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Abstract

The prevalence of breast cancer (BC) continues to increase and is the leading cause

of cancer deaths in many countries. Numerous in vitro and in vivo studies have

demonstrated that 2‐methoxyestradiol (2‐ME) has antiproliferative and antiangio-

genic effects in BC, thereby inhibiting tumour growth and metastasis. We compared

the effect of 2‐ME in early‐ and late‐stage BC using a transgenic mouse model—

FVB/N‐Tg(MMTV‐PyVT)—of spontaneously development of aggressive mammary

carcinoma with lung metastasis. Mice received 100mg/kg 2‐ME treatment

immediately when palpable mammary tumours were identified (early‐stage BC;

Experimental group 1) and 28 days after palpable mammary tumours were detected

(late‐stage BC; Experimental group 2). 2‐ME was administered via oral gavage three

times a week for 28 days after initiation of treatment, whereas control mice received

the vehicle containing 10% dimethyl sulfoxide and 90% sunflower oil for the same

duration as the treatment group. Mammary tumours were measured weekly over the

28 days and at termination, blood, mammary and lung tissue were collected for

analysis. Mice with a tumour volume threshold of 4000mm3 were killed before the

treatment regime was completed. 2‐ME treatment of early‐stage BC led to lower

levels of mammary tumour necrosis, whereas tumour mass and volume were

increased. Additionally, necrotic lesions and anti‐inflammatory CD163‐expressing

cells were more frequent in pulmonary metastatic tumours in this group. In contrast,

2‐ME treatment of late‐stage BC inhibited tumour growth over the 28‐day period

and resulted in increased CD3+ cell number and tumour necrosis. Furthermore,

2‐ME treatment slowed down pulmonary metastasis but did not increase survival

of late‐stage BC mice. Besides late‐stage tumour necrosis, none of the other results

were statistically significant. This study demonstrates that 2‐ME treatment has an

antitumour effect on late‐stage BC, however, with no increase in survival rate,

whereas the treatment failed to demonstrate any benefit in early‐stage BC.
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1 | INTRODUCTION

Female breast cancer (BC) incidence has surpassed lung cancer with

about 2.3 million new cases in 2020.1 BC incidence is based on new

cases documented in 159 of 185 countries and is the leading cause of

death in 110 countries.1 Although current treatments increase the

survival rate, they target both cancer and healthy cells.2,3 Moreover,

some of these treatments may be ineffective for late‐stage

metastatic BC.3 Given the limitations of current, other therapies

have been investigated. One such therapy is a promising anticancer

agent called 2‐methoxyestradiol (2‐ME), a natural endogenous

steroid that is a metabolite of 17β‐estradiol (E2).4–6 E2 is generated

by O‐methylation of estradiol at 2‐position and sequential hepatic

hydroxylation.6,7 2‐ME is antiangiogenic and antiproliferative, and

induces apoptosis of actively dividing cells in vitro and in vivo.8,9 The

apoptotic nature of 2‐ME effectivity extends to oestrogen‐

independent and oestrogen‐dependent cell lines.10 2‐ME targets

dividing cells during the mitosis (G2/M) cell cycle phase and spares

quiescent cells.11,12 This drug binds to the colchicine‐binding site on

tubulin, inducing microtubule depolymerization and inhibiting micro-

tubule assembly,13,14 consequently inhibiting proliferation and

inducing apoptosis.15 However, 2‐ME does not impact the extent

of tubulin assembly but impedes the rate.16

Due to the antiangiogenic and antiproliferative effects of 2‐ME,

numerous studies have investigated its effect on BC. Many in vitro

studies have demonstrated that 2‐ME inhibits tumour initiation,

tumour growth and metastasis, and induces apoptosis in various BC

cells in a dose‐dependent manner.17–20 This is achieved by inhibiting

microtubule turnover, which leads to cell cycle arrest and apopto-

sis.7,21 Furthermore, 2‐ME decreases cell viability with increased 2‐

ME concentrations and exposure time.17 LaVallee et al.22 exposed

the MDA‐MB‐231 BC cell line to 2‐ME analogues and found that the

analogues induced G2‐M cell cycle arrest and apoptosis after 4–16 h

and 16–24 h respectively. Many in vivo studies have also demon-

strated the antitumour effect of 2‐ME.14,18,22–24 However, some

studies have suggested that the antiproliferative effect of 2‐ME is

limited.17,18 These studies suggested that 2‐ME may not inhibit but

rather slow the rate of tumour growth, and that if 2‐ME is

administered for a longer time before tumours appear, it may

increase tumour growth.17,18 Other studies suggested that the lack of

antitumour activity may be due to suboptimal 2‐ME concentrations,

which exhibit stimulatory effects, but not the inhibitory effect of 2‐

ME, which is dose dependent.17,23 The treatment dosages varied

from 20 to 150mg/kg given for varying numbers of days. All these

studies have xenograft models, except for one allograft study where

C3(1)/Tag transgenic mice developed spontaneous oestrogen

receptor‐negative mammary carcinoma and were treated with

150mg/kg/day with 2‐ME for 6 weeks.18 Treatment was given

orally for two different periods before tumours formed at 12 weeks

and after 18 weeks of age when palpable tumours were 0.5 cm in

diameter.18 2‐ME decreased tumour growth and burden in both

treatment periods.18

A xenograft study with a similar treatment design, whereby 2‐ME

treatment at a concentration of 150mg/kg/day was given orally for

33 days when tumours reached 0.5 cm in diameter, revealed that

2‐ME inhibited angiogenesis and tumour growth from implanted

MBA‐MB‐231 cell lines.23 This study showed that a higher

concentration of 2‐ME given for a longer period can induce

antitumour effects. However, a higher concentration (150mg/kg/

day) did not always result in antitumour activity. In another xenograft

study, 2‐ME was given intraperitoneally (IP) and orally at 150 and

75mg/kg/day, respectively, for 19 days after palpable tumours had

developed. Treatment with 2‐ME showed no antitumour activity but,

instead, increased tumour growth in mice inoculated with oestrogen

receptor‐negative MBA‐MB‐435 cells and oestrogen‐dependent

MCF‐7 cells.25 Klauber et al.14 suggested an optimal concentration

of 75mg/kg/day is needed to avoid toxic effects such as weight loss,

diarrhoea, hair loss and lethargy. Despite the contradicting reports,

most studies have clearly shown that prolonged administration of

2‐ME renders an antitumour activity after palpable tumours have

developed.

Cytokines are involved in various stages of BC and play a crucial

role in either inhibiting or stimulating BC invasion and prolifera-

tion.26,27 Interferons, interleukins (IL) such as IL‐12 and IL‐18 inhibit

BC, whereas IL‐6, IL‐1, transforming growth factor β and IL‐11

stimulate BC.26 These cytokines are secreted by immune cells such as

macrophages and T cells contributing to the inflammatory tumour

microenvironment (TME).27,28 BC cells secrete factors that differen-

tiate macrophages toward the M2 phenotype.29 M2‐associated

CD163+ macrophages are a prognostic marker for BC and metastasis

and an increased number of CD163+ macrophages are associated

with decreased patient survival.30–32 In contrast, higher levels of
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has been shown to have antiproliferative and antiangio-

genic effects in breast cancer (BC).
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antitumour effect.
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the drug.

PETA ET AL. | 899



CD3+ cells are associated with good prognosis biomarkers such as

CD8 and CD20, and are associated with increased survival.33–35

Many studies have demonstrated an antitumour effect of 2‐ME

on BC progression, most of which involve xenograft models.

However, no study has investigated the distinct effect of 2‐ME

treatment on early‐ and late‐stage BC progression. In this study, a

transgenic mouse model (FVB/N‐Tg(MMTV‐PyVT)634Mul/J) that

spontaneously develops mammary tumours with lung metastasis

(exhibiting an aggressive phenotype of BC)36 was used to investigate

and compare the effect of 2‐ME treatment on early‐ and late‐stage BC

progression. This mouse model can effectively replicate the

progression of mammary gland tumours, closely resembling the

stages observed in human ductal BC. The tumours displayed

gene expression patterns consistent with luminal B subtype human

BC and they also exhibited shared histopathological features and

the expression of basal‐like markers, mirroring the characteristics

of aggressive basal‐like BC in humans. Furthermore, we delved

into the cytokine profile and explored immunohistochemistry (IHC)

of key prognostic biomarkers.

2 | MATERIALS AND METHODS

2.1 | Animal studies

This study was approved by the Faculty of Health Sciences

research ethics committee (ethics reference no.: REC166‐19) and

the animal ethics committee (ethics reference no.: 534/2019) of

the University of Pretoria. The FVB‐TgN(MMTV‐PyVT) mouse

model was obtained from the Jackson Laboratory and mice were

bred to obtain heterozygous offspring by crossing hemizygous

males with wild‐type females. All offspring were genotyped and

only heterozygous females were included in the study.

2.2 | Animal genotyping

Mouse genotyping was performed using the KAPA Mouse Genotyping

Kit (KAPABIOSYSTEM) according to the manufacturer's instructions.

Briefly, a 2mm mouse tail biopsy was placed in 0.2mL microcentrifuge

tubes and DNA was extracted. For polymerase chain reaction (PCR)

genotyping experiments, two pairs of primer sequences obtained from

the Jackson Laboratory website (The Jackson Laboratory) were used.

The forward primer 5′‐GGAAGCAAGTACTTCACAAGGG‐3′ and reverse

primer 5′‐GGAAAGTCACTAGGAGCGGG‐3′ were specific for the

transgene and the forward primer 5‐′CAAATGTTGCTTGTCTGGTG‐3′

and reverse primer 5′‐GTCAGTCGAGTGCACAGTTT‐3′ were specific for

internal positive control. A thermocycler (GeneAmp® PCR System 9700)

was used to amplify DNA under the following conditions: initial

denaturation at 95°C for 3min, denaturation at 95°C for 15 s, annealing

at 60°C for 15 s and extension for 15 s for 2min for 35 cycles. The sizes

of the amplicons were determined using ethidium bromide‐stained 2%

agarose gel electrophoresis.

2.3 | 2‐ME treatment and tumour measurements

Treatment was divided into two experimental groups: one for early‐

stage BC and the other for late‐stage BC. The early‐stage BC (Ex. 1)

treatment commenced immediately when palpable mammary tu-

mours were felt. The late‐stage BC (Ex. 2) treatment began 28 days

after palpable tumours were felt. In both experiments, mice received

100mg/kg of 2‐ME in a vehicle made up of 90% sunflower oil

(Sunfoil) and 10% dimethyl sulfoxide given three times per week via

oral gavage for 4 weeks followed by killing of animals. The control

mice received the vehicle. Late‐stage BC mice on average received

treatment eight times in both (control and treatment) groups. Mice

that reached the mammary tumour volume threshold of ~4000mm3

were terminated to avoid suffering as a result of tumour burden.

Mice in the early‐stage BC group received 2‐ME treatment a total of

12 times.

A 2‐ME concentration of 100mg/kg administered three times a

week was chosen based on literature, to avoid adverse effects in

mice. During the duration of the treatment, palpable mammary

tumours were measured once a week and at termination using a

calliper. Tumour volume was calculated using the formula L ×W2/2,

where L is the length and W is the width.37 At termination, mammary

tumours were excised and the mass was measured in grams on a

scale (Sartorius). A light microscope (OLYMPUS, SC 100) was used to

identify and physically count the number of metastatic lesions on the

surface of the lungs. Images were also captured using the CellSens

dimension imaging software (XV Imaging, product version 3.9). A

total of 18 heterozygous female mice (nine for 2‐ME and nine for

control) were used for each of the experimental procedures.

2.4 | Histology and IHC analysis

Lung and mammary tissues were collected from killed 2‐ME‐treated

and control group mice, and were fixed in 10% neutral buffered

formalin. Haematoxylin and eosin (H&E) staining was performed as

previously described.38,39 IHC analysis for CD163 and CD3 was also

performed according to previously described protocols38,39 with

slight modifications. Briefly, formalin‐fixed paraffin‐embedded tissue

blocks were cut into 3 μm sections and baked in a 58°C oven

overnight. Xylene was used to deparaffinize slides, whereafter they

were hydrated with decreasing concentrations of alcohol to distilled

water. A 3% hydrogen peroxide solution was used to quench

endogenous peroxidase for 5min at 37°C. Antigen retrieval was

performed using a high pH buffer retrieval solution (Dako Envision

FLEX Retrieval solution high pH, Agilent Technologies), washed in

phosphate‐buffered saline (PBS) and background staining was

subsequently blocked with a protein block (Novolink Leica Biosys-

tems) for 30min at room temperature (RT). The sample sections were

incubated overnight at 4°C in a 1:300 anti‐CD163 antibody

(EPR19518) (ab182422) (Abcam) and washed in PBS. Detection of

the antigen–antibody binding site was performed with NovolinkTM

Polymer Detection Kit (Leica Biosystems) as recommended by the
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manufacturer. Slides were rinsed in PBS and incubated with 3,3′‐

Diaminobenzidine (DAB) (NovolinkTM Polymer Kit) for chromogen

detection. Sections were washed and counterstained in haematoxylin

for 1 min, dehydrated with increasing concentration alcohol solu-

tions, cleared in xylene and mounted with dibutylphthalate poly-

styrene xylene. CD3 IHC was performed on 3 μm sections in a

manner similar to CD163 but with a few differences. The antigen was

retrieved using a low pH buffer (Cell Conditioning Solution CC2,

Ventana Medical Systems, Inc.). Sections were incubated in a 1:100

rabbit monoclonal anti‐CD3 (Abcam ab16669 clone SP7) antibody for

120min. Slides were rinsed in PBS and detected for 30min at RT

with antirabbit Polymer HRP IgG (NovolinkTM Polymer Detection Kit,

Leica Biosystems). The negative controls were prepared by staining

with PBS instead of CD163 or CD3 antibody. The Leica AT 2 Aperio

scanner (Leica Biosystems) was used to capture images at ×40

magnification and Qupath software (https://github.com/qupath/

qupath/releases/tag/v0.3.2), version 0.3.2 (The Queens University

of Belfast) was used for analyses. Each scanned tissue section was

imported into the software and the image type was set to brightfield

(H‐DAB). A boundary was drawn around tissue section limits to focus

only on the cells within the section. To distinguish between positive

and negative cells, the estimation stain vector was set to automatic.

The software was trained by identifying positively stained cells and

indicating to the software what was viewed as positive cell detection.

The detection image parameter was set to ‘optical density sum’ and

the scan was initiated. After completion, the result showed the

number of positive, negative and total cell counts. The number of

positive cells was divided by the total number of cells to obtain the

percentage of CD163‐ and CD3‐positive cells.

2.5 | Measurement of plasma cytokines

Mice were killed with Isoflurane (Isofor; Piramal I Healthcare) and

blood (800 µL) was collected via cardiac puncture into EDTA tubes

and centrifuged at 28,487g for 15min. Plasma (250–300 µL) was

aliquoted in 2mL microcentrifuge tubes. For cytokine profiling, the

Legendplex mouse inflammation panel (13‐plex) kit (Biolegend®) was

used. The kit tested for 13 mouse cytokines, which are monocyte

chemoattractant protein‐1 (MCP‐1), granulocyte‐macrophage col-

ony‐stimulating factor (GM‐CSF), tumour necrosis factor‐α (TNF‐α),

interferon‐γ (IFN‐γ), IFN‐β, IL‐1α, IL‐1β, IL‐6, IL‐10, IL‐12p70, IL‐

17A, IL‐23 and IL‐27. The assay was performed according to the

manufacturer's instructions. Briefly, increasing standard concentra-

tions (standard supplied with kit) were prepared (in duplicate) in a 96‐

well plate and data acquired on a Cytoflex flow cytometer (Beckman

Coulter). A standard curve was generated. The plasma samples were

diluted twofold and staining was performed according to the

manufacturer's instructions. The samples were analysed using a

Cytoflex flow cytometer and the respective cytokine concentrations

were calculated using Biolegend's data analysis software https://

legendplex.qognit.com/.

2.6 | Statistical analysis

GraphPad Prism version 5 (GraphPad Software Inc.) was used for

statistical analysis. To compare the means between two groups, a one‐

tailed unpaired t test was used. Data were presented as mean± SEM. To

compare the means of more than two categories, a multiple comparison

test and a two‐way analysis of variance was used.

3 | RESULTS

3.1 | Distinct effects of 2‐ME treatment on tumour
volume and mass in early‐ and late‐stage BC

Heterozygous female mice were genotyped and those that had

the MMTV‐PyVT transgene were included in the study (Support-

ing Information: Figure 1). Tumour mass is the measure of tumour

weight and tumour volume is the calculated volume based on

tumour diameter.40 In early‐stage BC (Ex. 1), there was an

increase in tumour mass in the 2‐ME‐treated mice, whereas there

was no statistically significant difference in tumour volumes

between both groups at termination (Figure 1A,B). The mice in the

2‐ME‐treated mice group had continuously higher tumour

volumes throughout the 4‐week period, although this was not

F IGURE 1 2‐Methoxyestradiol (2‐ME) treatment of early‐stage breast cancer. (A) Average tumour volumes were the same in both groups at
termination (p = .2847). (B) The average tumour mass was higher in the 2‐ME‐treated group (p = .1004). (C) Throughout the 4 weeks, tumour
volumes of 2‐ME‐treated mice were higher (N = 9 in each group).
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statistically significant (Figure 1C). In late‐stage BC (Ex. 2), tumour

volume and mass were lower in the 2‐ME group at termination

(Figure 2A,B). Tumour volumes of both groups were similar at

weeks 1 and 2; however, in weeks 3 and 4, lower tumour volumes

were observed in the 2‐ME group (Figure 2C), although this was

not statistically significant.

3.2 | 2‐ME induces higher pulmonary lesion count
in early‐stage BC and shows no statistical difference
in late‐stage BC

Mouse lungs were examined for pulmonary lesions at termination.

Pulmonary lesions, which appeared as nodules, were identified and

F IGURE 2 2‐Methoxyestradiol (2‐ME) treatment of late‐stage breast cancer. (A) Tumour volume (p = .0729) and (B) tumour mass (p = .2624)
were higher in the control group. (C) Equivalent tumour volumes were observed in weeks 1 and 2 but higher tumour volumes were observed in
the control group in weeks 3 and 4 (N = 9 in each group).

F IGURE 3 (A) Pulmonary lesions of early‐stage breast cancer (BC) were smaller (arrows) and a combination of small (black) and large (blue)
lesions were observed in late‐stage BC. (B) A greater number of pulmonary lesions were observed in both the early‐stage (p = .1169) and
(C) late‐stage (p = .1654) 2‐methoxyestradiol (2‐ME)‐treated mice (N = 9 in each group).
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counted. The lesions in early‐stage BC were smaller compared with late‐

stage BC lesions, which were larger with varying sizes (Figure 3A). In

early‐stage BC‐treated mice, the number of pulmonary lesions was higher

in the 2‐ME group compared with the control group with a p‐value of

0.0654 (Figure 3B). Likewise, in late‐stage BC‐treated mice, a greater

number of pulmonary lesions were observed in the 2‐ME‐treated mice

(Figure 3C), although this was not statistically significant.

3.3 | Differential impact of 2‐ME on tumour necrosis:
Reduced mammary tumour necrosis in early‐stage BC
and statistically higher necrosis in late‐stage BC

The H&E images taken were analysed by drawing red lines around the

necrotic regions and a blue line around the entire tissue (Figure 4A). No

necrotic pulmonary regions were observed for early‐stage BC. To

calculate the proportion of necrotic tissue, the total sum of the necrotic

regions was divided by the area of the entire tissue. Mammary tumour

necrosis was lower in the 2‐ME group in early‐stage BC (Figure 4B). Only

one mouse in the 2‐ME group had pulmonary necrosis. In late‐stage BC,

tumour necrosis was significantly (p= .0169) higher in the 2‐ME group

than in the control group (Figure 5A,B). Pulmonary necrosis was lower in

the 2‐ME group, albeit not significant (Figure 5C).

3.4 | Distinct modulation of CD163 +M2
macrophages by 2‐ME: Fewer numbers in early‐stage
BC mammary tumours but increased counts in lung
tissue and no significant differences in late‐stage BC

Dark brown stains represent CD163+ macrophages (Figure 6A).

In early‐stage BC, the number of CD163+ macrophages in

F IGURE 4 Histopathological analysis of mammary tumour and lungs in early‐stage breast cancer mice treated with 2‐methoxyestradiol
(2‐ME). (a) Early‐stage tumour and pulmonary tissues labelled with red boundaries represent necrotic regions. (B) Greater tumour necrosis
(p = .3176) was observed in the control group compared with the 2‐ME group (Control N = 6, 2‐ME N = 5).
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2‐ME‐treated mice was lower in mammary tumour tissues but higher in

lung tissue (Figure 6B,C). In late‐stage BC, there was no difference in the

number of CD163+ macrophages between the 2‐ME‐treated and the

control group both in mammary and lung tissues (Figure 7A–C).

3.5 | CD3+ T cell distribution in response to 2‐ME
revealed no significant differences in early‐stage BC,
but increased counts in late‐stage BC mammary
tumours and decreased counts in lung tissue

Stained (brown) cells represent CD3+ T cells (Figures 8A and 9A). No

difference was observed between groups for mammary tumours and

pulmonary metastasis in early‐stage BC (Figure 8B,C). However, in

late‐stage BC, the number of CD3+ T‐cell was higher in the mammary

tumours, but lower in the lung tissue of 2‐ME‐treated mice

(Figure 9B,C). None of the results were significant.

3.6 | Late‐stage BC survival analysis revealed the
2‐ME group showed lower survival and reduced
tumour volumes at termination

The number of days mice in the late‐stage BC experimental group

lived before termination was evaluated to assess the effect of

2‐ME on survival. Importantly, mice with mammary tumours that

F IGURE 5 Histopathological analysis of mammary tumour and lung tissues from late‐stage breast cancer mice treated with
2‐methoxyestradiol (2‐ME). (A) Red boundaries surrounding necrotic areas of late‐stage mammary tumours and pulmonary tissues are shown
with arrows. (B) Tumour necrosis was significantly higher in the 2‐ME‐treated mice, p = .0169 (Control N = 4, 2‐ME N = 6). (C) Control group
pulmonary necrosis (p = .3480) was higher than in the 2‐ME group (Control N = 4, 2‐ME N = 5).
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reached a volume of ~4000 mm3 were terminated due to heavy

tumour burden that impaired quality of life. The decision to

terminate was determined by a qualified veterinarian. On

average, mice in the 2‐ME group lived for fewer days compared

to mice in the control group (Figure 10). However, as previously

stated, the tumour volumes of the 2‐ME group were lower at the

point of termination.

3.7 | Cytokine concentrations associated with
early‐stage BC

Cytokines associated with inflammation were measured in the plasma

2‐ME‐treated and untreated mice in early‐stage BC. The following

cytokine concentrations were similar in both groups: IL‐1α, IL‐1β, IL‐

12p70, IL‐17A and GM‐CSF. Cytokines that were higher in the 2‐ME‐

treated group were IFN‐β, IFN‐γ, IL‐10, IL‐23, MCP‐1 and TNF‐α,

with IFN‐β, IFN‐γ, IL‐10 and MCP‐1 notably high, but not statistically

significant. IL‐6 and IL‐27 levels were lower in the 2‐ME group

(Figure 11).

4 | DISCUSSION

The effect of 2‐ME on early‐ and late‐stage BC was investigated

using a transgenic mouse model that represents an aggressive form

of spontaneous mammary carcinoma. The study aimed to simulate a

clinical scenario in which 2‐ME treatment is given early (when a

palpable tumour first appears) or late (28 days after a palpable

mammary tumour first appears), depending on the stage at diagnosis.

The mice were given 100mg/kg 2‐ME treatment orally three times a

week for 4 weeks. Thus, the total number of doses administered in

the early‐stage BC group was 12. Due to the decision to terminate

earlier due to excessive tumour burden in the late‐stage BC group,

the total number of doses administered in both the 2‐ME‐treated and

control groups was 8.

F IGURE 6 Immunohistochemistry (IHC) for CD163 staining in mammary tumour tissue and lung of early‐stage breast cancer treated with
2‐methoxyestradiol (2‐ME). (A) In early‐stage mammary and lung tissue, brown staining represents CD163+ macrophages. (B) Early‐stage 2‐ME‐
treated mice had a lower number (p = .1617) of CD163+ macrophages in mammary tissue and (C) a higher number (p = .0811) of CD163+
macrophages in lung tissue (N = 5 in each group).
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In early‐stage BC, mammary tumour volumes in the 2‐ME‐

treated and control groups were the same, but tumour progression

was more rapid and tumour mass increased. The latter observation is

supported by the lower degree of mammary tumour necrosis seen in

the 2‐ME‐treated group, as increased cancer cell necrosis indicates

an antitumour effect.41 However, the number of CD163+ macro-

phages was lower in mammary tumours, which does not support the

findings considering the phenotypic characteristics of higher tumour

progression and increased tumour mass. The number of CD3+ T cells

in the mammary TME was similar in both groups. These phenotypic

results may account for similar tumour volumes at the point of

termination, as large tumours are associated with fewer CD3+ T

cells42 and CD163+ macrophages are associated with median‐sized

tumours.43 Although mammary tumour volumes in the 2‐ME‐treated

group were higher in the week preceding termination, this was not

the case at termination. Due to the drug's prolonged exposure, it

appears that 2‐ME inhibits tumour growth. Longer 2‐ME exposure

has previously been shown to cause BC cell apoptosis,17 suggesting

that if 2‐ME is given for a longer period it may have an antitumour

effect. Furthermore, pulmonary lesions were more common in the 2‐

ME‐treated group, as evidenced by a higher number of CD163+

macrophages detected, but there was no discernible difference in the

number of CD3+ T cells. An in vivo study demonstrated that

increased CD163+ macrophages led to enhanced metastatic ability

and tumorigenicity,32 and we observed similar trends. Taken

together, our findings suggest that 2‐ME did not cause an antitumour

effect. A study by Huh et al.18 on the late intervention of 2‐ME,

which correlates with the early‐stage BC group in this study, found

that there was a 60% decrease in tumour volume in 2‐ME‐treated

C3(1)/Tag transgenic mice compared with controls, and suggested

that a high dose of 150mg/kg can decrease tumour volume and

inhibit angiogenesis. This result is contrary to what we found in this

study and could be because of the increased dosage of 150mg/kg/

daily for 6 weeks. Similarly, another study reported that 2‐ME is

F IGURE 7 Immunohistochemistry (IHC) for CD163 staining (brown‐stained cells) in mammary tumour tissue and lung of late‐stage breast
cancer treated with 2‐methoxyestradiol (2‐ME). (A) Late‐stage mammary and lung tissue IHC. (B) A similar number of CD163+ macrophages was
noted in the mammary (p = .4546) and (C) lung tissues in both groups (p = .3729) (Control N = 3 and 2‐ME N = 5).
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antitumorigenic, but with a high dose of 150mg/kg/day for

33 days.21 There are several other studies with a similar experimental

design to the early‐stage group, that is, treatment was initiated after

detecting the presence of palpable tumours. However, the dose

and duration of treatment varied with the dose ranging from 50mg/

kg/day for 16 days to 75mg/kg/day for 30 days.14,24,44 Despite the

concentration variations, all studies reported an antitumour effect for

2‐ME. Oral administration of a concentration of 25mg/kg/day has

proven effective against metastasis.45 What stands out between

previous studies and this study is that 2‐ME was administered daily in

most studies as opposed to the approach used in this study, which

used a spaced‐out treatment (thrice per week for 4 weeks). In

hindsight, the dosage schedule should be reconsidered in future

studies as it seems that antitumour effect of 2‐ME is based on its

consistent bioavailability to theTME. This hypothesis is supported by

a study on the pharmacokinetics of 2‐ME, which reported that the

bioavailability of 2‐ME at 10mg/kg was low after 24 h in the plasma

of mice.46 Furthermore, the authors reported that oral administration

of 20mg/kg/day for 28 days showed no statistically significant effect

on tumour growth.46 Taken together, the results suggest that 2‐ME

should be given daily at a dose higher than 20mg/kg/day to cause an

antitumour effect.

Notably, 2‐ME‐treated mice had higher levels of the inflamma-

tory cytokines, IFN‐β, IFN‐γ, IL‐10 and MCP‐1, whereas IL‐6 and IL‐

27 were lower. Studies have shown that MCP‐1 is elevated in BC and

has been implicated in BC progression.27,47 Moreover, MCP‐1 is

involved in cancer initiation and activates monocytes that promote

pulmonary metastasis in BC.48,49 Interferons are antitumourigenic

and inhibit BC cells' capacity to form mammospheres.50,51 IL‐6 and

IL‐10 are anti‐inflammatory cytokines that are also protumori-

genic.27,52 Significantly elevated IL‐27 levels have been observed in

BC patients and are associated with tumour growth.53 Even though

elevated levels of interferons appear to indicate an antitumour effect,

most of these other notable cytokines indicate that 2‐ME may have a

pro‐tumour effect in early‐stage BC.

Contrary to early‐stage BC, the 2‐ME effect in late‐stage BC

suggests antitumour activity. Tumour volume, mass and tumour

progression were lower in the 2‐ME group. This observation was

F IGURE 8 (A) CD3+ T cells are stained brown and encircled in red. (B, C) No difference was observed in early stage (p = .3665) for breast
cancer for both mammary tumours and pulmonary tissue (p = .4040). (Control N = 3 and 2‐methoxyestradiol [2‐ME] N = 5).
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supported by tumour necrosis which was significantly higher in

2‐ME‐treated mice, as was the number of CD3+ T cells. CD3+ T‐cell

number is associated with increased survival and patients with low

levels of CD3+ T cells had an elevated risk of relapse in BC.54,55

However, there was a similar number of CD163+ macrophages in

mammary tumours of the 2‐ME‐treated and control groups.

Furthermore, pulmonary lesions were higher and pulmonary necrosis

was lower in the 2‐ME‐treated group. This phenotypic finding is

further supported by the presence of fewer CD3+ T cells in the

pulmonary tissue. In addition, despite having less pulmonary necrosis

on average in the 2‐ME group, more mice in this group had

pulmonary necrosis. This suggests that 2‐ME slowed down pulmo-

nary metastasis which is supported by the lack of difference in the

number of CD163+ macrophages observed between the 2‐ME and

the control groups. Taken together, our data suggest that 2‐ME

F IGURE 9 (A) CD3+ T cells are encircled in red. (B) In early‐stage breast cancer, a higher number of CD3+ cells were observed in mammary
tumours (p = .3018) and (C) fewer CD3+ cells were detected in the pulmonary tissue (p = .2243) of 2‐methoxyestradiol (2‐ME)‐treated mice
(Control N = 3 and 2‐ME N = 5).

F IGURE 10 Days of survival of late‐stage breast cancer mice. At
termination, the number of days of survival of mice in the control
group exceeded that of the 2‐methoxyestradiol (2‐ME) treatment
group (N = 9).
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rendered an antitumour effect on mammary tumours, but not on

pulmonary metastases. These results demonstrate that 2‐ME

treatment is not effective in inhibiting metastasis in mice that receive

treatment late. Generally, treating advanced BC with current

therapies is challenging56,57 and advanced BC treatments are aimed

at prolonging and improving the quality of life.58,59 Studies have

shown that 2‐ME treatment inhibits tumorigenesis in advanced BC

and increases the overall survival rate.18 We also observed an

antitumour effect on late‐stage BC, but 2‐ME failed to increase

overall survival. In previous studies, 2‐ME treatment was given to

mice either on the day of inoculation,24 or after the appearance of

palpable tumours.14,18,21

The use of 2‐ME as a treatment option comes with certain

limitations. One significant drawback is its poor oral bioavailability, as

it is not efficiently absorbed into the bloodstream after oral intake.

This is due to extensive metabolism in the liver before reaching

systemic circulation.60 Additionally, 2‐ME has a short half‐life,

necessitating frequent administration to maintain therapeutic levels

in the blood,13 and 2‐ME can induce side effects such as weight loss,

lethargy, hair loss and diarrhoea.14 To mitigate some of the

limitations as well as potential toxic effects of 2‐ME treatment, our

study administered a dose of 100mg/kg, three times a week to the

mice, well below the 75mg/kg threshold reported by Klauber et al.14

However, despite the higher dose, none of the mice experienced any

toxicity from the 2‐ME treatment.14 Future study should consider IP

administration of 2‐ME, which will allows for faster drug absorption

into the bloodstream, thereby bypassing liver metabolism. However,

we were faced with a great challenge regarding the solubility of 2‐ME

in solvents suitable for IP administration in our study as the 2‐ME

used could only be dissolved in hydrophobic substances, thereby

making IP delivery unfeasible. To bypass this, researchers are

investigating novel 2‐ME analogues.13

To our knowledge, this is the first in vivo study that used this

late‐stage BC treatment strategy and at the same with the early‐

stage BC for accurate comparison. Further studies are needed to

understand the effect of 2‐ME on advanced mammary carcinoma

from a mechanistic perspective. Furthermore, the role of 2‐ME in the

TME, the pharmacokinetic profile of the drug and its effect on

leucocytes should be investigated. This could lead to the develop-

ment of optimal 2‐ME treatment strategies capable of eliminating BC

cells at every stage.

5 | CONCLUSION

Our data suggest that 2‐ME has the potential to be an effective

treatment for late‐stage BC, demonstrating antitumour activity, whereas,

for early‐stage BC, most of the evidence suggests a pro‐tumour effect. In

late‐stage BC, 2‐ME inhibited tumour growth, increased tumour necrosis

and slowed pulmonary metastasis. In early‐stage BC, pulmonary

metastasis was associated with increased tumour volume and a higher

number of CD163+ macrophages. As the effect of 2‐ME on the two BC

stages differed, future research should focus on the mechanism and

influence of 2‐ME in theTME of the various BC stages for the treatment

to be an effective cancer therapy.
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concentrations of the control and
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Cytokine concentrations that were notably
higher in the 2‐ME group were interferon
(IFN)‐β, IFN‐γ, interleukin‐10 (IL‐10) and
monocyte chemoattractant protein‐1
(MCP‐1), whereas IL‐6 and IL‐27 were lower.
The other cytokines were present at
equivalent levels in both groups (N = 5 in each
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