108.2	С21—С22—Н024	119.6
O5—C19—O4	123.25 (15)	O3—C20—C21	123.19 (15)
O5—C19—C8	118.00 (14)	O3—C20—C25	117.46 (15)
O4—C19—C8	118.74 (14)	C21—C20—C25	119.35 (16)
C10—C9—C8	119.26 (16)	C22—C21—C20	119.76 (16)
С10—С9—Н012	120.4	С22—С21—Н026	120.1
С8—С9—Н012	120.4	С20—С21—Н026	120.1
C11—N10—C1—C4	64.80 (17)	C7—C6—C5—C10	-1.4 (2)
C15—N10—C1—C4	-171.02 (14)	C20—C25—C24—C23	-1.1 (2)
C8—C7—C6—O6	-178.08 (14)	C20-C25-C24-C26	179.29 (15)
C8—C7—C6—C5	1.8 (2)	C22—C23—C24—C25	0.0 (3)
C6—C7—C8—C9	-0.4 (2)	C22—C23—C24—C26	179.60 (15)
C6—C7—C8—C19	-178.15 (13)	O2—C26—C24—C25	-10.9 (2)
N10—C1—C4—N7	173.31 (13)	O1—C26—C24—C25	169.32 (15)
C7—C8—C19—O5	36.5 (2)	O2—C26—C24—C23	169.52 (15)
C9—C8—C19—O5	-141.30 (16)	O1—C26—C24—C23	-10.3 (2)

C7—C8—C19—O4	-142.72 (15)	C24—C23—C22—C21		0.4 (3)
C9—C8—C19—O4	39.5 (2)	C24—C25—C20—O3		-178.29 (15)
C7—C8—C9—C10	-1.5 (2)	C24—C25—C20—C21		1.8 (2)
C19—C8—C9—C10	176.23 (14)	C23—C22—C21—C20		0.3 (3)
C8—C9—C10—C5	1.9 (2)	O3—C20—C21—C22		178.71 (16)
C9—C10—C5—C6	-0.4 (3)	C25—C20—C21—C22		-1.3 (3)
O6—C6—C5—C10	178.49 (15)			
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
;	0.00	1.01	a -1 (a) (1 a)	

N7—H8C···O5 ⁱ	0.89	1.94	2.7169 (18)	145
N7—H9A…O1 ⁱⁱ	0.89	2.12	2.8904 (18)	145
N7—H19B…O1 ⁱⁱⁱ	0.89	1.90	2.7657 (19)	164
N10—H1···O4 ^{iv}	0.91	1.84	2.7367 (17)	168
O3—H3…O4 ^{iv}	0.82	1.84	2.6415 (16)	164.
O6—H6…O2 ^v	0.82	1.80	2.5897 (16)	161.

Symmetry codes: (i) *x*+1/2, -*y*+3/2, *z*-1/2; (ii) *x*-1/2, *y*+1/2, *z*; (iii) *x*-1/2, -*y*+3/2, *z*-1/2; (iv) *x*, *y*, *z*-1; (v) *x*-1, *y*, *z*.

Fig. 1

Fig. 2