Supplementary Information

Kinetic parameter	Original	Units	Estimated with CO in the feed	Units
k _{CO}	$4.89 \times 10^7 \cdot exp\left(\frac{-113000}{R \cdot T}\right)$	$mol \cdot kg_{cat}^{-1} \cdot s^{-1} \cdot bar^{-1}$	$8.15 \times 10^{-2} \cdot exp\left(\frac{-20300}{R \cdot T}\right)$	mol/h/g/bar²
kCO ₂	$1.09 imes 10^5 \cdot exp\left(rac{-87500}{R \cdot T} ight)$	$mol \cdot kg_{cat}^{-1} \cdot s^{-1} \cdot bar^{-1}$	$4.66 \times 10^8 \cdot exp\left(\frac{-111600}{R \cdot T}\right)$	mol/h/g/bar ²
k _{RWGS}	$9.64 \times 10^{11} \cdot exp\left(\frac{-152900}{R \cdot T}\right)$	$mol \cdot kg_{cat}^{-1} \cdot s^{-1} \cdot bar^{-0.5}$	$1.29 \times 10^{16} \cdot exp\left(\frac{-173019}{R \cdot T}\right)$	mol/h/g/bar ²
K _{CO}	$2.16 \times 10^{-5} \cdot exp\left(\frac{46800}{R \cdot T}\right)$	bar ⁻¹	-	-
K _{CO2}	$7.05 \times 10^{-7} \cdot exp\left(\frac{61700}{R \cdot T}\right)$	bar-1	-	-
			$K_{H_2O} = 1.5510$	
	$\frac{K_{H_20}}{K_{H_2}^{0.5}} = 6.37 \times 10^{-9} \cdot exp\left(\frac{84000}{R \cdot T}\right)$	bar- ^{0.5}	$K_{H_2} = 7.65 \times 10^9 \cdot exp\left(\frac{-109626.2}{R \cdot T}\right)$	bar ⁻¹

Table S1. Graaf et al. original (Graaf et al., 1988) vs Fitted.

Table S2. Vanden Bussche and Froment original (van den Bussche & Froment, 1996) vs fitted.

Kinetic parameter	Original	Units	Estimated with CO in the feed	Units
kCO ₂	$1.07 \times 10^{-10} \cdot exp\left(\frac{36696}{R \cdot T}\right)$	$mol \cdot kg_{cat}^{-1} \cdot s^{-1} \cdot Pa^{-2}$	$20.86 \cdot \exp\left(\frac{-23908.8}{R \cdot T}\right)$	mol/h/g/bar²
k _{RWGS}	$1.22 \times 10^5 \cdot exp\left(\frac{-94765}{R \cdot T}\right)$	$mol \cdot kg_{cat}^{-1} \cdot s^{-1} \cdot Pa^{-1}$	$6.8 \times 10^8 \cdot \exp\left(\frac{-94381.3}{R \cdot T}\right)$	mol/h/g/bar ²
	$\sqrt{K_{H_2}} = 1.578 \times 10^{-3} \cdot exp\left(\frac{17197}{R \cdot T}\right)$	Pa ^{-0.5}	$K_{H_2} = 1.41 \cdot exp\left(\frac{-2689.8}{R \cdot T}\right)$	bar-1
K _{H2O}	$6.62 \times 10^{-16} \cdot exp\left(\frac{124119}{R \cdot T}\right)$	Pa ⁻¹	$1.20 \cdot exp\left(\frac{-5435.5}{R \cdot T}\right)$	bar-1
	$\frac{K_{H_2O}}{K_8K_9K_{H_2}} = 3.45338$	-	$K_8K_9 = 30.03 \cdot exp\left(\frac{-8959.6}{R \cdot T}\right)$	-

Kinetic parameter	Original	Units	Estimated with CO in the feed	Units
kCO ₂	$7.414 \times 10^{14} \cdot exp\left(\frac{-166000}{R \cdot T}\right)$	$mol \cdot kg_{cat}^{-1} \cdot s^{-1} \cdot bar^{-1}$	$2.19 \times 10^2 \cdot exp\left(\frac{-43921.4}{R \cdot T}\right)$	mol/h/g/bar²
k _{RWGS}	$1.111 \times 10^{19} \cdot exp\left(\frac{-203700}{R \cdot T}\right)$	$mol \cdot kg_{cat}^{-1} \cdot s^{-1} \cdot bar^{-1}$	$2.75 \times 10^{10} \cdot exp\left(\frac{-110563}{R \cdot T}\right)$	mol/h/g/bar²
K_{H_2}	1.099	bar ^{-0.5}	13.62	bar ^{-0.5}
$K_{H_2O/9}$	126.4	bar-1	41.55	bar-1

Table S3. Slotboom et al original 6 parameter model (Slotboom et al., 2020) vs fitted.

Table S4. Seidel et al original (Seidel et al., 2018; Seidel et al., 2020) vs fitted.

Kinetic parameter	Original	Units	Estimated with CO in the feed	Units
ΔG_1	-1134.8	J/mol	-	-
ΔG_2	-769.3	J/mol	-	-
ΔG_3	-365.5	J/mol	-	-
k _{CO}	$3.074 \times 10^{12} \cdot exp\left(\frac{-154400}{R \cdot T}\right)$	$mol \cdot kg_{cat}^{-1} \cdot s^{-1} \cdot bar^{-1}$	$1.99 \times 10^{-2} \cdot exp\left(\frac{-12024.4}{R \cdot T}\right)$	mol/h/g/bar ²
kCO ₂	$4.613 \times 10^7 \cdot exp\left(\frac{-96820}{R \cdot T}\right)$	$mol \cdot kg_{cat}^{-1} \cdot s^{-1} \cdot bar^{-1}$	$9.14 \cdot exp\left(\frac{-5406.3}{R \cdot T}\right)$	mol/h/g/bar ²
k _{RWGS}	$6.107 \times 10^{13} \cdot exp\left(\frac{-161000}{R \cdot T}\right)$	$mol \cdot kg_{cat}^{-1} \cdot s^{-1} \cdot bar^{-1}$	$1.56 \times 10^6 \cdot exp\left(\frac{-76382}{R \cdot T}\right)$	mol/h/g/bar ²
K _{CO}	0.1470	bar ⁻¹	$1.87 \times 10^{33} \cdot exp\left(\frac{-309237.6}{R \cdot T}\right)$	bar-1
$K_{CH_3OH}^{\odot}$	0	-	0	-
$K_{CO_2}^{\check{O}}$	0	-	0	-
002	$\frac{K_{H_2O}K_O}{K_{H_2}} = 34.9226$	-	$K_o = 1.79 \times 10^{-1} \cdot exp\left(\frac{-5000.9}{R \cdot T}\right)$	-
Kco_2	0.04712	bar-1	0	-
$K^*_{CH_3OH}$	0		0	-
K _{H20}	0.0297	bar-1	$2.34 \cdot exp\left(\frac{-10922.9}{R \cdot T}\right)$	bar-1
	$\sqrt{K_{H_2}} = 1.1665$	bar ^{-0.5}	$K_{H_2} = 1.96 \times 10^1 \cdot exp\left(\frac{-4086.1}{R \cdot T}\right)$	bar ^{-0.5}

Kinetic parameter	Estimated with CO in the feed	Units
ΔG_1	-	-
ΔG_2	-	-
ΔG_3	-	-
kCO ₂	$3.77 \times 10^2 \cdot exp\left(\frac{-25000}{R \cdot T}\right)$	mol/h/g/bar ²
k _{RWGS}	$3.60 \times 10^8 \cdot exp\left(\frac{-98200}{R \cdot T}\right)$	mol/h/g/bar ²
K _{co}	$1.87 \times 10^7 \cdot exp\left(\frac{-68434.8}{R \cdot T}\right)$	bar-1
$K^{\odot}_{CH_2OH}$	0	-
$K_{CO_2}^{\odot}$	0	-
K _o	178.17	-
Kco ₂	0	-
$K^*_{CH_3OH}$	0	-
K _{H20}	0.0581	bar-1
<i>K</i> _{<i>H</i>₂}	3.786	bar ^{-0.5}

Table S5. MOD parameters.

Table S6. Plug flow calculation, this follows the criteria discussed in reference (Ertl et al., 1997; Delgado, 2006).

Geometrical Characteristics				
d _t (mm)	10.1	d_t/d_p	107.4	
h _{bed} (mm)	3.82	h _{bed} /dp	40.7	
d _p (μm)	94			

References

- 1. Delgado, J.M.P.Q, 2006. A critical review of dispersion in packed beds. *Heat Mass Transfer* **42**, 279–310. <u>https://doi.org/10.1007/s00231-005-0019-0</u>.
- 2. Ertl, G., Knözinger, H., Weitkamp, J., 1997, editors. Handbook of heterogeneous catalysis. Wiley-VCH; New York.
- Graaf, G.H., Stamhuis, E.J., Beenackers, A.A., 1988. Kinetics of low-pressure methanol synthesis. Chemical Engineering Science, 43(12), 3185-3195. <u>https://doi.org/10.1016/0009-2509(88)85127-3</u>.
- 4. Slotboom, Y., Bos, M.J., Pieper, J., Vrieswijk, V., Likozar, B., Kersten, S.R., Brilman, D.W., 2020. Critical assessment of steady-state kinetic models for the synthesis of methanol over an industrial Cu/ZnO/Al₂O₃ catalyst, Chem. Eng. J. 389, 124181, <u>https://doi.org/10.1016/j.cej.2020.124181</u>.
- Seidel, C., Jörke, A., Vollbrecht, B., Seidel-Morgenstern, A., Kienle, A., 2018. Kinetic modeling of methanol synthesis from renewable resources, Chem. Eng. Sci. 175, 130–138. <u>https://doi.org/10.1016/j.ces.2017.09.043</u>.
- Seidel, C., Jörke, A., Vollbrecht, B., Seidel-Morgenstern, A., Kienle, A., 2020. Corrigendum to 'Kinetic modeling of methanol synthesis from renewable resources' (Chem. Eng. Sci. 175 (2018) 130–138). Chem. Eng. Sci. 223, 115724. https://doi.org/10.1016/j.ces.2020.115724.
- 7. van den Bussche, K.M., Froment, G.F., 1996. A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al₂O₃ catalyst, J. Catal. 161 (1), 1–10. <u>https://doi.org/10.1006/jcat.1996.0156</u>.