Multivariate regression for electricity load forecasting in power systems

dc.contributor.authorJoy, E.R.
dc.contributor.authorBansal, Ramesh C.
dc.contributor.authorGhenai, C.
dc.contributor.authorGryazina, E.
dc.contributor.authorKumar, R.
dc.contributor.authorSujil, A.
dc.contributor.authorInternational Conference on Applied Energy (15th : 2023 : Doha, Qatar)
dc.date.accessioned2024-05-17T06:58:21Z
dc.date.available2024-05-17T06:58:21Z
dc.date.issued2024
dc.descriptionThis is a paper for 15th International Conference on Applied Energy (ICAE2023), Dec. 3-7, 2023, Doha, Qatar.en_US
dc.description.abstractThe development of smart grids in power system necessitates the need for forecasting the electricity load for the safe and economic functioning of electricity markets. A case study has been carried out considering a city’s electricity load data using Multivariate Regression model. An input database of the model is generated taking into account of peak and off-peak hours based on maximum and minimum load data obtained from the utility operator. The characteristics of the electricity load over the whole year have been primarily analyzed to obtain a better intuition on the load behavior. In this context, the information in the form of temperature, days, different time duration i.e., peak and off-peak hours and past load data have been given as input to the regression model. The accuracy of the method has been evaluated using Root Mean Square Error (RMSE). The results of the adapted model have been compared with Neural Network, Ensemble and Kernel methods.en_US
dc.description.departmentElectrical, Electronic and Computer Engineeringen_US
dc.description.librarianhj2024en_US
dc.description.sdgSDG-07:Affordable and clean energyen_US
dc.description.urihttps://www.energy-proceedings.orgen_US
dc.identifier.citationJoy, E.R., Bansal, R.C., Ghenai, C., Gryazina, E., Kumar, R. & Sujil, A. 2024, 'Multivariate regression for electricity load forecasting in power systems', Energy Proceedings, vol. 45, pp. 1-6, doi : 10.46855/energy-proceedings-11105.en_US
dc.identifier.issn2004-2965
dc.identifier.other10.46855/energy-proceedings-11105
dc.identifier.urihttp://hdl.handle.net/2263/96032
dc.language.isoenen_US
dc.publisherScanditale ABen_US
dc.rights© Energy Proceedings.en_US
dc.subjectElectricity loaden_US
dc.subjectLoad forecastingen_US
dc.subjectMachine learningen_US
dc.subjectMultivariate regressionen_US
dc.subjectSharjah Electricity, Water and Gas Authority (SEWA)en_US
dc.subjectSDG-07: Affordable and clean energyen_US
dc.titleMultivariate regression for electricity load forecasting in power systemsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Joy_Multivariate_2024.pdf
Size:
1.47 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: