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TIME AGGREGATION AND THE 
CONTRADICTIONS WITH CAUSAL 

RELATIONSHIPS: CAN ECONOMIC THEORY 
COME TO THE RESCUE? 

R Gupta* and K Komen 

Abstract

he literature on causality takes contradictory stands on the 
direction of causal relationships based on whether one uses 

temporally aggregated or systematically sampled data. As an 
example, using the relationship between a nominal target and the 
instrument used to achieve it, we show that one can fall back upon 
the data in itself, and analyse it from the perspective of economic 
theory, not only as a source of second opinion to econometric 
theories and Monte Carlo simulations, but also to draw proper 
conclusions regarding the form of the causal relationship that might 
be actually existing in the data. 

 
 
1. Introduction 
 
In a series of  related papers, Abeysinghe and Gulasekaran (2002 and 2004a, 
2004b) and Gulasekaran (2004), based on econometric theory and subsequently on 
Monte Carlo simulations, point out that systematic sampling of two co-integrated 
series tend to induce spurious causality, even if they have been differenced prior to 
being used. Specifically, the studies show that in the presence of unit roots, 
systematic sampling might actually indicate bi-directional causality, when in reality 
there exists only unidirectional causality between the variables.  This result is 
opposite to what has been known in the literature thus far concerning causal 
relationships between variables. Prior to this finding, papers of Sims (1971), Tiao 
and Wei (1976), Wei (1982), Cunningham and Vilasuso (1995) and Cunningham 
and Vilasuso (1997) have tended to suggest that in case of stationary series, it is 
systematic sampling, and not temporally aggregated data, that preserves the true 
direction of Granger causality. However, none of the latter set of papers 
investigated the role cointegration might have in influencing causality between 
variables, and, hence, were possibly flawed in drawing their conclusions regarding 
causal relationships with temporally aggregated data. In other words, the 
conclusions of these studies are only true if the series are merely stationary. 
However, if the series are co-integrated, it is advisable to move into an Error 
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Correction framework to test for Granger causality, since causality should emerge, 
at least in one direction, from the fact that the variables have a common trend, and 
thus, the current change in a specific variable should be partly the fallout of that 
variable moving in accordance with the trend value of the other variable.1 In this 
regard, it is important to draw attention to the study by Mamingi (1996), in which 
the author, using Monte Carlo experiments, indicates that Granger causality tests in 
Error Correction Models (ECMs) with temporally aggregated data is flawed, but 
with systematic sampling, for variables that are co-integrated, Granger causality 
distortion is largely absent.      
 
Note, the economic intuition behind the technical details of the effect of time 
aggregation on Granger causality can be explained as follows: Let us consider the 
general case of Vector Autoregressive (VAR) model of order k, VAR(k).  As the 
level of temporal aggregation increases, a stationary VAR(k) process might tend 
towards VAR(0) by absorbing all causal information into contemporaneous links, 
even when such correlations are absent in the non-aggregate process. Moreover, as 
temporal aggregation increases contemporaneous correlations may be all that is left 
between the series. As a result, one may not find Granger-causality at all with 
temporally aggregated data, which is however, not the case with systematic 
sampling of stationary data. On the other hand, a co-integrated VAR(p) process 
cannot shrink below VAR(1), simply because of the presence of unit roots.2 Thus, 
some of the adjustment coefficients of the error correction model will remain non-
zero regardless of the level of temporal aggregation. Therefore, weak exogeneity 
under cointegration helps, not only in contemporaneous conditioning, but also in 
Granger causality inference. 
 
In such a backdrop, we try and assay, if the possible contradiction that might arise 
regarding the direction of causality depending on the two alternative ways of 
processing the data can be resolved by falling back on the economic theory that 
possibly governs the relationship between these two variables. Though it is 
generally the other way round, i.e., researchers tend to empirically test economic 
theory, but given that the contradiction has emerged in the econometric theory 
itself, we propose that though there is no gainsaying the importance of econometric 
theory and simulations, the researcher should perhaps, learn to look beyond them in 
drawing the appropriate conclusions by understanding the underlying economic 
process that might be determining the movements of these two variables. To 
validate our point we look at the relationship between a nominal target and the 
monetary instrument used to achieve this target. Understandably, and ideally if the 
monetary policy framework is in place correctly, the relationship should be bi-
directional, since a change in the target, say due to external shocks or changes in 
expectations, would cause the monetary authority to adjust its instrument to 

                                                        
1See Section 2 for further details. 
 
2One must realize that if 1 2 n, ,.......� � �  are the roots of the non-aggregated autoregressive process, then 

m m
1 2, ,� � …. .. m

n�  are the roots of the aggregated process, where m is the order of aggregation 
(Abeysinghe and Gulasekaran, 2004a). 
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maintain its target, which in turn, should bring back the target to its equilibrium 
level, or at least move it in the direction desired by the policy makers. Though it 
must be realised, that changes in the target will not always result in changes in the 
instrument, since the authorities might be willing to wait and see if the target 
returns back to the equilibrium level on its own. However, over a long enough 
period where the instrument has changed, one should be able to observe a causal 
relationship that is two-ways.  Specifically, we look at the causal relationship, 
based on simple Granger Causality tests and the same in ECMs, if the variables are 
found to be co-integrated, between the CPIX inflation3 (target) and the repo rate 
(instrument) in South Africa, using monthly data over period of 2000:3 to 2007:10.  
The starting date of the sample is motivated by the fact that South Africa moved to 
an inflation targeting regime, targeting CPIX inflation, in February of 2000.4 
 
At this stage, it is important to lay out the basics of temporal aggregation and 
systematic sampling – two alternative ways of processing data due to their 
availability at different frequencies. Specifically, for our case, because CPIX 
inflation is reported monthly and the repo rate weekly, we must construct a time 
aggregated series for the repo rate before moving on to the analysis of causality 
between these two variables. Given this, temporal aggregation simply means 
aggregating over the four weeks of a month and using the average value as the 
monthly value corresponding to the monthly value of the CPIX inflation. 
Systematic sampling, on the other hand, involves using a single observation from 
the sampling interval, such as the end of the interval observation, which in our case 
would be the last week of a specific month, to construct the monthly series of the 
repo rate. Once we have generated the monthly data for the repo rate, either through 
temporal aggregation or systematic sampling, we can proceed to the analysis of 
causality between these two variables, first via simple Granger causality tests and 
then, the same in an ECM framework that allows us to analyse causality by taking 
explicit account of possible cointegration amongst the two variables. The rest of the 
paper is organized as follows: Section 2 presents a discussion on the simple 
Granger causality and the modified version of it in an ECM. Section 3 presents the 
data, the results, including the tests of stationarity and cointegration, and Section 5 
concludes.   
 
2. Econometric methodology5

 
In this section, we lay out the basics of the standard Granger causality tests and the 
same in an ECM. The standard Granger causality test examines whether past 
changes in one variable, y, help to explain current changes in another variable, x, 
over and above the information provided by the lagged values of x. If not, then one 
concludes that “y does not Granger cause x”. To determine whether causality runs 
in the opposite direction, from x to y, one basically repeats the experiment, but with 

                                                        
3CPIX is CPI excluding mortgage rates .  
 
4See Ludi and Ground (2006) for an excellent summary of the history of monetary policy in South 
Africa. 
 
5The discussion in this section depends heavily on Gupta (2004). 
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the variables interchanged. Four outcomes are feasible: (i) neither variable Granger 
cause the other; (ii) y causes x, but not the other way round; (iii) x causes y, but not 
vice versa; and (iv) y and x Granger cause each other (bi-causality). 
 
Formally, the standard Granger causality test can be represented by the following 
regression equation: 
 

m m

t 0 i t i t i t
i 1 i 1

ix x y� �
� �

�� � � � 	 � � � � 
� �  … (1) 

where 
 
�  is the first-difference operator and � x and � y are stationary time series. The 
null hypothesis that y does not Granger cause x is rejected if the coefficients i� , in 
the equation (1) are jointly significant, based on the standard F-test6. The null 
hypothesis that x does not Granger cause y is rejected if the i	 are jointly significant 
in equation (1), when� yt  replaces � xt on the left-hand side.  

 
Granger (1983, 1986) and Engle and Granger (1987) provided a more elaborate test 
of causality, which allows for causality between two variables emerging from a 
common trend or equilibrium relationship.7 Specifically, this alternative to the 
standard test for the Granger causality considers the possibility that the variable y in 
its lagged level form, may help to explain the current change in another variable, x, 
even if past changes in y did not. The intuition is that if y and x have a common 
trend, then the current change in x is partly the fallout of x moving in accordance 
with the trend value of y. Such causality may not be detected by the standard 
Granger causality test, which only examines whether lagged changes in a variable 
help to explain current changes in another variable. As with the standard Granger 
causality test, one may end up having reverse or even two-way causality. Note, as 
long as x and y have a common trend, causality must exist in at least one direction. 
The finding of no causality in either direction, as can be observed with the standard 
Granger causality test, is ruled out when the variables have a common trend.  

 
Formally, this alternative test for Granger causality is based on ECMs that take into 
account information from the co-integrated properties of time-series variables. Two 
or more variables, are co-integrated, that is they have an equilibrium relationship, if 
they share common trend(s). Causality testing, when variables are co-integrated, 
entails the use of the following ECM: 
 

                                                        
6Note an alternative way of looking at the analysis is formulating a restricted model of the following 

nature:
m

t 0 i t i t
i 1

x x �
�

� � � � 	 � � 
�  and then designing the F-statisticq,,n-k=[SSER-SSEU)*{n-

k}]/[(SSEU)*q] by recovering the error sum of squares from the unrestricted, SSEU and the restricted, 
SSER versions of the model  concern. Note q is the number of restrictions imposed with n = sample size 
and k = number of parameters estimated in the unrestricted model. 
 
7Such a linkage is particularly important in economics, since it characterizes the long-run equilibrium 
alignment that persists beyond the short-run dynamic adjustment.  
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q q

t 0 i t i t i t 1 t
i 1 i 1

i 1x x y� � �
� �

� �� � � � 	 � � � � � � 
� �  … (2) 

where 

xt and yt are established first-differenced stationary, co-integrated time series, and 
t 1��  is the lagged value of the error term from the following co-integration 

equation, with an intercept 0c : 
 

t 0 t tx c y� � 
 � �  … (3) 
 
The inclusion of t 1�� , which must be stationary if the first-differenced stationary x 
and y series are co-integrated, differentiates the ECM from the usual Granger 
causality regressions. By including t 1�� , the ECM introduces an additional route 
through which Granger causality can emerge. Based on equation (2) the null 
hypothesis that y does not Granger cause x now, is rejected not only if the i� ’s are 
jointly significant, but also if the coefficient on t 1��  is significant. Thus, unlike the 
standard Granger causality test, the error-correction approach as discussed by 
Granger (1983) allows for the possibility that y Granger causes x, even when the 
coefficients on lagged changes in y are jointly insignificant. More specifically, the 
error-correction model helps in capturing the short-run dynamic adjustment of the 
variables in concern.   
 
3. Data and results 
 
In this section, we discuss the data and the results from the simple Granger 
causality tests and the extended version of it in an ECM, besides the tests of 
staionarity and co-integration.  As discussed at the onset, we are looking at a 
bivariate framework based on monthly data covering the period of 2000:3 to 
2007:10 and involving the CPIX inflation (INFL-CPIX) and the repo rate. All data 
are obtained from the Quarterly Bulletin of the South African Reserve Bank 
(SARB). Note given that the repo rate is available at weekly frequencies, we 
generate a temporally aggregated repo rate series (REPO-AGG) and a repo rate 
series obtained via systematic sampling (REPO-SYS), where we choose the values 
of the last week of a particular month as the value of the repo rate for that specific 
month. 
 
As is standard in time series analysis, we start by studying the time series 
characteristics of the data. In this regard, we performed tests of stationarity on our 
variables (INFL-CPIX, REPO-AGG, REPO-SYS) using the Augmented–Dickey–
Fuller (ADF) test, the Dickey-Fuller test with GLS detrending (DF-GLS), the 
Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test and the Phillips- Perron (PP) 
test. As can be seen from Table 1 and Figure 1, the variables were found to follow 
an autoregressive process with a unit root, as the null hypothesis of a unit root 
could not be rejected for the variables, expressed in levels for the ADF, the DF-
GLS and the PP tests, while for the KPSS test, the null hypothesis of stationarity 
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was rejected. As the variables were found to be non-stationary, it paved the way for 
the test for co-integration between INFL-CPIX and REPO-AGG, and  INFL-CPIX 
and REPO-SYS.  
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Figure 1: Behaviour of the CPIX inflation and the repo rate 

 
To check whether the above set of variables are co-integrated, we first estimate four 
set of OLS-regressions between the variables, as in (3), by interchanging the 
dependent and independent variables8, and then checking if the resulting residuals 
from these regressions are stationary or not. The last four rows of Table 1 reports 
the stationarity tests of the residuals. Note ECM_i_j implies the error correction 
term from the regression of variable i = INFL-CPIX, REPO-AGG or REPO-SYS 
on variable j = INFL-CPIX, REPO-AGG or REPO-SYS, with i j� . As the tests 
show, all the residuals are stationary, implying that the INFL-CPIX and REPO-
AGG and INFL-CPIX and REPO-SYS are co-integrated. We also tested for the co-
integrating relationship between the variables using the Johansen (1991, 1995) 
approach. For this, we estimat stable9 Vector Autoregressive (VAR) models with 6 

                                                        
8The need to run the cointegration equations in both the directions arises from the study by Hendry 
(1986), who points out that both directions are equally valid apriori. 
9Stability of the VARs was ensured since no roots were found to lie outside the unit circle. 
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and 5 lags10 for INFL-CPIX and REPO-AGG, and INFL-CPIX and REPO-SYS 
respectively, and then allow the level-data to have linear trends, but the co-integrating 
equations to have only intercepts. Based on the Pantula Principle, both the Trace and 
the Maximum Eigen Value tests showed that there is one stationary relationship in 
the data (r = 1) at 5 percent level of significance for both the INFL-CPIX and 
REPO-AGG and INFL-CPIX and REPO-SYS specifications. The results are 
reported in Tables 2 and 3. 
 
Table 1: Unit root tests 
Series Model ADF DF-GLS KPSS PP  

� �� � �  3 2� �  � �� � �  � �� � �  � �� � � Conclusion 

INFL-CPIX 
��  

-2,301451 
 

7,985558*** 
 

-2,113163 
 

0,562819 
 

-1,403788 Non-
Stationary 

��  
-2,248787 6,708361*** -2,455019 

 
0,120110 -1,192604 

�  -0,683885    -0,453807 

D(INFL-CPIX) 
��  

-4,441204*** 
 

10,24079*** -2,232141** 
 

0,171983*** 
 

-6,284823*** Stationary 

��  
-4,512120 
 

9,473217*** -3,824103*** 
 

0,126760* 
 

-6,275553*** 

�  -4,484333***    -6,317933*** 

REPO-AGG 
��  

-1,970928 
 

21,74644*** 
 
 

-1,694095* 
 

0,686636 
 

-1,505139 Non-
Stationary 

��  
-1,900747 
 

16,32688*** -2,124960 
 

0,135452 -1,213722 

�  -0,418749    -0,472364 

D(REPO-AGG) 
��  

-3,162591** 
 

14,37207*** -3,181413*** 
 

0,168671*** 
 

-4,863007*** Stationary 

��  
-3,252642* 
 

9,779662*** -3,256703**  
 

0,108611*** 
 

4,956379*** 

�  -3,184169***    -4,887813*** 

REPO-SYS 
��  

-2,033464 
 

6,360373*** -1,744080* 
 

0,680410 
 

-1,516620 Non-
Stationary 

��  
-1,969689 
 

5,165756*** -2,205636 
 

0,138958 
 

-1,184220 

�  -0,397230    -0,445232 

D(REPO-SYS) 
��  

-4,108332 
 

43,48444*** -4,120624 
 

0,175749*** 
 

-8,704291 
  

Stationary 

��  
-4,202271 
 

29,23445*** -4,191009 
 

0,108571*** 
 

-8,783028 

�  -4,133432***    -8,737819*** 

ECM_INFL-
CPIX_REPO-AGG ��  

-3,266978** 7,844176*** -3,066011***  0,105620*** -2,801807* Stationary 

��  
-3,331011* 5,379915*** -3,371398** 0,063258*** -2,837049 

�  -3,286629***    -2,816587*** 

                                                        
10The optimal lag lengths for the estimated VARs were determined by the Akaike Information Criteria 
(AIC). Interestingly, the fact that different lag lengths were obtained in the estimated VARs of INFL-
CPIX and the repo rate derived under alternative forms of aggregation, is not surprising, and has been 
noted before in the literature by Marcellino (1999).  
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ECM_INFL-
CPIX_REPO-SYS ��  

-2,888377* 8,342721*** -
2,647032*** 

0,105142*** -3,106236** Stationary 

��  
-2,912599 4,241666** -2,918458* 0,058647*** -3,136704 

�  -2,905458***    -3,122483*** 

ECM_REPO-
AGG_INFL_CPIX ��  

-3,103991 7,289353*** -
2,651705*** 

0,379768* -2,759366* Stationary 

��  
-3,474149** 5,698025*** -3,514111** 0,051985*** -2,995492 

�  -3,121970***    -2,773341*** 

ECM_REPO-
SYS_INFL_CPIX ��  

-2,890546* 8,355255*** -2,406527**  0,383455* -3,028010** Stationary 

��  
-3,094328 4,797797*** -3,111639** 0,048521*** -3,259133* 

�  -2,907110***    -3,044308*** 
Notes: (i) *(**)[***] indicates statistical significance at 10(5)[1] percent level;  

(ii) , ,� �� � �  indicates the value of the test statistic with intercept and trend, intercept and neither, respectively;  

(iii) 3 2,� �  are the F-statistic of the test regression under the assumptions of  intercept and trend and intercept, respectively. 

 

 
Table 2: Cointegration test results (INFL-CPIX, REPO-AGG)  

Null hypothesis Alternative 
Hypothesis 

Test statistic 0.05 critical value Prob. ** 

Trace Statistic
R=0 r=1  20,51940*  15,49471  0,0080
R=1 r=2  2,570264 3,841466 0,1089
 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level. 
 * denotes rejection of the hypothesis at the 0.05 level. 
**MacKinnon-Haug-Michelis (1999) p-values.
Maximum Eigenvalue Statistic 
R=0 r=1   17,94914*   14,26460   0,0125
R=1 r=2    2,570264  3,841466   0,1089
 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level. 
 * denotes rejection of the hypothesis at the 0.05 level. 
**MacKinnon-Haug-Michelis (1999) p-values.
 
 
Table 3: Cointegration test results (INFL-CPIX, REPO-SYS)  

Null hypothesis Alternative 
Hypothesis 

Test statistic 0.05 critical value Prob. ** 

                                                                                                              Trace Statistic  
R=0 r=1  19,88720*  15,49471  0,0102
R=1 r=2  3,720587 3,841466 0,5370
 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level. 
 * denotes rejection of the hypothesis at the 0.05 level. 
**MacKinnon-Haug-Michelis (1999) p-values.
                                                                                                     Maximum Eigenvalue Statistic 
R=0 r=1   16,16661*   14,26460   0,0247
R=1 r=2    3,720587  3,841466   0,5370
 Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0,05 level. 
 * denotes rejection of the hypothesis at the 0,05 level. 
**MacKinnon-Haug-Michelis (1999) p-values.
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We start by looking at simple Granger causality tests for the CPIX inflation and the 
repo rate11, aggregated either via temporal aggregation or systematic sampling. As 
can be seen from models (a) and (b) in Table 4, in case of temporal aggregation, 
causality runs in only one direction from the target to the instrument. On the other 
hand, with systematic sampling, i.e., models (c) and (d), we observe bidirectional 
causality between INFL-CPIX and REPO-SYS. This is exactly what Abeysinghe 
and Gulasekaran (2002, 2004a and 2004b) and Gulasekaran (2004) pointed to in 
their studies. Though ideally in an inflation targeting framework, we would want to 
ensure that causality between the target and the instrument runs both ways, recall 
that the authors warned against the possibility of bidirectional causality between co-
integrated variables with systematic sampling, when actually causality is 
unidirectional. So at this stage, purely based on Abeysinghe and Gulasekaran (2002 
and 2004a and 2004b) and Gulasekaran (2004), we would want to believe that more 
reliance should be placed on the causality results obtained with temporal 
aggregation. Interestingly, this result has serious implications for South Africa’s 
inflation targeting framework, since it suggests that the transmission mechanism, 
whatever it might be that causes the repo rate to affect the target, is not working 
properly. Before we discuss the validity of the above set of results, we also check 
the robustness of these results econometrically, by moving onto an ECM and 
testing for Granger causality.    
 
 
Table 4: Standard Granger causality tests 
 
Model F-statistic Inference 
(a) DINFL-CPIX, DREPO-AGG 0,61384 REPO-AGG does not Granger cause INFL-CPIX 
(b) REPO-AGG,  DINFL-CPIX 3,96904*** INFL-CPIX Granger cause REPO-AGG 
(c) DINFL-CPIX,  DREPO-SYS 2,28607* REPO-SYS Granger cause INFL-CPIX 
(d) DREPO-SYS,  DINFL-CPIX 6,83711*** INFL-CPIX Granger cause REPO-SYS 
Notes:  
(i) Ordering is such that the first variable indicates the dependent variable; 
(ii) *(**)[***] indicates statistical significance at 10(5)[1] percent level.  
 
 
Remembering that in an ECM, the null hypothesis that a variable y does not 
Granger cause x,  requires not only the differenced lagged values of y to be jointly 
insignificant, but also the error correction term to be insignificant.  Given this, from 
Table 5 we see that the basic conclusion of bidirectional causality between INFL-
CPIX and REPO-SYS still holds for the systematically sampled data. However, 
with temporally aggregated repo rate, we now find that causality runs only in one 
direction with REPO-AGG Granger causing INFL-CPIX �  a result opposite of 
what was obtained in Table 4 under the simple tests of Granger causality. This 
result, perhaps, puts the findings of Mamingi (1996) into perspective the best. 
Recall, the author had indicated that Granger causality tests in Error Correction 
Models (ECMs) with temporally aggregated data is flawed, but with systematic 
sampling, for variables that are co-integrated, Granger causality distortion is largely 

                                                        
11As with the cointegration tests, the optimal lag lengths for Granger Causality tests between INFL-
CPIX and REPO-AGG and INFL-CPIX and REPO-SYS were determined by the AIC, obtained by 
estimating the corresponding bivariate VARs. The test suggested the use of 8 lags for the model with 
the aggregated data, and 4 for the systematically sampled data.  
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absent. Hence, now based on the Granger causality tests from the ECMs, a 
researcher would be more prone to believe that the causal relationship between the 
target and the instrument is actually bidirectional.      
 
 
Table 5: Granger causality tests in ECMs 
 
Model F-statistic t-statistic Inference 
(a) DINFL-CPIX, DREPO-

AGG, ECM_INFL-
CPIX_REPO-AGG(-1)  

0,707740 -1,811247* DREPO-AGG Granger cause DINFL-CPIX 

(b) DREPO-AGG,  DINFL-
CPIX, ECM_REPO-
AGG_ INFL-CPIX(-1) 

1,192738 -1,502515 DINFL-CPIX does not Granger cause 
DREPO-AGG 

(c) DINFL-CPIX,  DREPO-
SYS, ECM_ INFL-
CPIX_REPO-SYS(-1) 

2,435239* 
 

-1,911047* DREPO-SYS Granger cause DINFL-CPIX 

(d) DREPO-SYS,  DINFL-
CPIX, ECM_REPO-
SYS_ INFL-CPIX(-1) 

1,779417 -3,164446*** DINFL-CPIX Granger cause DREPO-SYS 

Notes:  
(i)  Ordering  is such that the first variable indicates the dependent variable; 
(ii)  *(**)[***] indicates statistical significance at 10(5)[1] percent level.  
 
 
So in summary, we find that with the repo rate temporally aggregated, simple 
Granger causality tests suggests that the causality runs from the inflation rate to the 
repo rate, while  the Granger causality tests in the ECM indicates the opposite, i.e., 
the repo rate is found to Granger cause inflation. However, with the systematically 
sampled repo rate, both the simple and the extended version of the Granger 
causality tests, suggested bi-directional causality. The most important question now 
is: What really is the direction of the causal relationship between the two variables 
in concern? To draw our conclusions let us try and analyse the relationship between 
the two variables purely from an economic point of view.  
 
As Figure 1 indicates, the repo rate, whether obtained via temporal aggregation or 
systematic sampling, moves in accordance with the CPIX inflation, hence, the fact 
that they were found to be co-integrated is not at all surprising. However, from the 
figure it is difficult to decipher the direction of causality. For this purpose, we 
decided to look at the data of the variables. Note, initially after South Africa 
decided to adopt an inflation targeting regime with a target band of 3 percent to 6 
percent, inflation rate stayed above the target band for until the eighth month of 
2003. This however, is not surprising since most likely the SARB was building 
credibility over this period. Once the economic agents realised that the SARB was 
serious about price stability, the inflation rate stayed within the band until the third 
month of 2007, and the SARB was able to continuously stay within the target via 
the changes in its instrument. Only recently has the inflation rate gone beyond the 
target band, and this is most likely due to the hikes in oil prices.  It would be 
irrational to believe that the CPIX inflation stayed within the target for nearly four 
years because economic conditions were favourable through out this period. The 
reason for it being unlikely is because, given that South Africa is a small open 
economy, it is affected not only by domestic shocks but regularly by external 
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shocks of different nature. Hence, it must be that the repo rate was able to respond 
to the inflationary pressures, and the CPIX inflation, in turn, responded to the repo 
rate.  So based on the economic events, we are more prone to conclude that the 
direction of causality between our two chosen variables is bi-directional. And, in 
this case, it happens that the causality tests carried out with the systematically 
sampled data most likely draws the correct conclusions. However, it must be 
emphasized that under a different situation, i.e., with a different set of variables, it 
is not at all impossible that causal inferences based on temporally aggregated data 
might be the appropriate one. But, we believe that given that an economic system is 
ideally described by a general equilibrium framework, it is more likely for the 
variables in the system to affect each other and, in turn, be affected by them.     
 
4. Conclusions 
 
While on one hand studies like Sims (1971), Tiao and Wei (1976), Wei (1982), 
Cunningham and Vilasuso (1995), Cunningham and Vilasuso (1997) and Mamingi 
(1996) tend to prefer systematic sampling when analysing causality,  more recent 
papers by Abeysinghe and Gulasekaran (2002, 2004a and 2004b) and Gulasekaran 
(2004) on the other hand, suggests that systematic sampling tend to induce spurious 
causality. Against such a backdrop, we try and investigate if such contradictions 
regarding the direction of causality depending on the two alternative ways of 
processing the data can be resolved by falling back on the economic theory that 
possibly governs the relationship between these two variables. 
 
To validate our point we look at the relationship between a nominal target and the 
monetary instrument used to achieve this target.  We indicate that, though there is 
no denying the importance of econometric theory and the role that Monte Carlo 
simulations play in enforcing such theories, it is perhaps, worthwhile to fall back 
upon the data in itself and analyse it from the perspective of economic 
theory/intuition, and economic conditions prevailing in the economy over the 
specific period in question, as a source of second opinion. However, we realise that 
such an approach might become exceedingly difficult as the number of variables 
increases. Thus, we suggest that given the general equilibrium structure of the 
economic system, it is perhaps, much well-served to answer such questions using 
estimated versions of dynamic (stochastic) general equilibrium frameworks, which 
apriori allows for the variables in the system to affect others and, in turn, get 
affected by them. We feel that this is the way forward, because the economy is far 
too complicated for Granger causality tests with temporally aggregated data or 
systematically sampled data to address causal relationships between variables of 
interest.     
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