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Abstract
The nuclear envelope separates the genome from the cyto-
plasmic environment. However, the nuclear envelope is also
physically associated with the genome and exerts influence on
gene expression and genome modification. The nucleus is
dynamic, changing shape and responding to cell movement,
disassembling and assembling during cell division, and un-
dergoing rupture and repair. These dynamics can be impacted
by genetic disease, leading to a family of diseases called
laminopathies. Their disparate phenotypes suggest that mul-
tiple processes are affected. We highlight three such pro-
cesses here, which we believe can be used to classify most of
the laminopathies. While much still needs to be learned, some
commonalities between these processes, such as proteins
involved in nuclear envelope formation and rupture repair, may
drive a variety of laminopathies. Here we review the latest in-
formation regarding nuclear dynamics and its role in lamino-
pathies related to mutations in the nuclear lamina and linker of
nucleoskeleton and cytoskeleton complex (LINC) proteins.
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Introduction
Defects in nuclear lamina proteins in laminopathies
cause a range of diseases, such as muscular dystrophies,
progerias, infertility, and lipodystrophies. Nuclear enve-
lope proteins include the constituents of the linker of
www.sciencedirect.com
nucleoskeleton and cytoskeleton complex (LINC), the
nuclear lamina filaments lamin A/C and lamin B, and
lamina-associated proteins [1e4]. A recent study high-
lighted the complexity of laminopathies by linking mu-
tations in these proteins to specific diseases, showing

that there are singular mutations in lamin A that can be
linked to a number of diseases presenting in different
tissues [5*]. The nuclear envelope is mainly responsible
for the protection of the genome. However, in recent
years, it has become clear that the nuclear envelope also
acts as an integrating platform between the genome, the
cytoplasmic, and the extracellular environments through
linkages to the cytoskeleton and as a regulator of gene
expression. This linkage of the genome to the nuclear
envelope and the cytoskeleton is modulated, for instance,
in migrating cells, where physical strain results in altered

gene expression and epigenetic modification.

The cellular defects in laminopathies that cause the ul-
timatediseasepresentation remainunclear inmanycases.
Thirty-five different medical conditions affecting skel-
etal muscle, cardiacmuscle, metabolism, and the nervous
system have been linked to mutations in the Lamin and
LINC proteins. Lamin A/C is commonly mutated in such
diseases, although there is no clear correlation between
specific groups of mutations and diseases. However,
clusters of mutations in exons 1 and 6 seem to be corre-

lated to striatedmuscle disease, some of which have been
linked to increased nuclear rupture or delayed and
impaired repair [5*], while others are linked to problems
with cell division, especially in gametogenesis.

However, from our current understanding, we believe
three major groups of laminopathies can be distin-
guished, defined by: (1) defects in post-mitotic/meiotic
nuclear envelope formation; (2) alterations in nuclear
shape-regulated gene expression; (3) increased nuclear
rupture as well as decreased nuclear rupture repair

(Figure 1). Evidence for this hypothesis remains scat-
tered, but cases pointing to these three paths to pa-
thology are present. In this review, we will briefly
discuss the latest knowledge on nuclear envelope for-
mation, nuclear-regulated gene expression, and nuclear
envelope rupture and repair. We further demonstrate
how certain diseases would fit within the three groups
of laminopathies.
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Figure 1

The three major effects postulated to occur at a cellular level as a result of
a laminopathy; 1) defects in cell division, 2) changes in nuclear dependent
gene expression, and 3) changes in nuclear rupture and repair.
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We hypothesize that laminopathies are caused by mu-
tations in nuclear lamina-associated proteins that result
in either defects cell division, nuclear rupture, or in

changes in gene expression regulated by nuclear shape.
The dynamics of nuclear envelope
formation after cell division
The LINC complex lies at the heart of the physical

interaction between the genome, the nuclear lamina,
and the cellular cytoskeletons and is ultimately
connected to the plasma membrane via structures such
as focal adhesions. The laminar network consists of
Lamin A/C, found in most differentiated cells, along with
lamin B. The nuclear lamina binds to chromatin and, in
turn, is connected to the LINC complex at the inner
nuclear membrane (INM) [6]. At the INM, Sad1-UNC-
84 domain containing protein 1 (SUN1) and 2 proteins
interact with the lamina while they project into the
perinuclear space, where they connect to nesprins. A

number of associated proteins, such as emerin, barrier to
autointegration factor (BAF), and four and a half lim
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domain protein 1 (FHL1), interact with the core LINC
complex at the INM, while at the cytoplasmic face,
nesprins connects to the cytoskeletons. Specifically,
nesprin-3 connects to the intermediate filament system
[7], nesprin 1 and 2 to the actin cytoskeleton [8], and
nesprin-1 also connects to the microtubule
network [9,10].

The mechanisms and efficacy of nuclear assembly upon
mitotic exit play a vital role in nuclear integrity. During
entry into mitosis, the nuclear envelope, along with the
integrated membrane proteins such as SUN proteins, is
disassembled and integrated within the endoplasmic re-
ticulum (ER) [11,12]. VRK1-dependent phosphorylation
of nuclear BAF during mitotic entry enables chromatin
relaxation, while other kinases phosphorylate lamin A/C,
leading to their release from the membrane and the
chromatin [13], readying the genome for division. After
division, during anaphase, chromatin organizes into disc-

like structures that act as nuclear envelope nucleation
points and undergo multiple phosphorylation events (for
review, see Ref. [14]). The chromatin attracts INM
proteins embedded in the ERmembrane, resulting in the
extension of the ER membrane to become the new nu-
clear envelope [15,16*]. Subsequently, BAF is dephos-
phorylated by Ankle2/PP2A [17] to increase its affinity
for chromatin while binding to the lap-emerin-man
domain protein (LEM) proteins, making it an essential
mediator of the NE assembly process [13]. At the same
time, emerin aids in the even distribution of A-type

lamins in the assembling nucleus [18]. Finally, nuclear
assembly is brought to a close by spastin, which severs
the microtubules at the kinetochores, and the ESCRTIII
complex, which seals the nuclear membrane to form a
continuous envelope [19]. Interestingly, the nucleoporin
Nup153 has been shown to aid in the continued incor-
poration of B-type lamins, lamin B receptors, and SUN1
after nuclear assembly. This suggests that there are
further mechanisms of nuclear assembly succeeding nu-
clear envelope sealing that are still to be elucidated [20].

To enable meiotic recombination during meiosis, chro-

mosomesmustmigrate along the still intact INM to form
a meiotic bouquet, which brings the homolog chromo-
somes into close proximity. This process requires force to
move the chromosomes, which is mediated by LINC
complexes through force generation by Dynein. Dynein
binds to KASH5 and to the chromosomes via SUN1 and
2, along with dynactin which is recruited via LIS1 [21].
The movement of the telomeres during this process is
mediated by SUN1, which is regulated by cyclin
dependent kinase 2 (CDK2) via the protein complex
Speedy/Ringo [22]. Mutations in gamete-specific LINC

proteins can affect cell division, which leads to defects in
meiosis and spermatogenesis. For instance, testis-
specific KASH5 and ubiquitous SUN1 proteins have
been shown to be essential for spermatogenesis since
knockouts of either protein cause sterility [23,24].
www.sciencedirect.com
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Moreover, SUN1mutations such as p.Tyr221X have been
associated with familial nonobstructive azoospermia.
This mutation leads to a reduction in KASH5 expression
and impaired telomeric attachment to the INM during
prophase I [25]. Clinically, mutations in SUN1 and
KASH5 have been linked to nonobstructive azoospermia
and diminished ovarian reserves, suggesting that
common pathways are regulated by these proteins in

male and female gamete production [26]. LINC com-
plexes also regulate sperm formation structurally. Testis-
specific SUN4 heterodimerises with SUN3 and binds to
lamin B3 in the nucleus. Loss of SUN4 leads to defects
in sperm head formation [27]. Indeed, SUN3 loss is also
associated with misshapen flagella due to the absence of
manchette microtubules [28]. Similarly, SUN5 muta-
tions cause acephalic spermatozoa syndrome, which is
characterized by disruption of head-to-tail linkages.
SUN5 mutations lead to the misdirection of nesprin-3
away from the anterior and posterior of the nuclear en-

velope, where it is normally localized, which is important
for the head-to-tail linkage [29]. Thus, mutations in
LINC proteins in the gametes affect proper genetic
material division and the physical formation of sperm,
suggesting that the nuclear envelope plays a central role
in directing proper gamete formation.
The influence of nuclear
mechanotransduction on transcriptional
regulation
The nuclear envelope’s ability to regulate protein entry
and exit can be modulated by nuclear shape, cell
migration, and nuclear deformation, which in turn will
influence transcription. Such nuclear morphology-
mediated mechanotransduction is often mediated via
the yes associated protein (YAP)/tafazzin (TAZ) com-
plex. For example, nuclear compression due to cyto-

skeletal and osmotic changes leads to increased YAP
nuclear translocation [30] and directs transcription
factors such as transcription enhancer factor (TEAD)
and AP-1 to alter gene expression [31,32]. YAP signaling
is regulated by pathways such as the RhoA/ROCK and
Wnt/b-catenin pathways [33,34], while the extracellular
regulated kinase (ERK) and NF-kB pathways have also
been associated with nuclear deformation-dependent
regulation of gene expression [35].

The induction of senescence is a common result of

nuclear signaling through YAP/TAZ after nuclear defor-
mation, which is also often seen in laminopathies. For
instance, an endothelium-specific progeria mouse model
exhibited increased expression of senescence-associated
secretory phenotype proteins, while the endothelium-
specific miR34a-5p positively impacted the p53-path-
ways and p16-pathways to maintain the senescence
phenotype linked to progeria cardiovascular pathology
[36]. Moreover, analysis of gene expression shows that
www.sciencedirect.com
progerias share many differentially expressed genes with
aging [37]. Strain-mediated activation of YAP may
explain the phenomenon of the same laminopathy-
related mutations resulting in differential gene expres-
sion in different tissues. For example, in patients with
Werner syndrome, transcriptomic analysis of fibroblasts
from the torso (less physical strain) showed decreased
adipogenic and chondrogenic gene expression, while fi-

broblasts from the feet (more physical strain) exhibited
increased osteogenic gene expression compared to
healthy individuals, suggesting that tissue-specific dif-
ferences in strain-dependent transcriptional regulation
occur [38].

The aetiology and effects of nuclear rupture
Nuclear rupture can occur in virus-infected cells, in cells
from patients with laminopathies, or in cancer cells [39].
Nuclear rupture starts when a gap in the nuclear lamina
appears, leading to membrane blebbing, chromatin
herniation, or both. With additional mechanical stress,
this bleb will rupture, spilling genomic DNA into the
cytoplasm and allowing unregulated access to the nu-

clear interior, and vice versa. Most ruptures are repaired
within minutes, but even those persisting for hours can
be repaired, although ruptures on micronuclei are not
always repaired [39e41]. Gaps in the lamina can result
from reduced lamin A/C expression, mutations in these
proteins, or chromatin disruption at the membrane.
Recently, it was shown that cancer cells harboring mu-
tations leading to reduced DNA damage repair exhibit
nuclear rupture without physical causes such as defor-
mation. This is mediated by ATR-dependent phos-
phorylation of Lamin A/C, which impacts lamina

assembly [42*]. However, it is still not clear how these
gaps themselves induce rupture and what the role of
peripheral chromatin as well as mechanical stress is in
the development of nuclear ruptures.
Nuclear rupture repair
Nuclear rupture repair requires the recruitment and
integration of membrane sheets from the ER or the
outer nuclear membrane to close the gap left by the
rupture. Interestingly, ER proteins involved in nuclear

envelope formation such as BAF and LEM domain pro-
teins, seem to be simultaneously involved in rupture
repair [43] (Figure 2). Several diseases, including
muscular dystrophies, cardiomyopathies, and partial
lipodystrophy, are linked to mutations in the binding
motifs of lamin A/C for BAF and emerin and vice versa,
leading to increased nuclear rupture, possibly through
the loss of lamin A/C chromatin crosslinking
[44*,45,46]. Nuclear BAF is dynamically regulated in
interphase cells via VRK1 to reduce its affinity for
chromatin, preventing aberrant DNA compression and

nuclear deformation [44*,47,reviewed in 48]. Interest-
ingly, there is also a cytoplasmic pool of BAF that acts as
Current Opinion in Cell Biology 2024, 86:102290
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Figure 2

BAF is involved in nuclear envelope assembly and nuclear rupture repair. a) nuclear envelope assembly is depicted, showing the role of BAF in
linking the chromatin to the emerging nuclear membrane via the LINC complex. BAF binds to chromatin, which attracts the LINC complex-bound
membrane from the ER to generate the new nuclear envelope. Upon completion of nuclear envelope formation, BAF is phosphorylated and released from
the chromatin. b) dephosphorylated BAF detects chromatin in the cytoplasm and binds to it to initiate the nuclear repair process. Once the rupture is
repaired and chromatin is once again inside the nucleus, BAF is phosphorylated and removed to the cytoplasm. LINC, linker of nucleoskeleton and
cytoskeleton complex.
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a sentinel for the presence of dsDNA in the cytoplasm.
This can occur upon viral infection but also during nu-
clear rupture. Cytoplasmic BAF will concentrate at nu-

clear rupture sites through its binding to chromatin,
which leads to the recruitment of LEM2, Chmp7,
Lamin A/C, and ESCRTIII [49*,50]. Interestingly, if
Chmp7 and ESCRT-III are not recruited to the rupture
site, repair can still be carried out, albeit delayed [51].
During this process, LEM-4/ANKLE-2 activates PP2A
to dephosphorylate and activate cytosolic BAF, while
VRK1 is inactivated [4,52], inducing enhanced chro-
matin binding by BAF. When the chromatin is once again
ensconced in the nucleus through the repair of the nu-
clear envelope rupture, BAF is phosphorylated and can

dissipate into the cytoplasm. In this way, BAF is seen as
the nucleation point for nuclear rupture detection and
repair initiation.

Mutations of BAF have been shown to lead to an in-
crease in nuclear envelope rupturing. For instance, the
Current Opinion in Cell Biology 2024, 86:102290
NestoreGuillermo progeria syndrome (NGPS)-associ-
ated A12T mutation leads to increased nuclear re-
rupture by limiting BAF-lamin A/C interactions

[53*,54]. Other mutations (R75W, H7Y, N70T) have
been found to affect BAF binding to DNA, although this
doesn’t appear to alter BAF localization [55*]. Also,
diminished rupture repair through the loss of BAF,
ANKLE2, or PP2A have been implicated in the cyto-
plasmic accumulation of insoluble Tau protein, while
overexpression of LEM2D is protective, suggesting that
nuclear envelope rupture repair may be important for
the prevention of Tau phosphorylation and accumula-
tion [56*]. Overexpression of lem domain containing
protein 2 (LEMD2), ANKLE1, and emerin have also

been associated with advanced malignancy and a poor
prognosis in prostate cancer [57], while LEMD2 mu-
tations are also associated with cardiomyopathy [58] and
a mild form of NGPS. Thus, efficient nuclear repair
seems to be important in averting several diseases and
depends on the proper regulation of BAF.
www.sciencedirect.com
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Table 1

Examples of mutations related to the three major groups of laminopathies.

Mutation Gene Effect Disease type Refs

p.Tyr221X SUN1 Attenuated KASH5 expression and impaired
telomere attachment to INM during prophase
1

Impaired cell division [24]

p.Arg424Thrfs*20 KASH5 Inhibits KASH5 expression leading to
nonobstructive azoospermia

Impaired cell division [26]

A12T BANF1 Induces Nestor-Guillermo progeria syndrome,
an early-onset aging condition. Causes a
greater incidence of nuclear re-rupture due to
limited BAF-l

Impacted nuclear rupture and repair [53*,54]

R75W, H7Y, N70T BANF1 Diminishes BAF binding to DNA Impacted nuclear rupture and repair [55]
p.L13R LEMD2 Causes nuclear membrane invaginations and

decreased nuclear circularity, resulting in DNA
damage and senescence that ultimately
induce cardiomyopathy

Impacted nuclear rupture and repair [58]

c.1824C > T LMNA Activation of the cryptic donor splice site,
leading to progerin protein lacking 50 amino
acids, induces aging-associated
symptoms including a lack of subcutaneous
fat, alopecia, swollen veins, and
cardiovascular pathology

Effects on nuclear expression [36]

INM, inner nuclear membrane.
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Conclusion
Laminopathies and mutations in LINC-related pro-
teins are responsible for a wide array of diseases, with
some even emanating from the same mutation
(Table 1). However, we believe many can be classified

as diseases of deleterious cell divisions, nuclear
rupture, or altered nuclear-regulated gene expression.
We highlighted some of the latest knowledge gained in
nuclear rupture and repair, as we believe this to be the
major impact of many laminopathies related to cell and
tissue maintenance and homeostasis, while also
showing how mutations in nuclear gamete-specific
LINC proteins can cause different forms of infertility
due to effects on cell division. Importantly, processes
such as nuclear repair and nuclear envelope formation
seem to make use of very similar cellular machinery,

further complicating the phenotypic outcomes of
many genetic diseases. While much is known about
nuclear shape-regulated gene expression, how these
feed into laminopathies needs to be better elucidated.
Overall, nuclear integrity and dynamics are clearly
important for normal homeostasis and seem to be
often affected by disease, and thus, we need to better
understand the overlapping mechanisms underlying
these processes.
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