Modeling and optimization of energy efficiency and product quality in staple food roasting using machine learning : a case study on cassava processing

dc.contributor.authorMwape, Mwewa Chikonkolo
dc.contributor.authorKulig, Boris
dc.contributor.authorNurkhoeriyati, Tina
dc.contributor.authorRoman, Franz
dc.contributor.authorParmar, Aditya
dc.contributor.authorEmmambux, Mohammad Naushad
dc.contributor.authorHensel, Oliver
dc.date.accessioned2025-03-27T11:58:19Z
dc.date.available2025-03-27T11:58:19Z
dc.date.issued2025-04
dc.descriptionDATA AVAILABILITY: The authors affirm that the data supporting the study's conclusions are available within the article [and/or] in supplementary materials.en_US
dc.description.abstractPlease read abstract in the article.en_US
dc.description.departmentConsumer and Food Sciencesen_US
dc.description.librarianhj2024en_US
dc.description.sdgSDG-07:Affordable and clean energyen_US
dc.description.sdgSDG-09: Industry, innovation and infrastructureen_US
dc.description.sdgSDG-12:Responsible consumption and productionen_US
dc.description.sponsorshipThe SUNGARI project from the German Federal Ministry of Education and Research and the European Union's Long-Term Joint European Union-African Union Research and Innovation Partnership on Renewable Energy (LEAP-RE).en_US
dc.description.urihttps://www.sciencedirect.com/journal/thermal-science-and-engineering-progressen_US
dc.identifier.citationMwape, M.C., Kulig, B., Nurkhoeriyati, T. et al. 2025, 'Modeling and optimization of energy efficiency and product quality in staple food roasting using machine learning: a case study on cassava processing', Thermal Science and Engineering Progress, vol. 60, art. 103258, pp. 1-20, doi : 10.1016/j.tsep.2025.103258.en_US
dc.identifier.issn2451-9049 (online)
dc.identifier.other10.1016/j.tsep.2025.103258
dc.identifier.urihttp://hdl.handle.net/2263/101762
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_US
dc.subjectRoasting prediction modelsen_US
dc.subjectMachine learning modelingen_US
dc.subjectEnergy efficiencyen_US
dc.subjectData-driven designen_US
dc.subjectPost-harvesten_US
dc.subjectI-optimal designsen_US
dc.subjectSDG-07: Affordable and clean energyen_US
dc.subjectSDG-09: Industry, innovation and infrastructureen_US
dc.subjectSDG-12: Responsible consumption and productionen_US
dc.titleModeling and optimization of energy efficiency and product quality in staple food roasting using machine learning : a case study on cassava processingen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Mwape_Modeling_2025.pdf
Size:
5.93 MB
Format:
Adobe Portable Document Format
Description:
Article
Loading...
Thumbnail Image
Name:
Mwape_ModelingSuppl_2025.xlsx
Size:
1.15 MB
Format:
Microsoft Excel XML
Description:
Supplementary Material 1

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: