Using liquid air as a way to store energy
Loading...
Date
Authors
Ameel, B.
De Paepe, M.
Journal Title
Journal ISSN
Volume Title
Publisher
International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
Abstract
Paper presented at the 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Mauritius, 11-13 July, 2011.
Energy storage is becoming an issue in a world were renewable energy will probably be the major way of energy production. Liquefaction of gasses in order to store the liquid is being looked at. This liquid can then be expanded in a Rankine cycle in order to recover the energy. If waste heat is used as input for the boiler, this can be an interesting technology to raise energy efficiency in industry. In this paper an analysis is made of the efficiency of storing liquefied air. Starting from the thermodynamics of the basic cycle, more complex combined cycles are studied. It is clear the ideal cycles have a good efficiency. Taking real expander efficiencies into account reduces the output a lot. Using combined cycles for liquefaction and energy production do not raise efficiency in a significant way. Conversion efficiencies are in the order of 20 to 50% , making these cycles comparable to hydrogen storage and compressed air storage.
Energy storage is becoming an issue in a world were renewable energy will probably be the major way of energy production. Liquefaction of gasses in order to store the liquid is being looked at. This liquid can then be expanded in a Rankine cycle in order to recover the energy. If waste heat is used as input for the boiler, this can be an interesting technology to raise energy efficiency in industry. In this paper an analysis is made of the efficiency of storing liquefied air. Starting from the thermodynamics of the basic cycle, more complex combined cycles are studied. It is clear the ideal cycles have a good efficiency. Taking real expander efficiencies into account reduces the output a lot. Using combined cycles for liquefaction and energy production do not raise efficiency in a significant way. Conversion efficiencies are in the order of 20 to 50% , making these cycles comparable to hydrogen storage and compressed air storage.
Description
Keywords
Liquid air, Energy storage, Rankine cycle, Hydrogen storage, Liquefaction of gasses
Sustainable Development Goals
Citation
Ameel, B & De Paepe, M 2011, Using liquid air as a way to store energy, Paper presented to the 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Mauritius, 11-13 July, 2011.