The influence of different tree species and age on the surface water balance of a small commercial forestry catchment

dc.contributor.authorKaptein, Nkosinathi D.
dc.contributor.authorClulow, Alistair D.
dc.contributor.authorEverson, Colin Stuart
dc.contributor.authorToucher, Michele L.
dc.contributor.authorGermishuizen, Ilaria
dc.date.accessioned2025-04-22T12:51:38Z
dc.date.available2025-04-22T12:51:38Z
dc.date.issued2024-08
dc.descriptionDATA AVAILABILITY : Data will be made available on request.en_US
dc.description.abstractAcacia mearnsii and Eucalyptus dunnii plantations play an important role in the South African economy as a source for a variety of wood products. However, these species are commonly associated with high evapotranspiration (ET) which may cause streamflow reduction, affecting downstream water users who are reliant on the stream for survival. The potential future increase in exotic plantations worldwide necessitates understanding the impact of these different species on the water balance, hence the streamflow. At the Two Streams research catchment in South Africa, intense hydrological observations (streamflow, ET and weather) have been conducted on A. mearnsii for almost two decades. In 2018, the catchment was clear-felled with subsequent replanting of E. dunnii and hydrological measurements continued. This provided an opportunity to present observations of the surface water balance of the catchment. However, gaps in the data at various times prevented a compilation of a continuous hydrological record. Therefore, three window periods, with complete records of streamflow, ET and precipitation, and with similar weather conditions, were compared. Only the interception loss (Il) was estimated using the Von Hoyningen-Huene method. First window, A. mearnsii trees were three years old (Amear3), second window, A. mearnsii trees were seven years old (Amear7) and the third window, E. dunnii trees were three years old (Edun3). Results indicated a negative catchment surface water balance for all window periods. During the Amear7 window period, the Il was highest compared to the young crops, which reduced effective precipitation, in turn contributing to the lowest measured streamflow. The negative surface water balance and high ET, suggests that trees were accessing water not quantified in the surface water balance. Crops of all three window periods were found to have the potential to significantly reduce the streamflow, which may in turn affect downstream water users. Further research using isotopes to trace the sources of water used by trees in the system is suggested.en_US
dc.description.departmentPlant Production and Soil Scienceen_US
dc.description.sdgSDG-06:Clean water and sanitationen_US
dc.description.sdgSDG-15:Life on landen_US
dc.description.urihttps://www.elsevier.com/locate/ejrhen_US
dc.identifier.citationKaptein, N.D., Clulow, A.D., Everson, C.S. et al. 2024, 'The influence of different tree species and age on the surface waterbalance of a small commercial forestry catchment', Journal of Hydrology: Regional Studies, vol. 54, art. 101893, no. 1-13. https://doi.org/10.1016/j.ejrh.2024.101893.en_US
dc.identifier.issn2214-5818
dc.identifier.issn10.1016/j.ejrh.2024.101893
dc.identifier.urihttp://hdl.handle.net/2263/102181
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2024 The Author(s). This is an open access article under the CC BY-NC license.en_US
dc.subjectAcacia mearnsiien_US
dc.subjectEucalyptus dunniien_US
dc.subjectEvapotranspirationen_US
dc.subjectStreamflowen_US
dc.subjectEucalyptus dunniien_US
dc.subjectPlantationsen_US
dc.subjectSDG-15: Life on landen_US
dc.subjectSDG-06: Clean water and sanitationen_US
dc.titleThe influence of different tree species and age on the surface water balance of a small commercial forestry catchmenten_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kaptein_Influence_2024.pdf
Size:
3.49 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: