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Abstract: The growing sophistication of malware has resulted in diverse challenges, especially
among security researchers who are expected to develop mechanisms to thwart these malicious
attacks. While security researchers have turned to machine learning to combat this surge in malware
attacks and enhance detection and prevention methods, they often encounter limitations when it
comes to sourcing malware binaries. This limitation places the burden on malware researchers to
create context-specific datasets and detection mechanisms, a time-consuming and intricate process
that involves a series of experiments. The lack of accessible analysis reports and a centralized platform
for sharing and verifying findings has resulted in many research outputs that can neither be replicated
nor validated. To address this critical gap, a malware analysis data curation platform was developed.
This platform offers malware researchers a highly customizable feature generation process drawing
from analysis data reports, particularly those generated in sandbox-based environments such as
Cuckoo Sandbox. To evaluate the effectiveness of the platform, a replication of existing studies was
conducted in the form of case studies. These studies revealed that the developed platform offers an
effective approach that can aid malware detection research. Moreover, a real-world scenario involving
over 3000 ransomware and benign samples for ransomware detection based on PE entropy was
explored. This yielded an impressive accuracy score of 98.8% and an AUC of 0.97 when employing
the decision tree algorithm, with a low latency of 1.51 ms. These results emphasize the necessity
of the proposed platform while demonstrating its capacity to construct a comprehensive detection
mechanism. By fostering community-driven interactive databanks, this platform enables the creation
of datasets as well as the sharing of reports, both of which can substantially reduce experimentation
time and enhance research repeatability.

Keywords: malware; malware feature engineering; malware datasets; malware detection; machine
learning; artificial intelligence

1. Introduction

The escalating prevalence of cyberattacks presents a daunting and unrelenting chal-
lenge to organizations worldwide. This problem is further compounded by the exponential
increase in the volume of malware [1]. According to AV-Test, cybersecurity researchers iden-
tified and catalogued over one billion new malware samples in 2022 alone [1]. Cyberattacks
are often orchestrated by malicious actors with varying degrees of sophistication, and cast
a long shadow over businesses and institutions. Not only do they jeopardize sensitive data
and critical infrastructure, but they also disrupt regular business operations, potentially
leading to reputational damage and substantial financial losses [2]. This growing threat
landscape requires constant vigilance and innovative strategies to defend against malware
attacks [3–5]. In this context, security researchers are tasked with creating robust detection
and prevention mechanisms. These require solutions with the formidable capability of
staying one step ahead of cybercriminals [6,7]. This imperative has spurred an environment
of constant innovation and adaptation, pushing security researchers to think creatively
and harness cutting-edge technologies to safeguard digital assets. Among the arsenal of
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tools and approaches at their disposal, artificial intelligence, particularly machine learn-
ing, has emerged as a long-term solution to combat malware threats. With the ability of
machine learning to discern intricate patterns and anomalies within vast datasets, security
researchers have made significant strides in detecting and deterring a multitude of malware
attacks [8–10]. The effectiveness of machine learning in identifying new and previously
unseen attack vectors presents a promising and forward-looking approach to cyberdefense.

While machine learning holds great promise, its effectiveness is intricately tied to
the quality and quantity of the data on which models are trained [4,11]. High-quality
data are characterized by cleanliness and completeness along with a lack of missing or
corrupted information. The integrity of the data is paramount, as even minor discrepancies
or inaccuracies can propagate through the learning process, leading to skewed models and
erroneous results. Moreover, the distribution and balance of data across different classes
or categories are of critical importance. For instance, when training a machine learning
model to distinguish between benign and malicious software, having a balanced dataset
with a similar number of instances from each class is vital [12]. Imbalances can lead to
biased models that overemphasize the majority class, potentially resulting in misleadingly
high accuracy scores. Security researchers often focus on specific attributes or features that
characterize malware or malicious behaviour. This attribute-based approach requires the
execution of numerous malware samples within a controlled environment, often referred
to as a sandbox, in order to capture the relevant data needed for machine learning [4,5,13].
While this process is essential for feature engineering, it is undeniably labour-intensive and
susceptible to errors, potentially impacting the reliability and accuracy of the acquired data.
A substantial portion of the raw data generated during these experiments often remains
underutilized, and in most cases is undisclosed. This underutilization stems from the
absence of platforms that can effectively manage, store, and make such data accessible to
the broader research community, resulting in a considerable loss of valuable insights and
research potential.

To address these challenges and bridge the gap between data availability and research
needs, in this paper, we introduce a malware analysis data curation platform. This platform
is designed to empower security researchers by offering a highly customizable feature
generation process sourced from analysis data reports, particularly those generated in
sandboxed environments such as Cuckoo Sandbox [14]. The platform aims to streamline
the labour-intensive data acquisition process while providing a centralized repository for
malware analysis data. In this way, it enables researchers to more efficiently build datasets,
contribute reports, and collaborate with peers. Through community-driven interactive
databanks, the platform facilitates a collective effort to reduce experimentation time and
enhance the repeatability and verifiability of research outcomes.

The remainder of this paper is structured as follows. First, the background necessary
to better understand the problem at hand is discussed. Thereafter, the proposed platform
is presented and further discussed using a high-level process model. This is followed by
an evaluation of the platform, which is achieved through the NIST validation cycle [15]
while abiding by software engineering principles. To further highlight the usefulness of the
platform, three case studies that involved malware detection with Cuckoo Sandbox reports
are assessed to illustrate how the platform can aid researchers. Another method used to
show the effectiveness of the platform is the reproduction of the identified case studies
using the platform, followed by a comparison of the results. Furthermore, a literature search
is conducted to determine the extent to which the platform can aid malware detection
research, and a comparative analysis is conducted to determine whether any similar
platforms currently exist and how the proposed platform compares to them. Finally, a
real-world scenario is then used to illustrate how the platform can foster new novel research
approaches using PE entropy for ransomware detection.
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2. Background

The process of constructing concrete and reliable datasets for machine learning appli-
cations is a formidable undertaking [5,16]. Crafting a dataset that stands as a dependable
foundation for robust machine learning models requires a comprehensive understanding
of the data, mastery of data processing techniques, and the ability to interpret the data
and extract meaningful insights. Fundamentally, the quality and relevance of a dataset
hinges on its alignment with the intended purpose, making clarity of objectives a crucial
starting point. The journey to create such datasets comprises numerous methodologies,
each tailored to specific objectives, and often relies on meticulous domain expertise.

In the realm of machine learning, the availability of comprehensive datasets is paramount.
These datasets serve as the fuel that powers the algorithms, enabling them to learn, generalize,
and make predictions. The vast troves of data encountered in modern applications neces-
sitate sophisticated approaches to processing and analysis. This is where machine learning
algorithms come into play, providing the capacity to efficiently handle and derive valuable
insights from large and complex datasets [9]. Machine learning algorithms can be broadly
categorized into two main groups: supervised and unsupervised learning. In supervised
learning, algorithms are trained on labelled datasets containing both positive and negative
examples. This training equips them to recognize the distinguishing characteristics of positive
and negative instances, making the resulting models suitable for classification tasks. On the
other hand, unsupervised learning empowers algorithms to autonomously uncover patterns
and relationships within data, effectively allowing the data to define what constitutes positive
and negative instances. While unsupervised learning holds value in various contexts, it is
generally discouraged for classification tasks due to the potential introduction of a bias, which
can significantly impact outcomes.

Traditional techniques for malware detection have long revolved around static
analysis [17–19]. Static analysis involves the examination of an executable or informa-
tion prior to its execution, making it an invaluable tool to quickly identify malicious entities
through signature-based pattern matching and key identifiers such as fingerprinting. How-
ever, the efficacy of static analysis is limited by the evolving tactics of modern malware,
which often employ obfuscation techniques and embedding to evade detection [20,21].
Dynamic analysis involves the execution of malware, and has emerged as the most accurate
method for detecting malware; yet, this approach comes with inherent risks, as executing
malware can potentially inflict irreparable harm on a system [22]. To mitigate this risk,
sandboxed environments have become essential in dynamic analysis. These controlled
environments ensure that the host system remains unharmed, and snapshots can be em-
ployed to revert to a previous state after analysis. However, dynamic analysis generates
copious amounts of data, rendering manual analysis impractical and inefficient [5,23,24].

This is precisely where machine learning emerges as a critical catalyst for progress.
Machine learning algorithms possess the ability to sift through vast datasets, discern hidden
patterns, and identify correlations that elude human analysts. By leveraging machine
learning, the risk of human error is mitigated and the time required to formulate effective
defences against malware is significantly reduced. However, a pivotal challenge arises in
obtaining data, as malware binary samples must be sourced, executed, and analyzed before
the requisite data become available for machine learning algorithms.

In previous work by Singh et al. [5], machine learning techniques were applied to
a dataset comprising ransomware and benign samples in order to detect ransomware
attacks using process memory. The dataset comprised 354 benign and 117 ransomware
samples, producing a dataset of 937 samples after analysis. Building a balanced dataset was
a challenging task, and resulted in laborious execution of these samples to extract process
memory. Upon using the various memory access privileges, ransomware was detected with
96.28% accuracy with the XGBoost algorithm. In work by Ashraf et al. [13], a method was
proposed to detect ransomware using transfer learning based on deep convolutional neural
networks. Their approach tackled both static and dynamic analysis, using tools to extract
the static information and Cuckoo Sandbox to extract the dynamic features. The dataset
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was sourced from 3646 samples for the static part and 3444 samples for the dynamic part.
As there were two datasets, the obtained results were 98% for static features using random
forest and 92% for dynamic features using support vector machine. Using the transfer
learning technique, an accuracy score of 94% was achieved from 300 features. However, no
raw data were available for further validation of the results additional research.

The research by Faruki et al. [23] detected malware using API call-grams. Using
Cuckoo Sandbox, 2510 benign and 2487 malicious samples were analysed to build their
dataset. Faruki et al. [23] identified that the API call-grams generated an imbalanced dataset,
with an induced bias towards API calls for certain classes. Using the voted perceptron
algorithm from Rosenblatt and Frank [25], an accuracy score of 98.7% was achieved. Hansen
et al. [26] evaluated behavioural traces of over 270,000 malware and 837 benign samples.
Using Cuckoo Sandbox, the samples were analysed, and feature selection based on the
information entropy and information gain ratio was used to obtain the feature set. For
malware detection, Hansen et al. [26] decided to perform a dataset reduction of 88%, using
only 1650 malware samples. Random forest was used to train the machine learning model
on this reduced dataset, resulting in a weighted average score of 0.981. This dataset was
heavily imbalanced; thus, dataset reduction can ensure that there is no over-representation
of datapoints. Darshan et al. [27] used Cuckoo Sandbox for malware detection by the impact
of exploring n-grams on the behaviour of the sample. With 3000 benign and 3000 malicious
samples, and using an n-gram length of 3 and the Pegasos [28] algorithm, they obtained an
accuracy of 90.03%. Poudyal and Dasgupta [29] created a ransomware detection framework
that utilized Cuckoo Sandbox and Ghidra to perform detection using behaviour such as
DLL and API calls, then performed NLP on the assembly code extracted from the samples.
Using 550 ransomware and 540 benign samples, Poudyal and Dasgupta [29] achieved
99.54% accuracy using SVM and Adaboost with J48.

A common aspect across all of these research papers is that both static and dynamic
analysis are needed for malware detection [5,13,23,26,27,29]. Each paper utilized Cuckoo
Sandbox to obtain the raw data from the sample execution. These raw data were then
processed using the necessary information (algorithm) based on the different approaches
that the researchers developed. The extracted information was then used to build a robust
dataset. The process of obtaining raw data is laborious, as it requires the execution of
each sample. This makes the efforts of individual research teams unnecessarily complex,
as there is no platform available to obtain raw Cuckoo reports. While platforms such as
Kaggle [30], DataRobot [31], and Alteryx [32] exist, they depend solely on the processed
dataset uploaded by the author and the willingness of authors to upload the code used
to build machine learning models from the dataset. Considering that Kaggle is a general-
purpose dataset platform, there is no way for raw data to be accessed and reused. This
makes it difficult to evaluate the data quality as well as the information presented in the
dataset. With DataRobot, both feature extraction and further processing of the data in
a dataset are possible; however, it is limited to data uploaded for a project, and cannot
be used for general purposes. Similarly, Alteryx [32] allows for the aggregation of data
pipelines from multiple sources. However, these data sources are defined by the end user,
and are not available ‘out of the box’ for the user base on the platform. Therefore, it cannot
aid in promoting experimental repeatability.

To bridge this crucial gap, in this research we develop a novel solution in the form of a
platform designed to facilitate the generation of datasets from Cuckoo Sandbox reports.
By simplifying the process of dataset generation and compilation, the proposed platform
empowers security researchers and data scientists to construct more accurate and effective
machine learning models for malware detection. In the following sections, the intricacies
of this platform are discussed, including its architectural composition, functionalities,
capabilities, and corresponding pivotal role in fortifying the collective defense against the
relentless tide of malware threats.
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3. MalFe Platform

The Malware Feature Engineering (MalFe) platform aims to simplify the difficulty
of obtaining and creating custom datasets from a databank through a community-driven
platform. To ensure a scientific process, the design approach leverages software engineering
principles to develop the processes and features of the platform. On a high level, MalFe
contains five key components: Reports, Categories, User Code, Dataset Generator, and
Datasets, as depicted in Figure 1. The reports consist of raw Cuckoo Sandbox reports
which, are uploaded by the community from experiments run to analyze malware samples.
The categories help with organizing these reports, allowing more targeted datasets to be
built. User code is used to parse through this data repository of reports and extract the
relevant information required to generate a dataset. The user code is then fed into a dataset
generator, which runs on a queue basis and executes the user code, based on the selected
categories of reports, resulting in a dataset being generated. After being approved by their
creator(s), these datasets are then made available for public viewing.

Reports

Datasets

Dataset
Generator User Code

Categories

Figure 1. MalFe high-level model.

The MalFe process model is shown in Figure 2; in order to prevent misuse and to
grow trust on the platform, this process starts with account creation and verification. After
successful authentication, a user is able to browse the existing datasets that have been
generated by the community. Thereafter, a user can search for a dataset that matches their
need. In the event that the dataset does not exist on the platform yet, the user has the option
to browse the uploaded Cuckoo Sandbox reports to see whether the information needed to
build the dataset is available. If the information is not sufficient, the user needs to source
more reports, either through experimentation or by obtaining them from an external source.
Because such reports can be rather large, it is both difficult and typically not feasible to
download all the reports in order to investigate the data.

To solve this problem, a lightweight comparison tool called IntelliView was created
and added to the platform. It allows end users to browse sections of reports, making it easier
to browse and compare reports. After manual observation conducted through IntelliView,
if the user finds any malformed or erroneous reports they can flag these reports, ensuring
that high-quality data are always available to the community and further enhancing the
trust in the platform. At this stage, the reports are sufficient, and quality control has been
conducted. The next step is for the user to add code to allow these reports to be parsed in
order to extract the information needed to build the dataset. When this is complete, the
metadata needed for the platform to build the dataset are requested from the user. This
includes the category of reports for the dataset to be built off, as well as the name and
description of the dataset. After the user code is checked for security vulnerabilities and
syntax errors, the code is successfully queued on the platform to generate the dataset in a
restricted environment. The process of dataset generation involves several status changes,
keeping the user aware of what is happening. If the status is set to QUEUED, this means
that the dataset has been added to a queue; the next generated dataset is taken from the
queue when the previous dataset has been completed. This then sets the dataset generation
status to PROCESSING. The processing stage of dataset generation is the core functionality
of the platform, providing users with the ability to design the data according to their
specific requirements. Error handling is integrated into the platform as well, providing
an opportunity to understand any misconfiguration or other sources of errors during the
data generation process. After dataset generation is completed, the data are written to
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a CSV file and saved on the platform, and the status is set to COMPLETE. The owner
is then prompted to verify the dataset and perform quality checking. When approved
by the owner, the dataset is made publicly available. Finally, the dataset is available to
be downloaded, shared, and even commented on for further research and networking
with security professionals. The next section discusses the technical details behind the
implementation of the platform.

Account Creation
and Verification

Browse
Community Driven

Datasets

Dataset
Exists?

Browse Reports

Download Dataset

No

Yes

Are reports
sufficient?

Obtain, or upload
appropriate

Reports
Add Code to parse

reports

Select Report
categories and
configuration

Dataset
Generation

Dataset
Verification

Approve
Dataset

Dataset
 available to

 public

Download
Dataset

IntelliView

Manual
Observation

QUEUED

PROCESSING

WRITING COMPLETED

FAILED

Reason Fix Code and Re-
generate

Delete
No Yes

Dataset
available for

public comment

NoYes

Any Malformed
Reports?Flag Report

Yes

No

Errors?

No

Yes

Login
Success?

Access Denied

Compare the
reports side-

by-side to
identify

features to
extract

Since users
upload

reports, there
is potential for
reports to be

invalid or
incomplete

Errors in processing
can occur through

logic issues or
runtime issues

MalFe
Platform

No

Yes

Restricted Environment

Dataset Meets
Requirements and

Quality Control

Figure 2. MalFe process model.

MalFe Implementation

The platform was developed following a modular approach and in line with agile
principles to ensure adaptability and flexibility. Python, renowned for its versatility and
wealth of built-in frameworks and libraries, was the language of choice for the implemen-
tation. To facilitate seamless web-based management, the Django web framework was
chosen, which is a robust and widely respected choice in the field [33]. Security remains a
paramount concern, and the platform integrates multiple layers of defense. Django’s de-
fault security middleware forms the first line of protection, followed by custom sanitization
middleware. This custom middleware diligently scrubs metadata of any special characters
and tags, further fortifying the security posture of the platform. The critical middleware
components in play are SecurityMiddleware, SessionMiddleware, CsrfViewMiddleware,
AuthenticationMiddleware, XFrameOptionsMiddleware, OTPMiddleware, and SessionSe-
curityMiddleware. In the realm of authentication, Two-Factor Authentication (2FA) was
implemented to enhance security. This robust 2FA mechanism is mandatory for logging in
and is integrated seamlessly into the user experience. Users have the convenience of utiliz-
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ing either a token generator or physical keys. Token generators leverage the Time-Based
One-Time Pin (TOTP) algorithm [34], producing 6–8 unique digits based on the current
time and a secret key established during account registration. As a security measure, these
tokens regenerate every 30 s, thwarting brute force and phishing attacks. Additionally,
backup tokens are accessible in case the primary 2FA devices are unavailable, ensuring
both recovery and security. The default Django password field was used, which is fortified
with PBKDF2 utilizing robust SHA256-bit hashing and a random salt [33]. Furthermore,
email verification is enforced, fostering trust and ensuring the integrity of user accounts.

The process of adding a Cuckoo report to the platform is simplified, as the report
undergoes rigorous scrutiny, with essential metadata such as the SHA256 hash, name,
and description being extracted and validated. A further layer of scrutiny involves an
assessment for any analysis errors before the report is deemed suitable for upload, ensuring
the preservation of raw data integrity. For added convenience, the platform seamlessly
integrates with Cuckoo Sandbox, enabling users to upload samples directly. These samples
are then enqueued for execution within the sandbox environment, and the report is subse-
quently automatically integrated into the platform. The IntelliView feature represents a
unique and innovative approach to manual observation, and was achieved through the
implementation of asynchronous calls, with data being clipped to enhance performance
and usability.

The way datasets are created is a novel feature in which a user provides the code to
process an individual report, thereby extracting the data and features needed for building
the dataset. A portion of the code responsible for executing user-generated code can be
seen in Figure 3.

Figure 3. User code execution snippet.

This is achieved by users implementing a stub function that is fed the Cuckoo report,
filename, SHA256 hash, and category, as well as whether or not it is a malicious sample.
Because the platform does not dictate the features, a user can have as many features as
they require. Furthermore, because executing user code is a security risk, the code is first
checked for syntactical errors using an abstract syntax tree. RestrictedPhyton [35], which
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acts as a Python environment with limited imports and functions, is used to execute the user
code. Safe built-ins and safe globals are used to ensure additional security and usability.
To improve speed, concurrency is utilized with thread pools, allowing faster processing of
Cuckoo reports and feature generation. A cron job is used to create the datasets, resulting
in a queue system that limits potential resource abuse. Furthermore, each dataset has a
maximum execution time.

The next section evaluates the platform with software engineering principles and
an adaptation of the NIST Computer Forensics Tool Testing (CFTT) program [15], then
presents a comparative analysis with existing malware analysis research.

4. MalFe Evaluation

When evaluating the effectiveness of a platform’s implementation, the requirements,
specifications, and usability are the core fundamentals of any good software system. There-
fore, these are considered in our evaluation. We followed the testing processes of the NIST
Computer Forensics Tool Testing (CFTT) program [15]. Thereafter, case studies of existing
research were explored to demonstrate the potential usefulness of the platform. Finally, a
literature search was conducted to illustrate the impact that the platform can have on the
research community.

4.1. MalFe Validation

The NIST validation cycle is shown in Figure 4. The first step is to define requirements
for the platform, followed by test assertions defining the behaviour of how the system
should act. Next, the test cases which test the requirements are defined, and verification is
performed to check whether the test assertions have been achieved. Finally, test methodol-
ogy and validation are reached. The system requirements consist of two categories: Core
Requirements (CR), which are listed in Table 1, and Optional Requirements (OR), which
can be found in Table 2. For example, in Table 1, the label column provides a reference
number that is used in the compliance matrix. The description, on the other hand, provides
the requirements for the platform.

Defining
Requirements

Optional
Requirements

Core
Requirements

Defining Test
Assertions

Optional Test
Assertions

Core Test
Assertions

Defining Test
Cases

Defining Test
Methodology

Validation
Testing

Figure 4. NIST validation cycle [15].
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Table 1. Core requirements.

Label Description

CR-01 The system should allow for secure access through accounts.
CR-02 Accounts should be verified and use 2-factor authentication for additional security.
CR-03 Users should be able to upload Cuckoo Reports.
CR-04 Duplicate Cuckoo Reports and Datasets should not exist.
CR-05 Users should be able to see the reports on the platform.
CR-06 Users can choose to upload private reports.
CR-07 Users can create datasets on the platform.
CR-08 Users can choose to create private datasets.
CR-09 Users should easily be able to select the report categories of reports for dataset generation.
CR-10 Users should be able to view datasets on the platform.
CR-11 User code should be checked for security vulnerabilities.
CR-12 User code should be executed in a restricted environment.
CR-13 User code should be syntax-checked to minimize runtime errors.
CR-14 Users should be able to download datasets.
CR-15 Users should be able to view a sample of the dataset.

Table 2. Optional requirements.

Label Description

OR-01 Users should be able to see which datasets are used in publications.
OR-02 Users should be able to comment on datasets.
OR-03 Users should be able to see the status of dataset generation.
OR-04 Users should be informed why dataset generation failed and allowed to fix issues.
OR-05 Users should be able to flag reports for quality control.
OR-06 Users should be able to download reports and view them on Virus Total.
OR-07 Users should be able to search for reports and filter by category.
OR-08 Users should be able to see the reports used in a dataset.
OR-09 Users should be able to create versions of a dataset with different report categories.
OR-10 Users can turn off comments on their dataset.

The next step is to define the Test Assertions (TA), which are the post-conditions of a
system’s function. The assertions can be seen in Table 3. Thereafter, Test Cases (TC) are
defined in order to ensure that the system has both met the standards and satisfied the test
assertions. The test cases can be seen in Table 4.

Table 3. Test assertions.

Label Description

TA-01
Restricted and secure access.

Justification: To preserve trust and integrity on the platform; only authorized
parties who are verified should be able to use the platform.

TA-02
Hash digests of the reports and datasets should be computed.

Justification: To maintain integrity and eliminate any duplicates
from occurring.

TA-03

Metadata sanitization of user data.
Justification: To ensure good security practices and prevent potential system
attacks. This reduces the attack vectors from injection attacks like XSS, SQL

injection, and parsing attacks.

TA-04

The platform shall detect syntactical errors with the user code and/or
malicious code.

Justification: To eliminate any errors as well as improve the reliability and
security of the system.

TA-05 The platform shall log the activity of users.
Justification: To ensure security and prevent abuse.
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Table 4. Test cases.

Label Description

TC-01 Create an account and perform the verification.
TC-02 Turn on 2-factor authentication and verify that it works as expected.
TC-03 View the reports on the platform.
TC-04 View the datasets on the platform.
TC-05 Upload a report on the platform.
TC-06 Upload an existing report on the platform.
TC-07 Create a dataset with syntax errors in the code and malicious code.
TC-08 Create a dataset without errors.
TC-09 Download a dataset.
TC-10 View the code of the dataset.
TC-11 View the reports used in a dataset.
TC-12 Comment on a dataset.
TC-13 Add a publication entry.
TC-14 View user profile.
TC-15 Search for reports with NotPetya.
TC-16 Flag a report.

A compliance matrix simply maps the requirements to those test cases satisfying the
test assertions. For example, if a core test assertion was met, that test assertion is specified
in the result column. However, if a manual check was performed, this is indicated with
’–check–’, indicating that the check result is compliant. Note that test assertions and manual
checks can occur simultaneously in the result column. In Table 5, the compliance matrix
confirms that the results from the test assertions have been fulfilled.

Table 5. Compliance matrix.

No. Requirement Test Case Result

1 CR-01 TC-01 TA-01
2 CR-02 TC-02 TA-01, –check–
3 CR-03 TC-03, TC-05 TA-03, TA-05, –check–
4 CR-04 TC-06 TA-02
5 CR-05 TC-03 –check–
6 CR-06 TC-05 –check–
7 CR-07 TC-07, TC-08 TA-04, –check–
8 CR-08, CR-09 TC-08 TA-04, –check–
9 CR-10 TC-04, TC-10, TC-11 –check–
10 CR-11, CR-12, CR-13 TC-07 TA-03, TA-04, –check–
11 CR-14 TC-09 –check–
12 CR-15 TC-04 –check–
13 OR-01 TC-13 –check–
14 OR-02 TC-12 TA-03, –check–
15 OR-03, OR-04 TC-08 –check–
16 OR-05 TC-16 TA-05, –check–
17 OR-06 TC-03 –check–
18 OR-07 TC-15 –check–
19 OR-08 TC-11 –check–
20 OR-09, OR-10 TC-12 –check–

4.2. Case Studies

To further evaluate the perceived usefulness of the MalFe platform, three existing
research papers that utilize Cuckoo reports as a data source were explored.

4.2.1. Early Detection Of Crypto-Ransomware Using Pre-Encryption Detection
Algorithm [36]

The work by Kok et al. [22] explored ransomware detection using pre-encryption
by exploring eleven API function calls. The authors explored a random forest classifier
as well as their own custom algorithm. The study made use of 582 ransomware and
942 benignware samples. These samples were then run using Cuckoo Sandbox, and the
reports were used for the detection mechanism. In order to show how this study could have
benefited from using the MalFe platform, a replication of Kok et al. [36] using the eleven
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identified API calls was conducted. The MalFe platform’s 3084 samples (as of 12 June 2023)
is already significantly more in comparison to the original study. Thereafter, a random
forest classifier was used to perform machine learning on the newly formed dataset. The
new dataset consisted of 11,430 records, of which 8774 were malicious. The random forest
classifier had an accuracy of 90.2% and an Area Under the Curve (AUC) of 91.7%. In
comparison, Kok et al. [36] achieved a 99.8% accuracy and an AUC of 99.9%, which may be
inaccurate, as the paper represents the results in a graph as opposed to a table. This further
illustrates the need for a platform such as MalFe that allows research findings to be easily
validated. This dataset replication is available on the MalFe platform (created on 19 June
2023) (https://malfe.cs.up.ac.za/datasets/view/CryptAPIStatisticsofRansomware/17).

4.2.2. A Novel Malware Analysis Framework for Malware Detection and Classification
Using Machine Learning Approach [16]

This work by Sethi et al. [16] explored malware detection through Cuckoo Sandbox
reports by extracting the API function calls and using these data as features for the machine
learning algorithms. Both benign and malicious samples were executed in Cuckoo Sandbox,
resulting in 220 samples. Sethi et al. [16] asserted that this was a laborious process, and
represented a challenging task. With the adoption of the MalFe platform, Sethi et al. [16]
would have been able to easily make use of the Cuckoo reports available on the platform
and write a short script to extract the API calls to form a dataset with minimal effort,
with no need to download these large reports or be concerned about storage. Another
benefit would have been that the dataset and Cuckoo reports would be publicly available to
anyone. A replication of this study was not possible, as Sethi et al. [16] did not enumerate
all the features they explored and as such any replication would necessarily be based on
inaccurate assumptions.

4.2.3. Assessment of Supervised Machine Learning Algorithms Using Dynamic API Calls
for Malware Detection [12]

This research by Singh and Singh [12] similarly explored malware detection using API
calls originating from Cuckoo Sandbox reports. Singh and Singh indicated the difficulty
of obtaining malware samples, as they had to source binaries from multiple locations.
Furthermore, they identified several registry keys that could be investigated as features
through a manual process. Singh and Singh would have benefited from using the MalFe
platform in this research, as they would have already had access to benign and malicious
reports. Even if there were insufficient reports, they could have run more analysis and
uploaded the reports onto the MalFe platform, further driving the community-driven
nature of the platform. This would have provided more data reports for future researchers
while improving the platform and promoting its adoption over time. By analyzing the
registry, Singh and Singh would have been able to benefit from the IntelliView feature on
the MalFe platform, enabling quick and easy comparisons between samples to identifying
good features to be used in machine learning algorithms.

4.2.4. Literature Search

We conducted a non-exhaustive search of research repositories, including IEEE Xplore,
Springer Link, Taylor and Francis, and Science Direct. These research repositories were
explored to determine the number of papers that utilized Cuckoo Sandbox reports as
their data source. From Table 6, it can be observed that IEEE Explore does not have
very many articles on malware detection or Cuckoo Sandbox, with only 23 articles found.
Springer Link and Science Direct, on the other hand, contain a large amount of research
utilizing Cuckoo Sandbox. This further demonstrates the need for the MalFe platform as a
mechanism to avoid unnecessary duplication of effort and experiments to obtain the data
needed for machine learning purposes.

https://malfe.cs.up.ac.za/datasets/view/Crypt API Statistics of Ransomware/17
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Table 6. Related literature findings (10 June 2023).

Keyword IEEE Explore Springer Link Tailor and Francis Science Direct

Machine learning + cuckoo sandbox 16 458 16 137
Malware detection + cuckoo sandbox 23 448 15 145

Cuckoo sandbox 32 519 19 167

4.2.5. Comparative Analysis

While no other platform provides what MalFe can offer the research community,
similar platforms are available, including Kaggle [30], DVC [37], Amazon SageMaker [38],
IBM Watson Studio [39], DataRobot [31], and Alteryx [32]. However, they do not provide
the ability to use the raw data for further research. These platforms only provide what
authors make available in terms of processed datasets, and are quite restrictive with regard
to future research prospects. In the security field, datasets are often kept private or made
available only after a vetting process, making it difficult for researchers to gain access to
valuable data for their research. This is usually because there is a monetary value associated
with such datasets. Another similar platform is Google Datasets [40]; however, as with
Kaggle, it is limited to the datasets that an author uploads on the platform, and does not
allow for customization, tweaking, or building novel datasets from the raw data. The
results after comparing the various platforms are presented in Table 7. From these results, it
is apparent that while there is an increasing demand for AI pipelines and machine learning,
there are no platforms that support raw data access and processing.

Table 7. Comparative analysis of similar platforms.

Platform

Features MalFe Kaggle DVC Amazon
SageMaker

IBM Watson
Studio Data Robot Alteryx

Access to raw data? Yes No No No No No -
Allow Data Processing? Yes No Yes Yes Yes Yes Yes

Community Driven? Yes Yes No No No No No
Versioning? Yes No Yes No - Yes -

Model Training? Future Work No Yes Yes Yes Yes Yes
Model Code? Future Work Public Private Private Private Private No

Public Comment? Yes Yes No No No No No

The next section aims to provide a real-world use case for the MalFe platform as well
as an example of the research that can be performed using the platform.

5. Using MalFe for Ransomware Detection Using PE Entropy

In this section of the paper, we explore how research is conducted using the MalFe
platform. The Portable Execution (PE) header of executable files in the Windows Operating
System was explored for ransomware detection. The PE information describes how the OS
should execute the file and how to allocate memory. These PE sections, along with their
entropies, are available in Cuckoo reports. Because the MalFe platform acts as a repository
for Cuckoo reports, this case scenario can be used to demonstrate the platform’s usefulness
and ease of use. However, as the platform did not have enough samples, more benign and
malicious samples from Cuckoo reports were uploaded from previous experimentation [5].
The process of uploading a sample to the platform is presented in Figure 5. Selected
metadata are extracted from the selected report, such as the Sample SHA256 hash and
Name fields, with the user required to select the category (ransomware) to which the
report belongs.
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Figure 5. Uploading Cuckoo reports on MalFe.

Creating a dataset was effortless, and involved providing a name and description
followed by selecting the reports to be used in creating the dataset. In this case, all the
benign and ransomware categories were selected, as seen in Figure 6. Finally, the code
was added to parse the raw reports and enqueued in order for the dataset to be generated,
as seen in Figure 7. The dataset generation process took approximately 26 min, spanning
100 + GB worth of data. The dataset consisted of 8599 rows and five columns, with
688 benign and 7911 malicious records sourced from 3084 Cuckoo reports. A snippet of
the raw data can be seen in Table 8. The names map to the type of PE section information
extracted from the executable along with the entropy of the data in that section. The
category is displayed along with the label, where M stands for malicious and B for benign.
The dataset is available on the MalFe platform (created on 12 January 2023) (https://malfe.
cs.up.ac.za/datasets/view/Entropy_of_PE_Sections/5#version1).

Table 8. Dataset features.

No. Name Entropy Category Label

0 .text 6.404235 Ransomware M
1 .rdata 6.663571 Ransomware M
... ... ... ... ...
8597 .reloc 6.669854 Ransomware M

https://malfe.cs.up.ac.za/datasets/view/Entropy_of_PE_Sections/5#version1
https://malfe.cs.up.ac.za/datasets/view/Entropy_of_PE_Sections/5#version1
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Figure 6. Creating a dataset on MalFe.

Figure 7. Dataset code on MalFe.

The next step is to perform quality control on the dataset and feed it into the machine
learning algorithms. For this purpose, the Category and sha256 columns were dropped,
leaving only the entropy of the sections for classification. Any null values were dropped as
well, and manual checks were conducted. Tree classifiers such as Decision Tree (DT) and
Random Forrest (RF) were chosen based on their ability to easily build logic paths that are
human-readable and show better accuracy predictions related to computer security [5,27,41].
Boosted classifiers were explored as well, such as XGBoost (XGB), to determine the effects of
boosted learning. Probabilistic classifiers such as Naïve Bayes (NB) were explored to check
whether patterns in the name of the entropy section could provide good accuracy. Finally,
clustering classifiers were explored using the K-nearest Neighbors (KNN) and Support
Vector Machine (SVM) approaches. DT follows a rule-based approach, drawing patterns
to build a tree structure from the data representing the outcomes. RF works similarly to
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DT, building multiple trees in a single model to better map hierarchical patterns. SVM is
designed for working with small amounts of data and finding associations between the
data points using hyperplanes. XGB, on the other hand, is a form of boosted learning
combined with a DT that evaluates multiple trees over several iterations until the best
solution is found. Finally, NB draws correlations between individual features rather than
introducing the relation with each feature as a whole. In order to remove any bias induced
by the dataset, ten-fold cross-validation was performed when the models were trained.
Furthermore, hyperparameter tuning was employed to determine the best parameters
for each model; these parameters are shown in Table 9. For example, the criterion for
DT model refers to the quality measure of how the data are split. The Gini impurity is a
measure of how often a randomly chosen element is incorrectly classified. In the context of
decision trees, the entropy measures the information gain achieved by a split, quantifying
the disorder or randomness in a dataset. Using the log_loss, the classifications are based
on probability. The criterion parameter is used to determine which approaches mentioned
above better suit the data at hand. For the splitter parameter, the best value uses the
criterion to determine the best split, whereas the random value prevents overfitting. These
parameters were used in all possible combinations in order to determine the parameters
that yielded the best result. With RF, the number of estimators determines how many
individual trees to construct and the max depth determines how many nodes the tree will
have. Similarly, with KNN the number of neighbours is used to cluster datapoints together,
and the distances between the clusters act as the weights. Lastly, with XGB, the type of
boosting algorithm and the learning rate can be tuned to determine which configuration
reveals the best result.

Table 9. Hyperparameter tuning.

Model Parameters

DT ′criterion′ : [′gini′,′ entropy′,′ log_loss′],′ splitter′ : [′best′,′ random′]
RF ′n_estimators′ : [5, 50, 250],′ max_depth′ : [2, 4, 8, 16, 32, None]

KNN
′n_neighbors′ : [5, 50, 250],′ weights′ : [′uni f orm′,′ distance′],′ p′ :

[1, 2],′ lea f _size′ : [5, 50, 250]
XGB ′booster′ : [′gbtree′,′ gblinear′,′ dart′],′ learning_rate′ : [0.01, 0.1, 1, 10, 100]
NB N/A

The results of the machine learning phase are further presented in Table 10. The
precision measures the ratio of true positives and total positives predicted, where the
goal is to reach a precision of 1. The recall is the ratio of true positives to all positives. The
F-measure is the mean of the precision and recall. This is arguably the most important
factor in determining a model’s validity and accuracy. The sensitivity, on the other
hand, measures the ability to detect positive instances whereas specificity measures
the true negatives. Because there were only two features in this dataset, it would not
have been feasible to explore SVM, as this algorithm works better with a larger number
of features and fewer records. However, a brief test was conducted to measure the
performance; with ten-fold cross-validation, SVM with a linear kernel did not finish
training, and was terminated after running for two days. SVM had poor results when no
cross-validation was performed, with an accuracy of only 68% even after a significant
training and prediction time. In comparison, the other models’ training times were
within the range of 9 s to 2 min.

All the models (DT, RF, KNN, XGB, NB) presented in Table 10 achieved high levels
of True Positives (TP) and True Negatives (TN), indicating their effectiveness in correctly
classifying both positive and negative instances. The recall values for all models are
generally high, suggesting that the models can identify a significant portion of the actual
positive cases. The precision values are consistent with the accuracy, indicating that the
models make relatively few false positive predictions. Log-loss values vary among the
models, with the RF model achieving the lowest log-loss, indicating better probabilistic
predictions. The AUC values are generally high for all models, particularly for XGB and
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RF, indicating strong discriminative capability. The F-measure values are high as well,
indicating a balance between precision and recall. Figure 8 shows the recall vs. the area
under the curve vs. the F-measure vs. the accuracy, where NB performs the poorest among
all the models. In Figure 9, the latency varies among the models, with KNN having the
highest latency and NB having the lowest. A comparison between the obtained results and
those of existing related works is shown in Table 11. From the comparison, the proposed
PE entropy provides a good accuracy score, making it the second best among all the
explored results from the literature. However, the work by Poudyal and Dasgupta [29] only
explored 1090 samples, which could have introduced a bias in prediction. Furthermore,
the use of multiple classifiers for detection presents a complexity challenge that would
void the potential of pre-emptive detection and ransomware prevention. For instance,
the NotPetya ransomware would have overtaken a system within the time required to
compute and identify the ransomware using multiple classifiers. Preemptive detection
relies on timely detection using salient attributes. This logic requires a knowledge base
signature which is not achievable using multiple classifiers. In this regard, the results
obtained in the current study can be readily deployed both for early detection and as a
proactive preventive mechanism.

Table 10. Results of machine learning algorithms.

Machine Learning Algorithms

Metrics of Evaluation DT RF KNN XGB NB

True Positive 130 131 131 130 0
True Negative 1541 1540 1540 1542 1555
False Positive 14 15 15 13 0

False Negative 7 6 6 7 137
Recall 0.991 0.990 0.981 0.991 1.000

Precision 0.996 0.996 0.980 0.996 0.919
Log Loss 0.429 0.170 0.669 0.046 0.277

AUC 0.969 0.986 0.975 0.992 0.606
F-Measure 0.993 0.993 0.980 0.994 0.958

Latency (ms) 1.509 12.995 89.511 4.994 0.999
Accuracy 0.988 0.988 0.964 0.988 0.919

Table 11. Comparison of results.

Reference Dataset Samples Model Accuracy

[5] 471 XGBoost 96.28%
[13] 3444 ResNet-18 94%
[23] 4997 Voted Perceptron 98.7%
[26] 1650 Random Forest 98.1%
[27] 6000 Pegasos 90.03%
[29] 1090 SVM + Adaboost + J48 99.54%
Proposed Method 3084 Decision Tree 98.8 %

The Receiver Operating Characteristic (ROC) curve presents a true evaluation of a
machine learning algorithm model which graphs the prediction confidence of the model.
The confidence is a true reflection of the model’s ability to distinguish the classes in
a given feature space. The ROC curve for the machine learning algorithms is shown
in Figure 10. The goal is to obtain a full right-angle curve (area under the curve = 1),
which RF, XGB, and KNN are almost able to achieve. NB is able to predict extremely
fast, with a 1 ms response time; however, the number of false negatives is fairly high
in comparison to the other models. This means that although it is fast, it is not very
confident in its predictions, as can be seen in Figure 10 and Table 10, with an AUC of
0.6, which is extremely poor. Because DT, RF, and XGB performed fairly similarly, with
98.8% accuracy, a validation test consisting of 1555 malicious and 138 benign unseen
records was fed into the trained model to benchmark them against each other. The
results of this benchmark resulted in 0.9829, 0.9858, and 0.9829 respectively. This leaves
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the overall best model with the highest accuracy as Random Forest; however, as speed
is more crucial in the domain of ransomware detection, the most suitable and accurate
model for ransomware detection in this case is a Decision Tree.

Figure 8. Recall vs. AUC vs. F-measure.

Figure 9. Latency of prediction in milliseconds.
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Figure 10. ROC curve.

6. Conclusions

The developed platform represents a valuable resource for malware researchers,
streamlining the process of sample collection and execution within a sandbox environment
and thereby facilitating the acquisition of essential data for machine learning purposes.
This platform not only alleviates the need for redundant and labour-intensive experimen-
tation, it can serve as a collaborative community-driven data repository housing Cuckoo
reports. With this platform, researchers can create novel datasets without the need to
download numerous large Cuckoo reports or deal with storage limitations. Addition-
ally, the platform offers a unique approach to manual analysis and detection criteria by
allowing users to compare Cuckoo reports side-by-side. Furthermore, the platform aids in
building trust, as the code and reports used for dataset generation are available for public
view. This allows research to be repeatable and verifiable, aiding in the dissemination of
high-quality research.

To the best of the authors’ knowledge, there are currently no available platforms
that provide the research community with customizable raw data to build datasets for
malware detection. Based on the evaluations conducted in this study, the MalFe platform
holds the potential to significantly simplify the challenging task of obtaining high quality
datasets for machine learning applications. Future enhancements to the platform may
include automated machine learning model generation, further strengthening its utility and
robustness. These developments would enhance the platform’s adoption while expanding
the array of tools available to security researchers.



Computers 2023, 12, 201 19 of 20

Author Contributions: Conceptualization, methodology, software, validation, analysis, data curation,
writing—original draft: A.S. Writing—review and editing: R.A.I., H.V. and A.S. Supervision: R.A.I.
and H.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Research Foundation of South Africa
(Grant Number 136239), and the APC was funded by a UCDP Grant.

Data Availability Statement: Dataset can be found at (https://malfe.cs.up.ac.za/datasets/view/
Entropy_of_PE_Sections/5, 14 August 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

API Application Programming Interface
AUC Area Under the Curve
CR Core Requirements
DT Decision Tree
KNN k-Nearest Neighbors
NB Naïve Bayes
OR Optional Requirements
PE Portable Execution
RF Random Forest
ROC Receiver Operating Characteristic
SVM Support Vector Machine
TA Test Assertions
TC Test Cases
XGB XGBoost

References
1. AV-Test. Malware Statistics. Available online: https://www.av-test.org/en/statistics/malware/ (accessed on 21 September 2023).
2. Singh, A.; Venter, H.S. Digital Forensic Readiness Framework for Ransomware Investigation; Springer International Publishing: Cham,

Switzerland, 2019; pp. 91–105. [CrossRef]
3. O’Brien, D. Internet Security Threat Report—Ransomware 2017. Symantec 2017, 20, 1–35.
4. Al-rimy, B.A.S.; Maarof, M.A.; Shaid, S.Z.M. Ransomware threat success factors, taxonomy, and countermeasures: A survey and

research directions. Comput. Secur. 2018, 74, 144–166. [CrossRef]
5. Singh, A.; Ikuesan, R.; Venter, H. Ransomware Detection using Process Memory. Int. Conf. Cyber Warf. Secur. 2022, 17, 413–422.

[CrossRef]
6. Fan, Y.; Ye, Y.; Chen, L. Malicious sequential pattern mining for automatic malware detection. Expert Syst. Appl. 2016, 52, 16–25.

[CrossRef]
7. Arshad, H.; Jantan, A.B.; Abiodun, O.I. Digital forensics: Review of issues in scientific validation of digital evidence. J. Inf.

Process. Syst. 2018, 14, 346–376. [CrossRef]
8. Boulevard, S. A Universal Bypass Tricks Cylance AI Antivirus. Available online: https://securityboulevard.com/2019/07/a-

universal-bypass-tricks-cylance-ai-antivirus-into-accepting-all-top-10-malware-revealing-a-new-attack-surface-for-machine-
learning-based-security/ (accessed on 5 October 2019).

9. Almashhadani, A.O.; Carlin, D.; Kaiiali, M.; Sezer, S. Computers & Security MFMCNS: A multi-feature and multi-classifier
network-based system for ransomworm detection. Comput. Secur. 2022, 121, 102860. [CrossRef]

10. Dang, D.; Di Troia, F.; Stamp, M. Malware classification using long short-term memory models. In Proceedings of the ICISSP
2021—7th International Conference on Information Systems Security and Privacy 2021, Online, 11–13 February 2021; pp. 743–752.
[CrossRef]

11. Jiang, Q.; Zhao, X.; Huang, K. A Feature Selection Method for Malware Detection. In Proceedings of the IEEE International
Conference on Information and Automation, Shenzhen, China, 6–8 June 2011; pp. 890–895.

12. Singh, J.; Singh, J. Assessment of supervised machine learning algorithms using dynamic API calls for malware detection. Int. J.
Comput. Appl. 2022, 44, 270–277. [CrossRef]

13. Ashraf, A.; Aziz, A.; Zahoora, U.; Khan, A. Ransomware Analysis using Feature Engineering and Deep Neural Networks.
arXiv 2019, arXiv:1910.00286.

14. Guarnieri, C. Cuckoo Sandbox. 2014. Available online: https://cuckoosandbox.org/ (accessed on 4 October 2018).
15. NIST. Computer Forensics Tool Testing Program. 2014. Available online: http://www.cftt.nist.gov/ (accessed on 12 October 2017).

https://malfe.cs.up.ac.za/datasets/view/Entropy_of_PE_Sections/5
https://malfe.cs.up.ac.za/datasets/view/Entropy_of_PE_Sections/5
https://www.av-test.org/en/statistics/malware/
http://doi.org/10.1007/978-3-030-05487-8
http://dx.doi.org/10.1016/j.cose.2018.01.001
http://dx.doi.org/10.34190/iccws.17.1.53
http://dx.doi.org/10.1016/j.eswa.2016.01.002
http://dx.doi.org/10.3745/JIPS.03.0095
https://securityboulevard.com/2019/07/a-universal-bypass-tricks-cylance-ai-antivirus-into-accepting-all-top-10-malware-revealing-a-new-attack-surface-for-machine-learning-based-security/
https://securityboulevard.com/2019/07/a-universal-bypass-tricks-cylance-ai-antivirus-into-accepting-all-top-10-malware-revealing-a-new-attack-surface-for-machine-learning-based-security/
https://securityboulevard.com/2019/07/a-universal-bypass-tricks-cylance-ai-antivirus-into-accepting-all-top-10-malware-revealing-a-new-attack-surface-for-machine-learning-based-security/
http://dx.doi.org/10.1016/j.cose.2022.102860
http://dx.doi.org/10.5220/0010378007430752
http://dx.doi.org/10.1080/1206212X.2020.1732641
https://cuckoosandbox.org/
http://www.cftt.nist.gov/


Computers 2023, 12, 201 20 of 20

16. Sethi, K.; Tripathy, B.K.; Chaudhary, S.K.; Bera, P. A Novel Malware Analysis for Malware Detection and Classification
using Machine Learning Algorithms. In Proceedings of the ACM International Conference Proceeding Series, Jaipur, India,
13–15 October 2017; pp. 107–116. [CrossRef]

17. Gandotra, E.; Bansal, D.; Sofat, S. Malware Threat Assessment Using Fuzzy Logic Paradigm. Cybern. Syst. 2017, 48, 29–48.
[CrossRef]

18. Bergeron, J.; Debbabi, M.; Desharnais, J.; Erhioui, M.M.; Lavoie, Y.; Tawbi, N.; Bergeron, J.; Debbabi, M.; Desharnais, J.; Erhioui,
M.; et al. Static Detection of Malicious Code in Executable Programs. Int. J. Req. Eng. 2001, 79, 184–189.

19. Sihwail, R.; Omar, K.; Ariffin, K.A.Z. An Effective Memory Analysis for Malware Detection and Classification. Comput. Mater.
Contin. 2021, 67, 2301–2320. [CrossRef]

20. Kiger, J.; Ho, S.S.; Heydari, V. Malware Binary Image Classification Using Convolutional Neural Networks. Int. Conf. Cyber Warf.
Secur. 2022, 17, 469–478. [CrossRef]

21. Grégio, A.R.A.; De Geus, P.L.; Kruegel, C.; Vigna, G. Tracking memory writes for malware classification and code reuse
identification. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2013; Volume 7591 LNCS, pp. 134–143. [CrossRef]

22. Singh, J.; Singh, J. A survey on machine learning-based malware detection in executable files. J. Syst. Archit. 2021, 112, 101861.
[CrossRef]

23. Faruki, P.; Laxmi, V.; Gaur, M.S.; Vinod, P. Behavioural detection with API call-grams to identify malicious PE files. In Proceedings
of the International Conference on Security of Internet of Things, Kollam, India, 17–19 August 2012.

24. Singh, A.; Ikuesan, A.; Venter, H. A context-aware trigger mechanism for ransomware forensics. In Proceedings of the 14th
International Conference on Cyber Warfare and Security, ICCWS 2019, Stellenbosch, South Africa, 28 February–1 March 2019;
pp. 629–638.

25. Freund, Y.; Schapire, R.E. Large margin classification using the perceptron algorithm. In Proceedings of the Eleventh Annual
Conference on Computational Learning Theory, Madison, WI, USA, 24–26 July 1998; pp. 209–217.

26. Hansen, S.S.; Larsen, T.M.T.; Stevanovic, M.; Pedersen, J.M. An approach for detection and family classification of malware based
on behavioral analysis. In Proceedings of the 2016 International Conference on Computing, Networking and Communications,
ICNC 2016, Kauai, HI, USA, 15–18 February 2016. [CrossRef]

27. Darshan, S.L.; Kumara, M.A.; Jaidhar, C.D. Windows malware detection based on cuckoo sandbox generated report using
machine learning algorithm. In Proceedings of the 11th International Conference on Industrial and Information Systems, ICIIS
2016—Conference Proceedings, Roorkee, India, 3–4 December 2016; pp. 534–539. [CrossRef]

28. Shalev-Shwartz, S.; Singer, Y.; Srebro, N. Pegasos: Primal Estimated sub-GrAdient SOlver for SVM. In Proceedings of the 24th
International Conference on MachineLearning, Corvalis, OR, USA, 20–24 June 2007; pp. 807–814.

29. Poudyal, S.; Dasgupta, D. AI-Powered Ransomware Detection Framework. In Proceedings of the 2020 IEEE Symposium Series
on Computational Intelligence (SSCI), Canberra, Australia, 1–4 December 2020; pp. 1154–1161. [CrossRef]

30. Kaggle: Your Machine Learning and Data Science Community. Available online: https://www.kaggle.com/ (accessed on
18 June 2023).

31. Prepare Data for AI | DataRobot AI Platform. Available online: https://www.datarobot.com/platform/prepare-modeling-data/
(accessed on 18 September 2023).

32. Data Preparation Tools—Alteryx. Available online: https://www.alteryx.com/products/capabilities/data-preparation-tools
(accessed on 25 September 2023).

33. Django Auth. Available online: https://docs.djangoproject.com/en/2.2/topics/auth/passwords/ (accessed on 4 October 2022).
34. M’Raihi, D.; Machani, S.; Pei, M.; Rydell, J. TOTP: Time-Based One-Time Password Algorithm. Available online: https:

//www.rfc-editor.org/rfc/rfc6238.html (accessed on 4 October 2022).
35. RestrictedPython. Available online: https://pypi.org/project/RestrictedPython/ (accessed on 25 February 2023).
36. Kok, S.H.; Abdullah, A.; Jhanjhi, N.Z. Early detection of crypto-ransomware using pre-encryption detection algorithm. J. King

Saud Univ.-Comput. Inf. Sci. 2022, 34, 1984–1999. [CrossRef]
37. AI, I. Data Version Control · DVC—dvc.org. Available online: https://dvc.org/ (accessed on 18 September 2023).
38. Machine Learning—Amazon Web Services. Available online: https://aws.amazon.com/sagemaker/ (accessed on 18 Septem-

ber 2023).
39. IBM Watson Studio | IBM. Available online: https://www.ibm.com/products/watson-studio (accessed on 18 September 2023).
40. Dataset Search. Available online: https://datasetsearch.research.google.com/ (accessed on 18 June 2023).
41. Raghuraman, C.; Suresh, S.; Shivshankar, S.; Chapaneri, R. Static and dynamic malware analysis using machine learning. Adv.

Intell. Syst. Comput. 2020, 1045, 793–806. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3136825.3136883
http://dx.doi.org/10.1080/01969722.2016.1262704
http://dx.doi.org/10.32604/cmc.2021.014510
http://dx.doi.org/10.34190/iccws.17.1.59
http://dx.doi.org/10.1007/978-3-642-37300-8_8
http://dx.doi.org/10.1016/j.sysarc.2020.101861
http://dx.doi.org/10.1109/ICCNC.2016.7440587
http://dx.doi.org/10.1109/ICIINFS.2016.8262998
http://dx.doi.org/10.1109/SSCI47803.2020.9308387
https://www.kaggle.com/
https://www.datarobot.com/platform/prepare-modeling-data/
https://www.alteryx.com/products/capabilities/data-preparation-tools
https://docs.djangoproject.com/en/2.2/topics/auth/passwords/
https://www.rfc-editor.org/rfc/rfc6238.html
https://www.rfc-editor.org/rfc/rfc6238.html
https://pypi.org/project/RestrictedPython/
http://dx.doi.org/10.1016/j.jksuci.2020.06.012
https://dvc.org/
https://aws.amazon.com/sagemaker/
https://www.ibm.com/products/watson-studio
https://datasetsearch.research.google.com/
http://dx.doi.org/10.1007/978-981-15-0029-9_62

	Introduction
	Background
	MalFe Platform
	MalFe Evaluation
	MalFe Validation
	Case Studies
	Early Detection Of Crypto-Ransomware Using Pre-Encryption Detection Algorithm Kok2022
	A Novel Malware Analysis Framework for Malware Detection and Classification Using Machine Learning Approach Sethi2017
	Assessment of Supervised Machine Learning Algorithms Using Dynamic API Calls for Malware Detection Singh2022
	Literature Search
	Comparative Analysis


	Using MalFe for Ransomware Detection Using PE Entropy
	Conclusions
	References

