The recovery theorem with application to risk management

dc.contributor.authorVan Appel, Vaughan
dc.contributor.authorMare, Eben
dc.contributor.emaileben.mare@up.ac.zaen_ZA
dc.date.accessioned2021-03-24T08:54:00Z
dc.date.available2021-03-24T08:54:00Z
dc.date.issued2020
dc.description.abstractThe forward-looking nature of option prices provides an appealing way to extract risk measures. In this paper, we extract forecast densities from option prices that can be used in forecasting risk measures. More specifically, we extract a real-world return density forecast, implied from option prices, using the recovery theorem. In addition, we backtest and compare the predictive power of this real-world return density forecast with a risk-neutral return density forecast, implied from option prices, and a simple historical simulation approach. In an empirical study, using the South African FTSE/JSE Top 40 index, we found that the extracted real-world density forecasts, using the recovery theorem, yield satisfying forecasts of risk measures.en_ZA
dc.description.departmentInsurance and Actuarial Scienceen_ZA
dc.description.departmentMathematics and Applied Mathematicsen_ZA
dc.description.librarianam2021en_ZA
dc.description.urihttps://sastat.org.za/journalen_ZA
dc.description.urihttp://www.journals.co.za/content/journal/sasjen_ZA
dc.identifier.citationVan Appel, V. & Mare, E. 2020, 'The recovery theorem with application to risk management', South African Statistical Journal, vol. 54, no. 1, pp. 65-91.en_ZA
dc.identifier.issn0038-271X
dc.identifier.urihttp://hdl.handle.net/2263/79050
dc.language.isoenen_ZA
dc.publisherSouth African Statistical Associationen_ZA
dc.rightsSouth African Statistical Associationen_ZA
dc.subjectDensity forecastingen_ZA
dc.subjectRecovery theoremen_ZA
dc.subjectRisk managementen_ZA
dc.subjectValue at risken_ZA
dc.titleThe recovery theorem with application to risk managementen_ZA
dc.typeArticleen_ZA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VanAppel_Recovery_2020.pdf
Size:
438.39 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: