Rise time evaluation of the heat flux microsensor (HFM) on a hot-air-gun test rig
Loading...
Date
Authors
Demuynck, J.
De Paepe, M.
Sierens, R.
Verhelst, S.
Chana, K.S.
Journal Title
Journal ISSN
Volume Title
Publisher
International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
Abstract
Paper presented at the 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Mauritius, 11-13 July, 2011.
Investigating the heat transfer inside internal combustion engines is key in the search for higher efficiency, higher power output and lower emissions. To understand the process and to validate model predictions, heat flux measurements inside an engine have to be conducted. In previous works, we have always used a commercially available thermopile to measure the heat transfer in a hydrogen combustion engine, but its large dimensions pose concerns about the sensor’s response time. Therefore, measurements have been done on a calibration rig with a hot air flow as heat source. This paper presents a comparison of the rise time of the thermopile with that of an alternative sensor developed for heat transfer measurements in gas turbines. The papers results in an increased confidence in the thermopile sensor, because its response time is at least as good as that of the alternative sensor. The results do show that the reproducibility of the test rig can be improved. Moreover, due to fluctuations in the heat flux level generated by the source, only the order of magnitude of the measured heat flux of two different experiments was comparable. Therefore, a new calibration rig will be developed to improve the reproducibility and to increase stability of the heat flux level of the heat source.
Investigating the heat transfer inside internal combustion engines is key in the search for higher efficiency, higher power output and lower emissions. To understand the process and to validate model predictions, heat flux measurements inside an engine have to be conducted. In previous works, we have always used a commercially available thermopile to measure the heat transfer in a hydrogen combustion engine, but its large dimensions pose concerns about the sensor’s response time. Therefore, measurements have been done on a calibration rig with a hot air flow as heat source. This paper presents a comparison of the rise time of the thermopile with that of an alternative sensor developed for heat transfer measurements in gas turbines. The papers results in an increased confidence in the thermopile sensor, because its response time is at least as good as that of the alternative sensor. The results do show that the reproducibility of the test rig can be improved. Moreover, due to fluctuations in the heat flux level generated by the source, only the order of magnitude of the measured heat flux of two different experiments was comparable. Therefore, a new calibration rig will be developed to improve the reproducibility and to increase stability of the heat flux level of the heat source.
Description
Keywords
Heat flux microsensor, HFM, Thermopile, Hot-air-gun, Internal combustion engines
Sustainable Development Goals
Citation
Demuynck, J, De Paepe, M, Sierens, R, Verhelst, S & Chana, KS 2011, Rise time evaluation of the heat flux microsensor (HFM) on a hot-air-gun test rig, Paper presented to the 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Mauritius, 11-13 July, 2011.