Nanoarchitectonics with redox active site modulation in bimetallic MIL-125 (Ti, Mn) MOF for enhanced supercapacitor performance

dc.contributor.authorOtun, Kabir Opeyemi
dc.contributor.authorDiop, Ndeye Fatou
dc.contributor.authorMaphiri, Vusani Muswa
dc.contributor.authorFasakin, Oladepo
dc.contributor.authorKitenge, Vianney Ngoyi
dc.contributor.authorThior, Souleymane
dc.contributor.authorManyala, Ncholu I.
dc.contributor.emailncholu.manyala@up.ac.za
dc.date.accessioned2026-01-22T08:14:47Z
dc.date.available2026-01-22T08:14:47Z
dc.date.issued2025-05-05
dc.description.abstractMetal-organic frameworks (MOFs) with dual metal centres have received considerable attention as electrode materials for supercapacitor applications due to their redox-active sites and unique structural architecture. Herein, we present a simple one-step solvothermal approach to synthesize and optimize bimetallic MIL-125(Ti,Mn) MOF, where redox active site modulation enhances its electrochemical performance in asymmetric supercapacitors. The unique structure of MIL-125(Ti,Mn), featuring a spindle-like morphology anchored by flake-like sheets, facilitates interaction between active sites and electrolyte ions and modulates the redox active sites, leading to improved electrochemical performance. As such, the optimized MIL-125(Ti)-Mn-2 electrode demonstrates a high specific capacity of 137.2 mAhg−1 at 1 A g–1 and a capacity retention of more than 76.3 % after 5000 cycles. Furthermore, an asymmetric supercapacitor built with Mn-MIL-125(Ti)-2 and activated carbon achieved a high specific energy of 22.74 Wh kg–1 at a specific power of 996 W kg–1, while also demonstrating excellent stability with 71.2 % capacitance retention over 10,000 cycles at 10 Ag−1. This one-pot incorporation strategy offers a novel route to modulate the structure of MIL-125(Ti) via Mn2+ doping for enhanced supercapacitor performance.
dc.description.departmentPhysics
dc.description.librarianam2026
dc.description.sdgSDG-12: Responsible consumption and production
dc.description.sponsorshipThe National Research Foundation (NRF) for the support provided through the Sasol-NRF grant.
dc.description.urihttps://www.sciencedirect.com/journal/journal-of-alloys-and-compounds
dc.identifier.citationOtun, K.O., Diop, N.F., Maphiri, V.M. et al. 2025, 'Nanoarchitectonics with redox active site modulation in bimetallic MIL-125 (Ti, Mn) MOF for enhanced supercapacitor performance', Journal of Alloys and Compounds, vol. 1029, art. 180753, pp. 1-15. https://doi.org/10.1016/j.jallcom.2025.180753.
dc.identifier.issn0925-8388 (print)
dc.identifier.issn1873-4669 (online)
dc.identifier.other10.1016/j.jallcom.2025.180753
dc.identifier.urihttp://hdl.handle.net/2263/107483
dc.language.isoen
dc.publisherElsevier
dc.rights© 2025 The Authors. This work is licensed under the Creative Commons Attribution License.
dc.subjectMIL-125(Ti)
dc.subjectBimetallic MOFs
dc.subjectAsymmetric device
dc.subjectSupercapacitors
dc.subjectMetal-organic framework (MOF)
dc.titleNanoarchitectonics with redox active site modulation in bimetallic MIL-125 (Ti, Mn) MOF for enhanced supercapacitor performance
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Otun_Nanoarchitectonics_2025.pdf
Size:
12.56 MB
Format:
Adobe Portable Document Format
Description:
Article
Loading...
Thumbnail Image
Name:
Otun_NanoarchitectonicsSuppl_2025.docx
Size:
901.16 KB
Format:
Microsoft Word XML
Description:
Supplementary Material

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: