Forecasting gold returns volatility over 1258–2023 : the role of moments

dc.contributor.authorMuddana, Thanoj K.
dc.contributor.authorBhimireddy, Komal S.R.
dc.contributor.authorMajumdar, Anandamayee
dc.contributor.authorGupta, Rangan
dc.date.accessioned2025-09-29T12:24:29Z
dc.date.issued2025-09
dc.descriptionDATA AVAILABILITY STATEMENT : The data that support the findings will be available in ASMBI Project at https://www.dropbox.com/scl/fi/mxui7hgwl6nh2qe1sqpe9/ASMBIProject.zip?rlkey=km5shvsaz99bnavad4s9a8o6i&e=1&st=gypjsg22&dl=0#:∼:text=Size-,ASMBI,-Project following an embargo from the date of publication to allow for commercialization of research findings.
dc.description.abstractWe analyze the role of leverage, lower and upper tail risks, skewness, and kurtosis of real gold returns in forecasting its volatility over the annual data sample from 1258 to 2023. To conduct our forecasting experiment, we first fit Bayesian time-varying parameters quantile regressions to real gold returns, under six alternative prior settings, to obtain the estimates of volatility (as inter-quantile range), lower and upper tail risks, skewness, and kurtosis. Second, we forecast the derived estimates of conditional volatility using the information contained in leverage of gold returns, tail risks, skewness, and kurtosis using recursively estimated linear predictive regressions over the out-of-sample periods. We find strong statistical evidence of the role of the moments-based predictors in forecasting gold returns volatility over the short to medium term, i.e., till 1–5-year ahead, when compared to the autoregressive benchmark. Robustness of our main result is also validated based on a shorter sample involving higher-frequency data. Our results have important implications for investors and policymakers.
dc.description.departmentEconomics
dc.description.embargo2026-09-15
dc.description.librarianhj2025
dc.description.sdgSDG-08: Decent work and economic growth
dc.description.urihttp://wileyonlinelibrary.com/journal/ASMB
dc.identifier.citationMuddana, T.K., Bhimireddy_K.S.R., Majumdar, A. & Gupta, R. 2025, 'Forecasting gold returns volatility over 1258–2023 : the role of moments', Applied Stochastic Models in Business and Industry, vol. 5, art. e70042, doi : 10.1002/asmb.70042.
dc.identifier.issn1524-1904 (print)
dc.identifier.issn1526-4025 (online)
dc.identifier.other10.1002/asmb.70042
dc.identifier.urihttp://hdl.handle.net/2263/104522
dc.language.isoen
dc.publisherWiley
dc.rights© 2025 John Wiley & Sons Ltd.. This is the pre-peer reviewed version of the following article : 'Forecasting gold returns volatility over 1258–2023 : the role of moments', Applied Stochastic Models in Business and Industry, vol. 41, no. 5, art. e70042, doi : 10.1002/asmb.70042. The definite version is available at : http://wileyonlinelibrary.com/journal/ASMB.
dc.subjectBayesian inference
dc.subjectLinear predictive regressions
dc.subjectMoments
dc.subjectReal gold returns
dc.subjectTime-varying parameters quantile regressions
dc.subjectVolatility forecasting
dc.titleForecasting gold returns volatility over 1258–2023 : the role of moments
dc.typeArticle

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: