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Simple Summary: This review describes how the two processes of angiogenesis (the generation
of new blood vessels) and neurogenesis (the generation of new nerve fibers) act together to drive
cancer progression. It also describes how they are both associated with a lower rate of patient
survival. These two processes share signaling pathways and, in many cases, the initiation of one
leads to the initiation of the other. Both processes require tissue alterations and are reliant on cell
migration. They favor cancer progression by supplying the tumor with nutrients and facilitating
communication/movements within the tumor. Thus, these two processes contribute to the spread of
cancers, as tumors can use nerve fibers and blood vessels as a routes to migrate from the initial point
of cancer development to the surrounding area or to the distal sites of the body.

Abstract: Angiogenesis, the generation of new blood vessels, is one of the hallmarks of cancer. The
growing tumor requires nutrients and oxygen. Recent evidence has shown that tumors release
signals to attract new nerve fibers and stimulate the growth of new nerve fibers. Neurogenesis,
neural extension, and axonogenesis assist in the migration of cancer cells. Cancer cells can use both
blood vessels and nerve fibers as routes for cells to move along. In this way, neurogenesis and
angiogenesis both contribute to cancer metastasis. As a result, tumor-induced neurogenesis joins
angiogenesis and immunosuppression as aberrant processes that are exacerbated within the tumor
microenvironment. The relationship between these processes contributes to cancer development and
progression. The interplay between these systems is brought about by cytokines, neurotransmitters,
and neuromodulators, which activate signaling pathways that are common to angiogenesis and
the nervous tissue. These include the AKT signaling pathways, the MAPK pathway, and the Ras
signaling pathway. These processes also both require the remodeling of tissues. The interplay of
these processes in cancer provides the opportunity to develop novel therapies that can be used to
target these processes.

Keywords: neural stem cells; neurotransmitter; neurotrophin; growth factor; axonogenesis; metastasis;
tissue remodeling; reactive oxygen species; neurogenesis; angiogenesis

1. Introduction

The hallmarks of cancer are characteristic alterations in the cells that accompany or
lead to the development and progression of cancer. One of these hallmarks is uncontrolled
or dysregulated angiogenesis. This allows the tumor mass to be provided with nutrients
as a result of the development of new blood vessels (reviewed in [1]). Recently, evidence
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brought forward shows how the creation of new nerve tissue, neurogenesis, is another
important contributing factor to the development and progression of cancer [2–4]. Multiple
studies indicate that tumors in tissue with a high level of blood vessels present are more
likely to develop intra-tumoral neural infiltration, a condition that is associated with a
poor prognosis. The more extensive this intra-tumoral nerve density is, the more severe
the metastatic potential of the tumor and the poorer the prognosis is for the patient [5–7].
In the body, the distribution of blood vessels and nerves mirrors each other (Figure 1A).
This is due their embryological and growth factor similarity - they share many of the same
molecules and signaling pathways that guide their growth [8]. These shared molecules and
pathways may be the reason why the molecules that induce angiogenesis during cancer
also induce neurogenesis. Examples of the interaction between the nervous tissue and the
surrounding blood vessels include the blood brain barrier (BBB), where astrocytes and
pericytes around blood vessels interact with these blood vessels to aid in the regulation
of the BBR. Interactions between the nervous tissue and the blood vessels surrounding
it are known as neurovascular units (NVUs) (Figure 1B) [9]. Brain tumors are known to
alter the structure of the blood brain barrier (BBB) into what is known as the blood–tumor
barrier (BTB). It is now known that cancers can drive neurogenesis, axonogenesis, and the
repurposing of existing nerve fibers.
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Figure 1. The physiological relationship between the vascular and nervous systems. (A) The vascular
and neural systems mirror each other in the body as they both are required to service the entire body
(B). The structure of the neurovascular unit in the brain and the blood brain barrier.

The new nervous tissue formed during neurogenesis is also dependent on new blood
vessels to supply the nervous tissue with oxygen and nutrients to ensure the new tissues’
continued survival [10]. This review discusses the role played by the interplay between
neurogenesis and angiogenesis in cancer, and although many of the examples discussed
come from studies on the interplay of these processes following stroke, the pathways
discussed are expected to be the same or similar to the pathways exploited by cancer cells
to attract or create nerve fibers or increase the vascularization to allow tumors to grow
and metastasize. During metastasis, cancer cells access the circulatory system, move, and
implant in distant organs. This process involves reciprocal communication between cancer
cells, endothelial cells of the vasculature, and neural cells of the nervous systems. This
communication correlates with poor prognosis [11].

2. Angiogenesis and Neurogenesis

The reciprocal communication between tumors and the nervous system is evidenced
by the fact that cancer patients experience cancer related pain [12] as a result of neuro-
oncogenic pressure on the fibers as the tumor volume increases [13], secretion of stimulatory
factors on peripheral fibers with depolarizing effects, axon demyelination, and pathological
neural plasticity induced by tumor-derived factors [14].

The term angiogenesis describes the generation of new blood vessels. There are two
main methods whereby angiogenesis occurs. Vasculogenic involves vascular progenitor
cells forming new blood vessels. These circulating endothelial progenitor cells (EPCs) are
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derived from the bone marrow [15]. These cells possess surface markers, such as CD34,
CD31, VEGFR-2, and Tie-2. Tumor cells are known to secrete VEGF and cytokines such as
stromal-derived factor-1. These pro-angiogenic factors recruit the circulating progenitor
cells and stimulate proliferation. These pro-angiogenic stimuli also activate the matrix
metalloproteases to break down the extracellular matrix, allowing cells to migrate and
penetrate cell layers [16].

Sprouting angiogenesis involves the formation of new vascular structures from an
existing vessel. This, firstly, involves the destabilization of endothelial cells and endothelial
mesenchymal transition. Once again, activated proteases are required to degrade the ECM
and basement membrane, allowing for directed migration and proliferation [16]. Once the
cells form the lumen and tubulogenesis of the new blood vessels, the transition is reversed,
with the cells reverting to the resting state [17]. This process involves the VEGF and Notch
signaling pathways [18]. As such, sprouting angiogenesis is a process whereby new blood
vessels are formed from pre-existing blood vessels. This process occurs in response to both
mechanical and chemical stimuli and is important for normal development and wound
healing. It facilitates tumor survival and progression as it provides cancer cells with oxygen
and nutrients to sustain their growth (reviewed in [19]). During angiogenesis, new micro
vessels are formed as they branch off from pre-existing vessels [20].

Angiogenesis involves processes, such as proliferation of endothelial cells and the
formation of tube-like vascular structures, as well as branching and anastomosis (reviewed
in [21]). This review will mainly focus on sprouting angiogenesis. Both pro- and anti-
angiogenic factors act to regulate angiogenesis, with any changes in the balance of these
factors either promoting or inhibiting angiogenesis. Pro-angiogenic factors are released by
endothelial cells, monocytes, and tumor cells. Angiogenesis also requires the activation
of various processes, such as basement membrane degradation, endothelial cell prolifer-
ation, migration, and cell remodeling, to form a tube or blood vessel (reviewed in [22]).
Angiogenesis can be promoted by adrenergic signaling, which is thought to contribute to
the formation of preneoplastic niches and decreased immune function [23]. β-adrenergic
receptor activation has been found to be essential in the progression and malignant growth
of ovarian [24], pancreatic [25], and pulmonary [26] cancers.

In adult mice, neurogenesis predominantly occurs in the subventricular zone (SVZ)
and the hippocampal dentate gyrus (DG), and it is thought that these two areas are where
neural stem cells are found within the adult brain [27,28]. Different types of cells are
involved in neurogenesis. The slow-dividing or true stem cells are mostly quiescent but
activate and divide asymmetrically to self-renew and give rise to immediate progeni-
tor cells [27]. These intermediate progenitor cells divide rapidly to give rise to nervous
tissue. In addition to these progenitor cells, other types of cells integrate into existing
neuronal networks. These include neuroblasts [29,30] and newborn neurons, which are
electro-physiologically active [31]. Neurogenesis can be activated or inhibited by a multi-
tude of signals, including growth factors, cytokines, chemokines, neurotrophins, steroids
and extracellular matrix components, the activation of specific transcription factors, and
signal transduction pathways (reviewed by [32]). Additional signals may result from
environmental stimuli, such as exercise alterations in an organism’s environment, stress,
or social isolation [33,34]. The growth and migration of tumors around and along nerve
fibers are known as perineural invasion [35]. Additionally, it is now known that nerves
actively grow into and throughout cancer tissue, resulting in increased metastasis as these
nerves provide signals to the cancer as well as a pathway to migrate along [36]. Auto-
nomic neurotransmitter receptors can stimulate cancer cell growth through the activation
of corresponding signaling pathways [37]. In its most basic form, the crosstalk between
neurogenesis, angiogenesis, and carcinogenesis is based upon common signaling pathways
and chemokines. Cancer cells express neurotrophic and pro-angiogenic markers. In many
cases, these molecules are both neurotrophic and pro-angiogenic. The infiltration of new
nervous tissue into cancer cells gives cancer cells a route to migrate along in the same
way that these cells can use lymphatic and blood vessels. In other words, the signaling
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pathways activated by more cells stimulate both neurogenesis and angiogenesis while
assisting in metastasis [38].

3. Stem Cell Niches and Blood Vessels

In adults, the stem cells that give rise to new tissue are in microenvironments known
as stem cell niches. It is the communication between the stem cells and these niches
which governs the activity of these stem cells, instructing them when to proliferate and
differentiate. This also involves niche cells regulating stem cell activity in response to
external signals.

This close association between blood vessels and stem cells has been observed for
hematopoietic stem cells [39] and neuronal stem cells [40–42]. When it comes to neuro-
genesis, neural stem cells, otherwise known as neural progenitor cells, migrate through
blood vessels to the tumor site from the neurogenic regions of the brain and metastatic
niches. These cells express the doublecortin (DCX) surface marker for progenitor cells,
which has been found to be expressed at higher levels in individuals with high-risk cancers.
Once these cells reach the tumor site, they differentiate into various noradrenergic, mature
neuronal cells [43]. Cancer stem cells can also form new neurons that are themselves
capable of stimulating tumor growth in xenograft models [44]. These neural stem cells
are surrounded by an extracellular matrix, rich in both blood vessels and laminin. Neu-
rogenesis can also be induced or inhibited through direct physical contact and, therefore,
signaling via integrins between the blood vessels and neural stem cells. One of these signals
is the laminin receptor for α6β1integrin, which is expressed by both the stem cells and
blood vessels [41,45]. Following the inhibition of α6β1integrin, the levels of both stem cell
proliferation and migration away from blood vessels increase [41]. Blood vessels nearby
and towards the SVZ vascular niche can interact with the SVZ, leading to the release of
angiogenic factors from the surrounding endothelial cells, resulting in neurogenesis [41].
One of these factors is the chemokine CXCL12 (SDF1), which initiates a signaling pathway,
resulting in the migration of neural stem cells to blood vessels and surrounding endothe-
lial cells that express CXCL12 [46]. Endothelial cells are also able to secrete factors that
inhibit neurogenesis. These include sphingosine-1-phosphate and prostaglandin-D2, both
of which are G-protein-coupled receptors (GPCRs), ligands that keep neural stem cells in a
quiescent state [47]. Another factor secreted from endothelial cells is neurotrophin-3 (NT-3),
which is required to sustain and regulate neurogenesis [48].

4. Ischemic Stroke Models Providing Evidence for the Interaction of Neurogenesis
and Angiogenesis

The first evidence showing the association between neurogenesis and angiogenesis
was from stroke models. In these models, it was noted that recovery from the stroke resulted
in increased numbers of neural stem cells and increased levels of angiogenesis [49,50].
Many of these models demonstrated the influence of therapies to treat stroke victims on
the processes of neurogenesis and angiogenesis, for example, the use of stem cell therapy.
Rat models of stroke showed that mesenchymal stem cell (MSC) therapy is due to factors
secreted by these stem cells rather than these cells replacing lost tissue. The effect of these
secreted factors rather than the cells was tested using a Wistar rat model of stroke where
the rats underwent cerebral artery occlusion. These secreted factors were able to increase
the levels of neurogenesis and angiogenesis in these rats, which was associated with a
decrease in the neurodegenerative effects following stroke [51]. Surgical interventions for
the treatment of stroke, namely, deep brain stimulation (DBS), which involves the electrical
stimulation of nerve tissue, were performed. Rat models of ischemic stroke showed that
recovery from stroke following DBS treatment was associated with increased proliferation
and movement of cells from the subventricular zone. This is accompanied by an increase
in the expression of growth factors and the stimulation of endogenous neurogenesis and
angiogenesis [52]. The migration of neural progenitor cells has been shown in these models
to be closely associated with blood vessels, with these vessels guiding the movement of
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these cells [53]. The expression of genes, miRNAs, and lncRNAs associated with these
processes and recovery following ischemic stroke has shown that there are many complex
signaling processes involved in neurogenesis, angiogenesis, and final recovery (reviewed
in [10]).

The use of these rat models identified many important molecules involved in angiogen-
esis, neurogenesis, and cell movement. These include miRNA-9, which links neurogenesis
and angiogenesis through regulating expression of VEGF-A by targeting transcription
factors that induce VEGF-A expression [54]. Mouse models demonstrated that miRNA-126
promotes proliferation, migration, angiogenesis, and neurogenesis after brain ischemia
by inhibiting its target tyrosine–protein phosphatase non-receptor type 9 (PTPN9) and
activating AKT and ERK signaling pathways [55]. Signaling pathways that were identified
to play a role in these processes include STAT3 pathways [56], sonic hedgehog [57], and
EphA receptor-mediated signaling [58].

5. The Remodeling of Tissues and the Proliferation and Migration of Cells during
Angiogenesis and Neurogenesis

When malignant cells invade surrounding tissues, they displace the normal cells
or integrate them, altering their function. These cells that are co-opted by cancer cells
to contribute to the survival of the tumor include fibroblasts [59], endothelial cells [60],
immune cells [61,62], and neuronal extensions [63]. Metastatic tumors then need to form
capillaries to supply oxygen and nutrients but also to act as routes for further cell movement
for metastatic dissemination [64]. Nerve fibers can provide similar functions by providing
the cancer cells with nerve cell signals as well as serving as migrations routes [65]. Both
nerve cells and the endothelial cells that become blood vessels are attracted to and co-opted
by the cancer cells [66]. Neurotrophins, such as nerve growth factor (NGF), can be released
by leukocytes, such as macrophages and mast cells, to promote an axonogenic switch
resulting in tumor innervation. Many immune cells express NGF [67] following induction
by IL-1β [68]. This can occur during inflammatory pain and neurogenesis. In a mouse
model of arthritis, the activation of macrophages results in increased levels of innervation,
related to and in conjunction with angiogenesis [69].

Neurogenesis and angiogenesis require increased proliferation of neural and endothe-
lial cells. This can be achieved by altering the length of the cell cycle, shortening it, and
allowing for more cycles of division [70]. Alternatively, the rate of different types of di-
visions can be altered since symmetric divisions will increase the number of stem cells,
while asymmetric division will result in a differentiated cell and one stem cell being gener-
ated [71].

The beta-adrenergic receptors, β2/3 receptors, have been shown to be involved in
tumor development and progression. In a mice model, the lack of the β2 or β3 receptor led
to a delay in tumor growth and angiogenesis [5,72]. In prostate cancer, these receptors lead
to the stimulation of endothelial cells, resulting in angiogenesis by metabolic adjustments.
The sympathetic nerves release noradrenaline, which activates β2-signaling in endothelial
cells, leading to the expression of the mitochondrial cytochrome c oxidase component,
COA6. This results in a decrease in normal oxidative respiration and the induction of
angiogenesis [72]. This noradrenaline also promotes vascular endothelial growth factor
(VEGF) expression, leading to angiogenesis [73].

5.1. Migration and Remodeling

Both angiogenesis and neurogenesis require the initiation or alteration of cell mi-
gration as well as the remodeling of tissue, which, themselves, require the breakdown
of the extracellular membrane. In order to accomplish this altered migration and tissue
remodeling, there must be specific interactions between cells, such as the immature mi-
grating neuroblasts, astrocytic processes, and blood vessels [74]. Some of the molecules
involved in these processes include stromal-cell-derived factor-1 (SDF-1), CXC chemokine
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receptor 4 (CXCR4), monocyte chemoattractant protein-1 (MCP-1), and matrix metallopro-
teinases (MMPs).

5.2. SDF-1 and CXCR4

The alpha chemokine SDF-1 protein is normally excreted from the ependymal cells; it
is also known as CXCL12 and, under normal conditions, induces neural stem cell (NSC)
quiescence [75]. However, under abnormal conditions such as in ischemic shock, SDF-1 is
released from reactive astrocytes and vascular cells and, in these cases, leads to increased
activation of NSCs [46]. The receptor for SDF-1, CXCR4, is also normally expressed in
bone marrow, where both CXCR4 and SDF-1 are involved in hematopoietic stem cell
mobilization and trafficking of NSCs [76]. In a similar way, it is thought to mobilize and
direct neuroblasts. The migration of NSCs in a rat stroke model was inhibited following
the blocking of SDF-1 function using an antibody against CXCR4 [77]. SDF-1 may be one of
the factors released by endothelial cells that leads to the directing of migrating neuroblasts
to the vasculature [46].

5.3. MCP-1

The (CC) family member chemokine, monocyte chemoattractant protein-1 (MCP-1), is
known to interact with the CC-chemokine receptor-2 (CCR2). CCR2 is widely expressed
on NSCs, and the binding of MCP-1 leads to increased NSC migration in vitro [78]. It is
suspected that this is accomplished through the receptor and ligand activating the PI3
kinase pathway [79].

5.4. MMPs

Matrix metalloproteinases (MMPs) are known to have a role in cancer, promoting
metastasis through the breakdown of the extracellular matrix (ECM). This then allows
cells to migrate through tissue layers. This family of proteases also seems to play a role
in the migration of SVZ neuroblasts. MMPs-3 and -9 are expressed in neuroblasts and
their inhibition results in reduced neuroblast migration [80]. MMPs-2 and -9 act on the
vasculature to assist in the migration of neuroblasts by activating the PI3K/Akt and ERK1/2
signaling pathways [77].

6. Growth Factors

Growth factors are responsible for guiding the growth of both blood vessels and nerve
fibers to new target tissues or destinations. These growth factors include VEGF, NGF, and
insulin growth factor (IGF). Fibroblast growth factor 2 (FGF2) stimulates neurogenesis [81],
whilst bone morphogenic protein 4 (BMP4) has an inhibitory effect on neurogenesis [82].
The pituitary-gland-derived hormone, prolactin, induces neurogenesis [83], while growth
differentiating factor 1 (GDF11) augments neurogenesis in older adults where the normal
levels of neurogenesis have declined [28]. Brain-derived neural factor (BDNF) and pig-
mented epithelium-derived factor (PEDF) are both secreted from the blood vessels and
endothelial tissue and both induce neurogenesis [84]. Tumor-associated neoneurogenesis
involves the activity of growth factors, which generally have pleiotropic functions and serve
to attract nerve fibers to a tumor and initiate neural cell growth [7]. Cancer cells also release
axon guidance molecules (netrins) to aid in nerve infiltration [85]. Neurotrophic growth
factor receptors and neurotransmitter receptors (NTRs) are both expressed in neurons and
cancer cells. This gives their ligands, growth factors, and neurotransmitters the ability to
act as signals that connect nerves and cancer cells. Axon guidance or the generation of
new axons into a tumor and angiogenesis can both be guided by neurotrophins. This was
demonstrated using the expression patterns of the Tyrosine receptor kinases (Trks), with
different Trk receptors binding different neurotrophins: NGF binds to TrkA, BDNF binds to
TrkB, and neurotrophin 3 (NT3) binds to TrkC. The expression of these Trks was established
in tumors from oral squamous cell carcinoma (OSCC) patients as well as on the surface of
high metastatic cells grown in culture. In both cases, the Trk receptors TrkB and TrkC were
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overexpressed. The expression levels of these receptors in OSCC patients correlated with a
poor prognosis and lower survival rates [86]. The same was true for increased expression of
TrkB in patients with ovarian cancer [87]. Some neurotrophies, such as NGF and BDNF, can
promote angiogenesis independently of VEGF and may be the reason why some tumors
are resistant to anti-VEGF therapy [88].

Neurotransmitters can also link neurogenesis, angiogenesis, and cancer. Increased
levels of the dopamine receptor D2R are associated with lower survival rates in gastric
cancer [89]. Dopamine is also able to stimulate the EGFR-AKT pathway, stimulating
migration and invasion [24]. The increased expression of the D2R receptor has been
observed in multiple cancers [90,91].

6.1. FGF2

Fibroblast growth factor (FGF-2) and its receptor FGFR2 are able to stimulate endothe-
lial cell proliferation [92]. FGF2 is known to be overexpressed in dividing neural stem cells
and its overexpression leads to an increased proliferation of neural stem cells [93]. It has
also been shown that increased FGF-2 expression in a rat stroke model leads to increased
neurogenesis and can lead to the recovery of brain function following a stroke [94]. Upreg-
ulation of IGF-1 is also observed in angiogenesis [92]. It is also responsible for regulating
migration and ECM degradation during angiogenesis where it increases the expression of
Urinary-Type Plasminogen Activator and matrix metalloproteinases in endothelial cells [95].
FGF2 stimulation of endothelial cells leads to the formation of membrane vesicles contain-
ing MMP-2, MMP-9, TIMP-1, and TIMP-2 on the cell surface. These vesicles assist in the
formation of capillary-like structures [96]. Like many other growth factors, the activation
of the Ras/ERK pathway by the binding of FGF3 to FGFR results in the expression of
pro-angiogenic and pro-neurogenic genes (Figure 2).
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Figure 2. FGF-2 signaling pathways. The binding of FGF-2 to the FGF receptor FGF-R. The FGF-2 sig-
naling pathway activates the Ras/ERK pathway, which leads to the activation of pro-angiogenic and
pro-neurogenic genes. ERK—extracellular signal-regulated kinase, FRS2β—fibroblast growth factor
(FGF) receptor substrate 2, GRB1/2—Growth factor receptor-bound protein 1/2, MEK—Mitogen-
activated protein kinase, PI3K—Phosphoinositide 3-kinase, Rnd1—Rho-related GTP-binding protein,
Shp2—Src homology region 2, SOS—Son of Sevenless.
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6.2. IGF-1

Insulin-like growth factor-1 (IGF-1) is known to play a role in the development of the
brain; despite this, it is normally expressed in the liver. IGF-1 is able to induce the prolifer-
ation of adult neural stem cells in the hippocampus. This proliferation occurs as a result
of the activation of the MAPK [97]. Not only does IGF-1 have neurogenic/neurotrophic
properties but it is also able to induce angiogenesis [98]. An experiment using a mouse
model of permanent focal ischemia was used to illustrate the overexpression of IGF-1 using
an adeno-associated viral (AAV) vector with the IGF-1 gene cloned into the vector. This
overexpression resulted in higher levels of vascular density and increased neurogenesis
noted the day after ischemic injury. This is accomplished through IGH-1 activating ERK,
which leads to the generation of vascular endothelial cells and the initiation of PI3K and
AKT signaling (Figure 3) [99]. IGF-1 also induces the activity of the Brain-4 (Brn4) tran-
scription factor. This leads to the promotion of neural differentiation in neuronal stem cells
in the hippocampus [49].
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Figure 3. IGF-1 signaling pathways: The binding of IGF-1 to the IGF receptor FGF-1R. The IGF-1
signaling pathway activates the Ras/ERK pathway, which leads to the activation of pro-angiogenic
and pro-neurogenic genes. In addition to this, the pathway activates the Brn-4 transcription factor,
which stimulates neuronal growth and differentiation. BRN4—POU domain, class 3, transcription
factor 4, eNOS—Endothelial NOS, ERK—extracellular signal-regulated kinase, FRS2β—fibroblast
growth factor (FGF) receptor substrate 2, FOXO 1/3a—Forkhead family of transcription factors,
GRB1/2—Growth factor receptor-bound protein 1/2, IRS1/2—Insulin receptor substrate 1/2, MEK—
Mitogen activated kinase, mTORC—mammalian target of rapamycin complex 1, PDK1—Pyruvate
dehydrogenase kinase isozyme 1, PIP-2/3—phospholipase, PI3K—Phosphoinositide 3-kinase, Shp2—
Src homology region 2.
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6.3. VEGF

Vascular endothelial growth factor induces angiogenesis after binding to its receptor
on endothelial cells. The role played by VEGF in angiogenesis is well-understood but recent
evidence suggests that it also plays a role in neuronal growth, survival (neurotrophic),
axonal outgrowth (neurotropic), and neuroprotection. It has been established that VEGF
has direct effects on neurons and glial cells, leading to increased growth (including axonal
outgrowth) and survival (Figure 4). VEGF has also been implicated in multiple neurological
disorders [100]. These direct effects are due to the presence of VEGF receptors on the surface
of neuronal cells. These receptors include Flk-1 and Flt-1 [101].
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Figure 4. VEGF signaling: VEGFR-2 activation stimulates migration and extracellular matrix (ECM)
invasion. The BEGF pathway results in neurogenesis, which leads, in combination with increased
vascular permeability, to increased angiogenesis. CASP9—Caspase9, eNOS—Endothelial NOS,
ERK- extracellular signal-regulated kinase, FAK—Protein-tyrosine kinase, FRS2β—fibroblast growth
factor (FGF) receptor substrate 2, FOXO 1/3a—Forkhead family of transcription factors, FSP-27—
Fat specific protein 27, IRS1/2—Insulin receptor substrate 1/2, MEK-Mitogen activated kinase,
NFAT—Nuclear factor of activated T-cells, PIP-2/3-phospholipase, PI3K—Phosphoinositide 3-kinase,
PKC—Protein kinase C, PLCγ—Phosphoinositide phospholipase C, Shp2—Src homology region 2,
SPK-SR protein kinase.

6.4. BDNF

Brain-derived neurotrophic growth factor is known to induce neurogenesis. It has
been shown that intrahippocampal administration of BDNF increased neurogenesis in an
adult rat model. Intracerebroventricular infusion of BDNF led to increased production
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of new nerve cells in the olfactory bulb of adult rats [102]. Overexpression of BDNF
using an AAV vector resulted in higher levels of neurogenesis, and in a mouse model
of stroke injury resulted in better recovery following ischemic injury [103]. In mouse
models of myocardial infarction, some mice were wild-type while others were BDNF (+/−)
heterozygous. The heterozygous mice showed better recovery rates as well as reduced
levels of vascularization. This indicates that BDNF is able to induce angiogenesis [104]
(Figure 5). BDNF stimulates angiogenesis by recruiting bone-marrow-derived cells as
endothelial progenitor cells. BDNF also stimulates stem cells to differentiate into endothelial
cells [105].
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Figure 5. BDNF signaling pathways. Binding of BDNF to TrkB leads to the activation of MAPK, PI3K,
and PLCγ pathways. The Shc adaptor protein recruits the growth-factor-receptor-bound protein 2
(grb2) to form a complex with Ras. This initiates ERK, which then activates the CREB transcription
factor. Binding of TrkB also activates the PI3K and MF-κβ signaling pathways. These pathways
play a role in neurotrophic functions (survival, growth, and differentiation). The PLCγ pathway
generates inositol-1, 4, 5-triphosphate (IP3) and diacylglycerol (DAG), resulting in Ca2+/CaMKI
activation and the initiation of the transcription of genes that are pro-angiogenic and pro-neurogenic.
CREB—Cyclic AMP-responsive element-binding protein, ERK—extracellular signal-regulated kinase,
GRB1/2—Growth factor receptor-bound protein 1/2, MEK—Mitogen activated kinase, PIP-2/3—
phospholipase, PI3K—Phosphoinositide 3-kinase, PKC—Protein kinase C, PLCγ—Phosphoinositide
phospholipase C, Shp2—Src homology region 2.
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6.5. NGF

The attraction of nerve fibers to tumor cells is facilitated by cancer cells secreting
neurotrophic growth factors. [roNGF is expressed in prostate cancer cells, where, once it is
processed to nerve growth factor, drives nerve infiltration. The levels of proNGF correlated
with tumor aggressiveness, with low-risk tumors showing significantly lower levels [106].
Prostate cancer cells are also able to stimulate neuron outgrowth by releasing proNGF
(Figure 6) [106]. There are some doubts as to whether proNGF needs to be processed into
NGF to perform these functions, with some researchers believing that proNGF itself is
responsible for these actions. Other processes regulated or stimulated by proNGF/NGFs
include perineural invasion [7] and tumor neoneurogenesis [106].
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Figure 6. NGF signaling pathways. NGF binding to TrkA and p75NTR receptors promotes neuronal
growth. The activation of the ERK signaling pathway promotes the transcription of pro-angiogenic
and pro-neurogenic genes as in other neurotrophic and growth factor pathways. CREB—Cyclic AMP-
responsive element-binding protein, ELK—ETS domain-containing protein, eNOS—Endothelial NOS,
ERK—extracellular signal-regulated kinase, GRB1/2—Growth factor receptor-bound protein 1/2,
MEK—Mitogen activated kinase, PDK—Pyruvate dehydrogenase kinase 1, PIP-2/3—phospholipase,
PI3K—Phosphoinositide 3-kinase, PKC—Protein kinase C, PLCγ—Phosphoinositide phospholipase
C, Shp2—Src homology region 2, SOS—Son of Sevenless.

The role played by NGF as a neurotrophin, promoting neurotrophic and neurotropic
effects in sympathetic neurons, is well known. Recent evidence suggests that NGF also
plays a role in angiogenesis. Angiogenesis involves changes and migration in endothe-
lial cells (ECs). It was found that NGF was able to induce the migration of cultured
endothelial cells to the same extent as VEGF [107]. Another study reported similar re-
sults using the chorioallantoic membrane (CAM) of a quail as a model system. Due
to the highly vascularized nature of this membrane, quail is an ideal model to study
angiogenesis. NGF was found to have pro-angiogenic effects on the natural vascular-
ization of these membranes and, once again, this effect was similar to that induced
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by recombinant VEGF165a (rhVEGF) [108]. These effects of NGF on EC migration and
CAM vascularization could be blocked by the addition of the NGF receptor antago-
nist K252a[(8R*,9S*,11S*)-(/)-9-hydroxy-9-methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-
8,11-epoxy-1H,-8H,11H-2,7b,11a-triazadibenzo(a,g)cycloocta(c,d,e)trindene-1-one]. This
selective blocker targets the NGF/trkA receptor [107,108]. The similar VEGF blocker SU-
5416, which targets the VEGF/Flk1 receptor, had no effect on the proangiogenic effect of
NGF. Therefore, NGF has a direct angiogenic effect, relying on a distinct signaling pathway
from the pro-angiogenic effect induced by VEGF (Figure 6) [108]. However, the study
on the effects of NGF on EC migration indicated that the signaling pathways activated
by the growth factors are able to activate each other’s downstream tyrosine kinase sig-
naling pathways [107]. NGF also promotes VEGF expression through the MAPK-ERK2
phosphorylation signaling pathway [109].

6.6. Nestin

Nestin is a class VI intermediate filament that is normally expressed in nervous
tissue in mammalian embryos. It is also found in the adult brain where it is found in the
subventricular zone. This zone is where neurogenesis occurs. Nestin plays a role in brain
development where it promotes survival, renewal, and mitogen-stimulated proliferation of
neural progenitor cells. It also plays a role in mitosis, where it disassembles phosphorylated
vimentin intermediate filaments (IFs). Nestin expression is also upregulated in various
types of tumors. In these tumors, nestin expression was found to occur in the vascular
endothelial cells, the same areas where angiogenesis takes place [110].

6.7. Neuropilins

The neuropilins (NRPs) are plasma membrane spanning receptors that have no cytoso-
lic protein kinase domain, meaning that they only function as co-receptors of other receptors
for various ligands. They were originally identified as co-receptors for semaphorin (re-
viewed in [111]) and vascular endothelial growth factor [112]. By acting as a co-receptor
for semaphorins, they play a role in axon guidance during axon and neurogenesis, while as
co-receptors for VEGF, they play a role in angiogenesis. Commonly, this role in angiogene-
sis is related to providing new neurons with blood supply [113,114]. In addition, they also
contribute to the regulation of signaling pathways, such as the STAT, RAS, MAPK, PI3K,
Notch, TGF-β, Wnt/β-catenin, and hedgehog pathways. This allows them to play a role in
processes, such as remyelination, immune response, angiogenesis, cell survival, migration,
and invasion [115–117]. The expression of NRP is known to be altered in tumors [118],
with more advanced-stage tumors showing higher levels of expression [119,120]. The
overexpression of these NRPs leads to leaky hypervascularization [121].

There are two members of the family, Neuropilin-1 (NRP-1) and Neuropilin-2 (NRP-
2) [122]. NRP1 is known to be vital for the vascularization of the spinal cord, hindbrain,
and retina in mouse models [121,123,124]. This confirmed the need for NRP1 in the
vascularization of the CNS. This is due to NRPs acting as an adhesion molecule and
receptor for two particular classes of semaphoring and VEGF, namely class 3 semaphorin
(SEMA3A) and VEGF165a [125]. Alternative splicing gives rise to both membrane-bound
and soluble isoforms of NRPs. Different forms of NRP are also created by the inclusion of
different lengths of amino acids to the C-terminal [126].

7. The Role of Reactive Oxygen Species

As they multiply, malignant cells require nutrients and oxygen to survive and continue
growing (reviewed in [127]). Cancer cells that are deprived of oxygen respond to local hy-
poxic conditions by releasing signaling molecules, such as chemokines and growth factors,
that alter the tumor microenvironment. These signaling molecules interact with immune,
endothelial, and neuronal cells and induce their migration to the primary tumor [60,128].
Angiogenesis is also regulated via the crosstalk between reactive oxygen species (ROS)
and Ca2+ ions. The ROS, nitric oxide, activates Ca2+ channels. This occurs via the glu-
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tathionylation of the Serine incorporator (SERINC) protein and the involvement of the
NADPH oxidase (NOX) protein family. This process is also known as the VEGF-dependent
anti-ROS angiogenic pathway as VEGF can induce this process. This is demonstrated by
the induction of endothelial cell migration by H2O2, which, in turn, can be inhibited by
catalase and superoxide dismutase (SOD). The migration of these endothelial cells is also
accompanied by an influx of Ca2+ into these cells [129]. This process is reliant on NOX2
or Nox4 activity. H2O2 supplementation can bypass the lack of NOX4 but not Nox2. This
indicates that NOX2 is acting downstream of both H2O2 and Nox4. The production of ROS
by Nox4, in turn, is activated by VEGF. Certain ROS can also activate the expression or
stimulate the activity of transcription factors that regulate angiogenesis [130].

The expression of both NOX2 [131] and Nox 4 [132] has been found to be expressed
in neurons. Nox1 expression was also found to increase in response to nerve growth
factor (NGF) signaling [133]. In neurons, NADPH oxidases play roles in the modulation
of the activity of neurons as well as altering the cell fate or neurons. Brain-derived neu-
rotrophic factor signals for neurons to undergo apoptosis as a result of serum deprivation,
a process which is modulated by NOX2 [134]. NOX1 also negatively regulates neurite
outgrowth [133].

Ets-1, NF-kB, and STAT-3 ROS also induces the expression of various genes involved in
angiogenesis, such as monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion
molecule 1 (VCAM-1), and matrix metalloproteinases (MMPs).

The contribution of the nervous system to cancer progression was demonstrated in
mouse models of gastric cancer. Here, the surgical or pharmacological denervation of the
stomach suppressed gastric tumorigenesis [135]. Denervation resulted in decreased Wnt
signaling and suppressed stem cell activity. The decrease in stem cell expansion was found
to be linked to cholinergic signaling. In the mouse stomach, cholinergic nerves regulate gas-
trointestinal epithelial proliferation [136]. Such denervation has been tested as a therapeutic
strategy to treat gastric cancer where it can be used in conjunction with chemotherapy [135].
Nitric oxide (NO) is able to initiate angiogenesis through the generation of eNOS and hy-
drogen sulfide (H2S). H2S is generated via the action of cystathionine-γ-lyase (CSE) [137].

8. Therapeutic Targeting of the Interplay between Angiogenesis and Neurogenesis

Targeting angiogenesis for therapy in cancer is a well-established strategy that involves
targeting the communication between tumor cells and the nearby blood vessels. It is
known that interfering with neurogenic signaling can affect cancer development and
progression. In mouse and tissue culture models of both prostate and lung cancer, it has
been shown that chemical (6-hydroxydopamine, 6-OHDA) and surgical (hypogastric nerve
cut) sympathectomy can prevent the development and progression of these cancers [5,73].
Since it appears that angiogenesis is triggered by axonogenesis and neurogenesis through
adrenergic signaling, targeting the adrenergic receptor or ligands is a viable treatment
option. For instance, perineural invasion (PNI) is a promising therapeutic target. PNI is
induced by the activation of the β2-adrenergic receptor, leading to PKA/STAT3 activation,
which, in turn, activates NGF, MMP2, and MMP9 expression. Ligands which bind to and
activate this receptor in PNI include sympathetic fiber-derived noradrenaline. This can be
achieved using drugs, such as propranolol and penbutolol, which are β Adrenergic blockers,
or atropine and hyoscine, which are muscarinic antagonists. Studies have shown that these
drugs prevent prostate cancer cell migration [138]. Dopamine receptors are also potential
drug targets. In mouse models of lung cancer, Dopamine receptor D2 (D2R) agonist inhibits
angiogenesis [91]. Dopamine (DA) inhibitors can prevent cancer cell proliferation. These
inhibitors lead to the downregulation of ERK1/2 and PI3K/AKT pathways [139]. Both
NGF and BDNF rely on Trk receptors to initiate the signaling pathways. The antagonism
or inhibition of these Trks could potentially prevent neurotrophin signaling in cancer
progression and initiation. This can be used to treat neuropathic pain related to cancer
as well as inhibiting neurogenesis, angiogenesis, and their interplay. The Trk receptor
inhibitors Larotrectinib and entrectinib have both been approved for use in the treatment
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of tumors [140]. It has long been known that innervation of gastric tissue promotes the
development of gastric cancers. The severing of the vagus nerve at particular branches has
been found to inhibit the development of gastric cancers in a mouse model. In addition to
this, similar results were achieved when the mice were treated with BOTOX, which acted
to block neural signaling [135].

9. Conclusions

The management and treatment of cancer require the advancement of knowledge
concerning how tumors interact with their microenvironment. While angiogenesis has
been known to contribute to the development and progression of cancer, it is now known
that in some solid tumors, infiltrating nerves and catecholaminergic signaling may play an
important role in tumor initiation and progression. Angiogenesis and neurogenesis share
many of the same signaling pathways and both have a requirement for the rearrangement
of tissue as well as the migration of cells. This provides the basis for the interplay between
them. The two processes, angiogenesis and neurogenesis, are both activated by cancer cells
and share many of the signaling pathways and molecules. This means that both processes
are activated in a similar way and can activate each other. This also explains how cancer
cells can take advantage of this dual activation to proliferate, migrate, and metastasize. This
also makes this interplay an attractive target for the development of new therapies. These
therapies can target multiple pathways while only targeting a few components that are
shared between these processes (Figure 7). Although not covered in this review in detail,
the interplay and signaling pathways involved in these processes also suppress the immune
system. This may enable therapies targeting individual molecules to target three hallmarks
of cancer. Much of our knowledge on the interplay between these processes comes from
animal models of stroke and neurodegenerative disorders. It would be useful if future
studies on the role and interplay of these processes in cancer are performed using cancer-
specific models. Further knowledge of the interplay between neurogenesis, angiogenesis,
nerve–cancer crosstalk, and the neuro–immune axis is required for the implementation of
use of anti-neurogenic and anti-angiogenic targets in the treatment of cancer.

Cancers 2023, 14, x FOR PEER REVIEW 15 of 22 
 

 

9. Conclusions 

The management and treatment of cancer require the advancement of knowledge 

concerning how tumors interact with their microenvironment. While angiogenesis has 

been known to contribute to the development and progression of cancer, it is now known 

that in some solid tumors, infiltrating nerves and catecholaminergic signaling may play 

an important role in tumor initiation and progression. Angiogenesis and neurogenesis 

share many of the same signaling pathways and both have a requirement for the rear-

rangement of tissue as well as the migration of cells. This provides the basis for the inter-

play between them. The two processes, angiogenesis and neurogenesis, are both activated 

by cancer cells and share many of the signaling pathways and molecules. This means that 

both processes are activated in a similar way and can activate each other. This also ex-

plains how cancer cells can take advantage of this dual activation to proliferate, migrate, 

and metastasize. This also makes this interplay an attractive target for the development of 

new therapies. These therapies can target multiple pathways while only targeting a few 

components that are shared between these processes (Figure 7). Although not covered in 

this review in detail, the interplay and signaling pathways involved in these processes 

also suppress the immune system. This may enable therapies targeting individual mole-

cules to target three hallmarks of cancer. Much of our knowledge on the interplay between 

these processes comes from animal models of stroke and neurodegenerative disorders. It 

would be useful if future studies on the role and interplay of these processes in cancer are 

performed using cancer-specific models. Further knowledge of the interplay between 

neurogenesis, angiogenesis, nerve–cancer crosstalk, and the neuro–immune axis is re-

quired for the implementation of use of anti-neurogenic and anti-angiogenic targets in the 

treatment of cancer. 

 

Figure 7. Relationship between neurogenesis and angiogenesis in cancer. The interplay between 

angiogenesis and neurogenesis is due to signaling molecules, such as neurotrophins, 
Figure 7. Relationship between neurogenesis and angiogenesis in cancer. The interplay between an-
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and growth factors, which all act to stimulate both processes. These processes can also be stimulated
by reactive oxygen species. Both the angiogenic and neurogenic signaling pathways also act to
suppress the immune system. Apart from cancer, the interplay between these two processes can best
be observed in patients recovering from stroke or ischemic injury.
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