Long-term passive monitoring of solar UV radiation using radiochromic films
Loading...
Date
Authors
Yu, K.N.
Chun, S.L.
Chan, P.M.
Journal Title
Journal ISSN
Volume Title
Publisher
3rd Southern African Solar Energy Conference, South Africa, 11-13 May, 2015.
Abstract
Paper presented to the 3rd Southern African Solar Energy Conference, South Africa, 11-13 May, 2015.
The solar ultraviolet (UV) spectrum spans over a range of wavelengths, namely, UVA (315–400 nm), UVB (280–315 nm) and UVC (100–280 nm). The UV radiation reaching the surface of the Earth comprises of mainly UVA, a small amount of UVB and essentially no UVC. Solar UV can affect the human health. An under-dose will lead to diseases such as rickets and osteoporosis, while an over-dose will cause sunburns, skin cancers and cataracts. It is therefore pertinent to design methods for integrated long-term measurements of UV radiation (e.g., over 1 day). Recently, we succeeded in demonstrating the feasibility of using the Gafchromic EBT3 radiochromic film to quantify solar (UVA+UVB) exposures (in Jcm-2). These radiochromic-film products were originally developed for clinical dosimetric applications, with visible-light absorption changes upon X-ray irradiation, but were understood to be also responsive to UV radiations. We found that the usable range of UV exposures for the EBT3 film was from ~0.2 to ~30 Jcm-2. However, the maximum UV exposure could reach 50 Jcm-2 per day, so we need a wider usable range. The current work proposed modifications to the EBT3 film for longer-term measurements (e.g., over 1 day). We explored the UV responses of EBT3 films covered with 2 and 5 barriers, each barrier being a blue polypropylene film with a thickness of 0.3 mm. The usable range for the film with 2 barriers was from ~4 to ~40 Jcm-2, while the usable range for the film with 5 barriers was from ~30 to ~300 Jcm-2. Using both EBT3 films covered with 2 and 5 barriers will give a continuous usable range from 4 to 300 Jcm-2, which will be useful for a consecutive 6-d UV exposure measurement.
The solar ultraviolet (UV) spectrum spans over a range of wavelengths, namely, UVA (315–400 nm), UVB (280–315 nm) and UVC (100–280 nm). The UV radiation reaching the surface of the Earth comprises of mainly UVA, a small amount of UVB and essentially no UVC. Solar UV can affect the human health. An under-dose will lead to diseases such as rickets and osteoporosis, while an over-dose will cause sunburns, skin cancers and cataracts. It is therefore pertinent to design methods for integrated long-term measurements of UV radiation (e.g., over 1 day). Recently, we succeeded in demonstrating the feasibility of using the Gafchromic EBT3 radiochromic film to quantify solar (UVA+UVB) exposures (in Jcm-2). These radiochromic-film products were originally developed for clinical dosimetric applications, with visible-light absorption changes upon X-ray irradiation, but were understood to be also responsive to UV radiations. We found that the usable range of UV exposures for the EBT3 film was from ~0.2 to ~30 Jcm-2. However, the maximum UV exposure could reach 50 Jcm-2 per day, so we need a wider usable range. The current work proposed modifications to the EBT3 film for longer-term measurements (e.g., over 1 day). We explored the UV responses of EBT3 films covered with 2 and 5 barriers, each barrier being a blue polypropylene film with a thickness of 0.3 mm. The usable range for the film with 2 barriers was from ~4 to ~40 Jcm-2, while the usable range for the film with 5 barriers was from ~30 to ~300 Jcm-2. Using both EBT3 films covered with 2 and 5 barriers will give a continuous usable range from 4 to 300 Jcm-2, which will be useful for a consecutive 6-d UV exposure measurement.
Description
Keywords
Solar UV radiation, Radiochromic films, Long-term passive monitoring, X-ray irradiation, Blue polypropylene film
Sustainable Development Goals
Citation
Yu, K.N., Chun, S.L. & Chan, P.M. 2015, 'Long-term passive monitoring of solar UV radiation using radiochromic films', Paper presented to the 3rd Southern African Solar Energy Conference, South Africa, 11-13 May, 2015.