
Received 15 December 2023, accepted 28 February 2024, date of publication 11 March 2024, date of current version 19 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3376476

Quasi-Enumerative Coding of Balanced
Run-Length Limited Codes
FILIP PALUNČIĆ , (Member, IEEE), AND B. T. MAHARAJ , (Senior Member, IEEE)
Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002, South Africa

Corresponding author: Filip Palunčić (filip.paluncic@up.ac.za)

This work was supported by the SENTECH Chair in Broadband Wireless Multimedia Communication.

ABSTRACT Various methods have been proposed for the construction of balanced run-length limited codes.
Amongst these methods is the enumerative coding approach by Kurmaev. The advantage of this approach
is that the code has maximum cardinality and thus approaches capacity with increasing codeword length.
However, enumerative coding has the disadvantage of becoming prohibitively complex for large codeword
lengths. We propose an alternative enumerative coding method that reduces the encoding and decoding
complexity. We call it quasi-enumerative coding as it does not follow a strict lexicographic order, but retains
a one-to-one mapping between rank and the corresponding balanced run-length limited codeword.

INDEX TERMS Enumerative coding, balanced codes, run-length limited codes.

I. INTRODUCTION
Constrained codes are an important class of codes that impose
beneficial constraints on the encoded data with various
applications in magnetic and optical storage media [1], [2],
[3]. Examples of such codes include run-length limited
(RLL) codes, which limit the number of consecutive zeros
between ones, and balanced codes, where the number of
zeros equals the numbers of ones in each codeword. In the
case of RLL codes, the minimum run-length constraint limits
inter-symbol interference, while the maximum run-length
constraint ensures sufficient transitions for clock recovery.
Balanced codes are an instance of spectral-shaping codes
where the low frequency region of the spectrum of the
encoded data is suppressed or reduced.

Balanced RLL codes consist of codewords which are both
balanced and run-length limited simultaneously. Examples of
such codes in literature include the codes by Immink et al. [4]
and Palunčić et al. [5] which are based on adaptions of
the Knuth’s balancing procedure for random (non-RLL)
binary sequences [6] extended to RLL sequences, and the
enumerative coding approach by Kurmaev [7]. While the
codes based on Knuth-like balancing of RLL sequences are
well suited to long codeword lengths due to the simplicity of

The associate editor coordinating the review of this manuscript and

approving it for publication was Khmaies Ouahada .

the balancing method, they are not of maximum cardinality
and also require the addition of a suffix to identify the
balancing point. The advantage of enumerative coding by
Kurmaev is that the codes include all possible balanced
RLL codewords resulting in maximum codebook cardinality.
However, it has the disadvantage of being prohibitively
complex in terms of computation and/or storage requirements
for larger codeword lengths.

Manada and Morita [8] prove that the capacity of balanced
RLL codes is equal to that of the corresponding RLL codes.
Hence, the addition of the balancing constraint to RLL
sequences does not alter the resultant capacity. Furthermore,
Palunčić and Maharaj [9] use bivariate generating functions
to count the exact number of balanced RLL sequences of a
particular length.

In this paper we present various enumerative coding
constructions which reduce the encoding and decoding
complexity as compared to the enumerative coding technique
of Kurmaev. The first proposed construction has maximum
cardinality assuming that codeword boundaries coincide with
run-length boundaries. The second proposed construction is
an adaption of enumerative coding of permutation RLL codes
developed by Milenkovic and Vasić [10]. The third construc-
tion is a simplified version of the previous construction. The
cardinality, i.e., the code rate, of the constructions decreases
from the first to the third; however, the encoding and decoding

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 39375

https://orcid.org/0000-0002-5565-1260
https://orcid.org/0000-0002-3703-3637
https://orcid.org/0000-0002-8462-5061


F. Palunčić, B. T. Maharaj: Quasi-Enumerative Coding of Balanced Run-Length Limited Codes

complexity decreases from first to the third. Therefore, there
is a trade-off between code rate and complexity between the
three constructions.

Traditional enumerative coding adheres to a strict lexi-
cographic ordering of the codewords. The novelty of the
approach proposed in this paper, which we term quasi-
enumerative coding, relaxes the strict lexicographic order-
ing but retains a one-to-one mapping between index and
codeword. This relaxation allows for the construction of
more efficient codes in comparison with existing enumerative
codes in literature.

This paper is organized as follows. Preliminary concepts
and notation are introduced in Section II, while results perti-
nent to balanced RLL codes are summarized in Section III.
The quasi-enumerative coding constructions for balanced
RLL codes are presented in Section IV. Section V presents a
performance comparison in terms of complexity and code rate
efficiency and the paper’s concluding remarks are contained
in Section VI.

II. PRELIMINARIES AND NOTATION
Let x = (x1x2 . . . x2m) ∈ {0, 1}2m be a (d, k)-constrained
word. A word is said to be (d, k)-constrained if two
consecutive 1s are separated by at least d and at most k 0s.
Assume that a (d, k)-constrained word x is obtained through
the concatenation of the valid segments

1 00 . . . 0︸ ︷︷ ︸
d

, 1 000 . . . 0︸ ︷︷ ︸
d+1

, . . . , 1 0000 . . . 0︸ ︷︷ ︸
k

,

where the lengths of these segments are in the set {d + 1,
d + 2, . . . , k + 1}. These segments are referred to as run-
length segments. Hence, it is assumed that x1 = 1 which
means that (d, k)-constrained words x can be concatenated
without violating the (d, k) constraints. A (d, k)-constrained
word x can also be represented as a (d + 1, k + 1)-RLL
word z = (z1z2 . . . z2m) ∈ {−1,+1}2m via a simple bijective
mapping [4]

ẑi = ẑi−1 ⊕ xi,

zi = 2ẑi − 1,

and

xi = (−zi−1zi + 1)/2,

where 1 ≤ i ≤ 2m, ẑ0 ≜ 1 and⊕ denotes modulo 2 addition.
Clearly, xi = 1 corresponds to a transition from −1 to +1 or
vice versa from zi−1 to zi, while xi = 0 corresponds to no
transition. It should be noted that in the concatenation of
(d, k)-constrained or (d+1, k+1)-RLL words, the definition
of ẑ0 is only required for the first word, where for subsequent
words the role of ẑ0 is taken over by the last bit of the previous
word.

Let w(x) denote the weight of x, i.e.,

w(x) ≜
2m∑
i=1

xi.

Clearly, w(x) equals the number of run-length segments in x
and the number of runs in z. The digital sum or charge of z is
defined as

σ (z) ≜
2m∑
i=1

zi.

A (d, k)-constrained word x is said to be balanced if
σ (z) = 0, i.e., if z has an equal number of −1s and +1s.
A (d, k)-constrained word or its equivalent (d + 1, k +

1)-RLL word can be uniquely represented in terms of
the run-length segment or run lengths. Consider a (d, k)-
constrained word x consisting of w(x) run-length segments.
Then ρ′′(x) = (ρ′′1ρ′′2 . . . ρ′′w) ∈ {d + 1, d + 2, . . . , k +
1}w is the run-length representation of x where ρ′′i , 1 ≤
i ≤ w, is the length of the ith run-length segment in x.
Equivalently, ρ′′i is the length of the ith run in z. For
our purposes, a more amenable run-length representation is
ρ(x) = (ρ1ρ2 . . . ρw) ≜ ρ′′(x) − [d + 1]w ∈ {0, 1, . . . , r −
1}w, where r ≜ k − d + 1 and the notation [a]w denotes a
word consisting of w symbols a. It is clear that for a given
run-length representation ρ of x, the length of x is

w(d + 1)+
w∑
i=1

ρi.

For convenience, in the remainder of the paper, the argu-
ment x will be dropped and w(x) and ρ(x) will only be
denoted as w and ρ, respectively.

The notation ⟨., .⟩ is used to denote the interleaving/
deinterleaving operation. More specifically, if ρ(1)

=

(ρ(1)
1 ρ

(1)
2 . . . ρ

(1)
w(1) ) and ρ(2)

= (ρ(2)
1 ρ

(2)
2 . . . ρ

(2)
w(2) ), then the

interleaving operation, which produces the interleaved
word ρ, is defined as

ρ = (ρ1ρ2ρ3ρ4 . . . ρw−1ρw)

≡ ⟨ρ(1), ρ(2)
⟩

= (ρ(1)
1 ρ

(2)
1 ρ

(1)
2 ρ

(2)
2 . . . ρ

(1)
w(1)ρ

(2)
w(2) )

if w(1)
= w(2) or

ρ = (ρ1ρ2ρ3ρ4 . . . ρw−1ρw)

≡ ⟨ρ(1), ρ(2)
⟩

= (ρ(1)
1 ρ

(2)
1 ρ

(1)
2 ρ

(2)
2 . . . ρ

(1)
w(1)−1

ρ
(2)
w(2)ρ

(1)
w(1) )

if w(1)
= w(2)

+ 1, where w = w(1)
+ w(2). Therefore,

all the odd indices in ρ are composed from ρ(1) and all the
even indices in ρ are composed from ρ(2). Conversely, the
deinterleaving operation produces the subwords ρ(1) and ρ(2)

from ρ = (ρ1ρ2 . . . ρw) and is denoted as ⟨ρ(1), ρ(2)
⟩ ≡ ρ.

Example 1: Consider the (1, 3)-constrained word

x = (101000100100100010100100).

Then

z = (−−++++−−−+++−−

−−++−−−+++),

39376 VOLUME 12, 2024



F. Palunčić, B. T. Maharaj: Quasi-Enumerative Coding of Balanced Run-Length Limited Codes

where ‘+’ denotes ‘+1’ and ‘−’ denotes ‘−1’. Clearly,
z is balanced as it contains an equal number of ‘+’s and
‘−’s. The run-length representation is ρ = (02112011) ≡
⟨(0121), (2101)⟩.

III. BALANCED RLL CODES
Restricted integer compositions play a fundamental role in
counting the number of balanced RLL words and also form
the basis of one of the quasi-enumerative coding schemes
presented in the next section. Hence, restricted integer
compositions are formally defined.
Definition 1: A restricted composition of an integer n is a

sequence (ρ′1ρ
′

2 . . . ρ′w) of integers, where ρ′i ∈ {1, 2, . . . , r},
1 ≤ i ≤ w, such that

ρ′1 + ρ′2 + . . .+ ρ′w = n.

Let R(n,w; r) be the number of such compositions. It is
known that [11, Eq. (42)], [12, p. 441]

R(n,w; r) =
w∑
j=0

(−1)j
(
w
j

)(
n− jr − 1
w− 1

)
. (1)

If we consider a (d, k)-constrained word x consisting of
w run-length segments, by removing d zeros from each
run-length segment, the equivalent of a restricted integer
composition is obtained. If ρ′ ≜ (ρ′1ρ

′

2 . . . ρ′w), then ρ′
=

ρ + [1]w = ρ′′
− [d]w. It is easy to see that the number of

(d, k)-constrained words x of length m consisting of w run-
length segments is R(m − wd,w; k − d + 1). We note that
the expression for R(n,w; r) from (1) can also be obtained
from the formula for Aν

n(d, k, r) [7, Eq. (9)], the number of
(d, k)-constrained words of length n, weight ν, and at most r
trailing zeros, by setting r = 0 (removing the trailing run of
zeros),w = ν−1 (removing the trailing run-length segment),
m = n−1 (removing the 1 of the trailing run-length segment),
and r = q = k − d + 1.1

In [9], bivariate generating functions are derived which
count the number of balanced RLL words of a particular
length. The derivation is based on the observation that any
balanced RLL word can be obtained by interleaving two RLL
words of equal length and consisting of:

1) the same number of run-length segments, or
2) differing by one in the number of run-length segments.

More precisely, any balanced (d, k)-constrained, or (d + 1,
k + 1)-RLL, word ρ of length w can be obtained by
interleaving ρ(1) of length w(1) and ρ(2) of length w(2), i.e.,
ρ ≡ ⟨ρ(1), ρ(2)

⟩, where w = w(1)
+ w(2) and

w(1)∑
i=1

ρ
(1)
i =

w(2)∑
i=1

ρ
(2)
i

1Note that the variables n, ν and q follow the notation from Kurmaev’s
paper, which are equivalent to m, w and r here. The r (number of trailing
zeroes) from Kurmaev’s paper should not be confused with r in this paper
(alphabet size for the run-length representation).

when w(1)
= w(2), and

d + 1+
w(1)∑
i=1

ρ
(1)
i =

w(2)∑
i=1

ρ
(2)
i

when w(1)
= w(2)

+ 1.
Let B(2m, d, k) be the number of balanced (d, k)-

constrained words of length 2m. Noting that a (d, k)-
constrained word of length m can consist of at least wmin =

⌈
m
k+1⌉ and at most wmax = ⌊

m
d+1⌋ run-length segments,

it follows that

B(2m, d, k)

= R2(m− wmind,wmin; k − d + 1)

+

wmax∑
i=wmin+1

(
R(m− (i−1)d, i− 1; k − d + 1)

× R(m− id, i; k − d+1)

+ R2(m− id, i; k − d + 1)
)
.

Example 2: Consider balanced (1, 3)-constrained words
of length 20 (m = 10). Then, the weights of the interleaved
subwords can be ⌈ m

k + 1

⌉
≤ w ≤

⌊ m
d + 1

⌋
3 ≤ w ≤ 5.

For w = 3:

R(n,w; r) = R(m− wd,w; r)

= R(7, 3; 3)

=

3∑
j=0

(−1)j
(
3
j

)(
7− j3− 1

2

)

=

(
3
0

)(
6
2

)
−

(
3
1

)(
3
2

)
= 15− 9 = 6,

and for w = 4:

R(n,w; r) = R(m− wd,w; r)

= R(6, 4; 3)

=

4∑
j=0

(−1)j
(
4
j

)(
6− j3− 1

3

)

=

(
4
0

)(
5
3

)
= 10,

and for w = 5:

R(n,w; r) = R(m− wd,w; r)

= R(5, 5; 3)

VOLUME 12, 2024 39377



F. Palunčić, B. T. Maharaj: Quasi-Enumerative Coding of Balanced Run-Length Limited Codes

TABLE 1. List of all (1, 3)-constrained words of length m = 10 and weight
w ∈ {3, 4, 5}.

=

5∑
j=0

(−1)j
(
5
j

)(
5− j3− 1

4

)

=

(
5
0

)(
4
4

)
= 1.

All (1, 3)-constrained words of length m = 10 and weight
w ∈ {3, 4, 5} are shown in Table 1. Therefore

B(20, 1, 3) = R2(7, 3; 3)+ R(7, 3; 3)R(6, 4; 3)+ R2(6, 4; 3)

+ R(6, 4; 3)R(5, 5; 3)+ R2(5, 5; 3)

= 62 + 6(10)+ 102 + 10(1)+ 12

= 207,

which agrees with the value in [9, Tab. 1].
Let C(d, k) denote the capacity of (d, k)-constrained

codes. Zehavi and Wolf [13] show that the probability
distribution of run-length segment lengths of a maxentropic
(d, k)-constrained sequence is such that a run-length segment
of length i, d + 1 ≤ i ≤ k + 1, has a probability 2−iC(d,k).
They obtained this result using

C(d, k) = lim
n→∞

sup
Pn(X )

H (X1,X2, . . . ,Xn)
E(X1 + X2 + . . .+ Xn)

,

where Xi is a random variable denoting the length of the
ith run-length segment, H is the entropy function, E is the
expectation operator, and the supremum is taken over all joint
probabilities Pn(X ) of the n random variables X1,X2, . . . ,Xn.
By showing that the Xi are independent and identically
distributed, applying Lagrange multipliers they prove that
P(X = i) = 2−iC(d,k), d + 1 ≤ i ≤ k + 1.

Let Cbal(d, k) denote the capacity of balanced (d, k)-
constrained codes. Manada and Morita [8] prove that
Cbal(d, k) = C(d, k). This result can be more easily proved
using the approach of Zehavi and Wolf. Note that

Cbal(d, k)

= lim
n→∞

sup
Pn(X ,Y )

H (X1,Y1,X2,Y2, . . . ,Xn,Yn)
E(X1 + Y1 + X2 + Y2 + . . .+ Xn + Yn)

,

where Xi is the length of the ith odd-indexed run-length
segment and Yi is the length of the ith even-indexed
run-length segment, and the supremum is taken over all

joint probabilities Pn(X ,Y ) of the 2n random variables
X1,Y1,X2,Y2 . . . ,Xn,Yn. In essence, X1,X2, . . . ,Xn and
Y1,Y2, . . . ,Yn represent the run-lengths of the two inter-
leaved RLL subwords. For the resultant word to be balanced,
it is required thatE(X1+X2+. . .+Xn) = E(Y1+Y2+. . .+Yn).
Since the two RLL subwords represented by X1,X2, . . . ,Xn
and Y1,Y2, . . . ,Yn are independent, it follows that

Cbal(d, k)

= lim
n→∞

sup
Pn(X ),Pn(Y )

H (X1,X2, . . . ,Xn)+ H (Y1,Y2, . . . ,Yn)
E(X1 + . . .+ Xn)+ E(Y1 + . . .+ Yn)

≤ lim
n→∞

max
{
sup
Pn(X )

H (X1,X2, . . . ,Xn)
E(X1 + X2 + . . .+ Xn)

,

sup
Pn(Y )

H (Y1,Y2, . . . ,Yn)
E(Y1 + Y2 + . . .+ Yn)

}
, (2)

where the inequality follows since

A+ B
C + D

≤ max
{
A
C

,
B
D

}
, A,B,C,D > 0.

Therefore, to maximize Cbal(d, k), either term in (2) needs to
be maximized. But, since both terms correspond to C(d, k),
it follows that Cbal(d, k) = C(d, k). It is worth noting that
both X and Y should have the same distributions to ensure
that E(X ) = E(Y ). Therefore, P(X = i) = P(Y =
i) = 2−iC(d,k). This gives the run-length segment length
distribution of the interleaved subwords for maxentropic
balanced RLL sequences, a result that will be leveraged in
the next section.

IV. QUASI-ENUMERATIVE CODING
Enumerative coding for constrained codes has the distinctive
appeal that the resultant codes are optimal in terms of code
rate as all possible constrained codewords are included in the
codebook. The concept of enumerative coding was originally
proposed by Cover [14]. Enumerative coding requires a
lexicographic ordering or ranking of codewords. For two

arbitrary codewords ρ(1)
= (ρ(1)

1 ρ
(1)
2 . . . ρ

(1)
w ) and ρ(2)

=

(ρ(2)
1 ρ

(2)
2 . . . ρ

(2)
w ), ρ(1) lexicographically precedes ρ(2) (or

ρ(1) has a lower rank than ρ(2)), if ρ
(1)
j < ρ

(2)
j and ρ

(1)
i = ρ

(2)
i

∀ i < j. Let B ⊆ {0, 1, . . . , r−1}w be a codebook consisting
of |B| codewords. Enumerative coding is a bijective mapping

l : {0, 1, 2, . . . , |B| − 1} → B

between the lexicographic index or rank and the correspond-
ing codeword ρ = (ρ1ρ2 . . . ρw) ∈ B. If N (ρ1ρ2 . . . ρi)
represents the number of codewords in B whose first
i elements are (ρ1ρ2 . . . ρi), then the lexicographic index or
rank of an arbitrary ρ ∈ B is

l−1(ρ) =
w∑
i=1

ρj−1∑
j=0

N (ρ1ρ2 . . . ρi−1j).

Kurmaev [7] presents an enumerative coding technique
for balanced RLL codes. It operates directly on the binary

39378 VOLUME 12, 2024



F. Palunčić, B. T. Maharaj: Quasi-Enumerative Coding of Balanced Run-Length Limited Codes

bit-level and determines N at any index based on the
running digital sum or charge of the bits up to that index
and the required charge ‘‘unbalance’’ which needs to be
compensated for by the remaining bits. Since the calculation
of N needs to be done at each index and the run-length
boundaries and charge ‘‘unbalance’’ change at each index,
it is computationally intensive, especially for large codeword
lengths. An advantage of Kurmaev’s approach is that it caters
for constraints on the leading and trailing runs of zeros,
allowing a run to transverse codeword boundaries through the
use of merging bits.

The general enumerative coding technique developed by
Hareedy et al. [15] cannot be applied to balanced RLL codes
since balanced RLL codes cannot be defined by means of a
finite set of forbidden subwords, nor can it be applied to RLL
words consisting of a fixed number of run-length segments.

For encoding and decoding purposes, what is paramount
is that the mapping between rank and codeword be bijective,
but there is no real requirement that the ranking has to follow
a strict lexicographic ordering of the codewords. In fact,
dispensing with strict lexicographic ordering allows us to
construct more efficient enumerative coding techniques for
balanced RLL codes. We will call such enumerative coding,
where it need not follow strict lexicographic ordering, quasi-
enumerative coding.
Definition 2: Quasi-enumerative coding is a form of

enumerative coding where the mapping between rank and
codeword is bijective, but the rank need not correspond to
a lexicographic ordering of the codewords.

The utility of quasi-enumerative coding in the context of
balanced RLL codes becomes immediately apparent. Since
balanced RLL words are created by interleaving two RLL
subwords of a particular number of run-length segments,
we can group the balanced RLL codewords based on the
number of run-length segments of the constituent interleaved
RLL subwords. Within each group, the ordering of the RLL
subwords will follow lexicographic ordering, but the resultant
overall ranking will not be lexicographically ordered.

A. CONSTRUCTION 1
This first proposed construction enumerates all the possible
balanced (d, k)-constrained words of length 2m where each
run-length segment in the word satisfies the particular (d, k)-
constraint. The grouping is defined by the number of runs
of the possible (d, k)-constrained interleaved subwords. The
first group consists of words where both subwords consist
of wmin runs, the second group of words where one subword
consists of wmin+ 1 runs and the other consists of wmin runs,
etc. If the rank l of a word is based on this group ordering,
then the group (specified by w(1) and w(2)) is determined by
the smallest integer j, 0 ≤ j ≤ 2(wmax − wmin), such that

j∑
i=0

R̂(i) ≥ l + 1,

where w(1)
= wmin + ⌈i/2⌉ and w(2)

= w(1)
− i mod 2 and

R̂(i) ≜ R(1)(i)R(2)(i), where R(1)(i) ≜ R(m − w(1)d,w(1)
; r)

and R(2)(i) ≜ R(m− w(2)d,w(2)
; r). Note that

B(2m, d, k) =
2(wmax−wmin)∑

i=0

R̂(i).

The group corresponding to j has w(1)
= wmin + ⌈j/2⌉ and

w(2)
= w(1)

− j mod 2. Having identified the group to which
rank l belongs, we need to find the rankwithin the group. This
is given by the residual rank l̂, where

l̂ = l −
j−1∑
i=0

R̂(i).

Since the group corresponding to j contains R̂(j) =

R(1)(j)R(2)(j) words, it follows that l̂ ∈ {0, 1, . . . , R̂(j) − 1}.
The residual rank l̂ is decomposed into partial ranks l̂(1) =
⌊l̂/R(2)⌋ and l̂(2) = l̂ mod R(2), so that l̂ = l̂(1)R(2) + l̂(2).
The partial ranks l̂(1) ∈ {0, 1, . . . ,R(1) − 1} and l̂(2) ∈
{0, 1, . . . ,R(2) − 1} correspond to the lexicographic order of
(d, k)-constrained subwords of length m consisting of w(1)

and w(2) run-length segments, respectively.
Suppose that R(d,k)(m,w) is the set of all (d, k)-

constrained words of length m consisting of w run-length
segments. We wish to develop an enumerative coding
technique for this set. Note that |R(d,k)(m,w)| = R(m −
wd,w; r = k−d+1). SinceR(n−i,w−1; r) is the number of
restricted compositions of n that start with i ∈ {1, 2, . . . , r},
it follows that

R(n,w; r) =
r∑
i=1

R(n− i,w− 1; r).

Given an arbitrary rank (or lexicographic index) l̂ ∈
{0, 1, . . . ,R(m − wd,w; r) − 1}, the corresponding word
ρ = (ρ1ρ2 . . . ρw) ∈ R(d,k)(m,w) ⊂ {0, 1, . . . , r − 1}w can
be determined as follows. Initialize n = m−wd and for each
index i = 1, 2, . . . ,w− 1:
1) Find the smallest integer j, 1 ≤ j ≤ r , such that

j∑
i=1

R(n− i,w− 1; r) ≥ l̂ + 1.

Then ρi = j− 1.
2) Set l̂ ← l̂ −

∑j−1
i=1 R(n − i,w − 1; r), n ← n − j and

w← w− 1.
Finally, ρw = m−wd − 1−

∑w−1
i=1 ρi+ 1. Note that the rank

(or lexicographic ordering) of ρ corresponds to the inverse
rank (or lexicographic ordering) of the corresponding (d, k)-
constrained binary word x.

Then, the subwords ρ(1) and ρ(2) corresponding to the
partial ranks l̂(1) and l̂(2), respectively, can be determined
using this enumerative algorithm. Here, the desired balanced
RLL word is ρ ≡ ⟨ρ(1), ρ(2)

⟩.
Conversely, suppose we want to find the rank l̂−1(ρ) of an

arbitrary (d, k)-constrained word ρ ∈ R(d,k)(m,w). Then

l̂−1(ρ) =
w−1∑
i=1

ρi∑
j=1

R
(
m− wd − j−

i−1∑
h=1

ρh + 1,w− i; r
)
.

VOLUME 12, 2024 39379



F. Palunčić, B. T. Maharaj: Quasi-Enumerative Coding of Balanced Run-Length Limited Codes

TABLE 2. Grouping by weights w (1) and w (2).

Furthermore, suppose we want to find the rank l−1(ρ) of
an arbitrary balanced RLL word ρ. First, deinterleave ρ as
⟨ρ(1), ρ(2)

⟩ ≡ ρ. Letw(1) andw(2) be the number of run-length
segments in ρ(1) and ρ(2), respectively. Then

l−1(ρ) = l̂−1(ρ(1))R(2) + l̂−1(ρ(2))+
j−1∑
i=0

R̂(i),

where j = 2(w(1)
− wmin)+ w(2)

− w(1).
Example 3: We continue with the parameters from Exam-

ple 2, where (1, 3)-constrained words of length 20 (m = 10)
were considered. Recall that 3 ≤ w ≤ 5. The constrained
words are grouped according to the weights w(1) and w(2) of
the constituent constrained subwords. In this example, there
are five possible groups, which are shown in Table 2.
Suppose we want to find the (1, 3)-constrained word of

rank l = 66. Since R2(7, 3; 3) = 62 = 36 < 66+1 = 67 and
R2(7, 3; 3) + R(7, 3; 3)R(6, 4; 3) = 62 + 6(10) = 96 ≥ 67,
it follows that j = 1 and w(1)

= 3 + ⌈1/2⌉ = 4 and
w(2)
= 4 − 1 mod 2 = 3. The residual rank is l̂ = l −

R2(7, 3; 3) = 66 − 36 = 30. Then, if R(1) ≜ R(6, 4; 3) and
R(2) ≜ R(7, 3; 3), the partial ranks are l̂(1) = ⌊l̂/R(2)⌋ =
⌊30/6⌋ = 5 and l̂(2) = l̂ mod R(2) = 30 mod 6 = 0, so that

l̂ = l̂(1)R(2) + l̂(2) = 5(6)+ 0.
Now, we need to find ρ(1) consisting of w(1)

= 4 runs
corresponding to partial rank l̂(1) = 5 and ρ(2) consisting of
w(2)
= 3 runs corresponding to partial rank l̂(2) = 0. First,

to find ρ(1), initialize n(1) = m− w(1)d = 6, and then:
• i = 1:

1) R(5, 3; 3) = 6 ≥ 5 + 1 = 6 and so j = 1 and
ρ
(1)
1 = j− 1 = 0.

2) l̂(1) ← l̂(1) −
∑0

i=1 R(6 − i, 3; 3) = 5, n(1) ←
6− 1 = 5 and w(1)

← w(1)
− 1 = 3.

• i = 2:
1) R(4, 2; 3)+ R(3, 2; 3)+ R(2, 2; 3) = 3+ 2+ 1 =

6 ≥ 5+ 1 = 6 and so j = 3 and ρ
(1)
2 = j− 1 = 2.

2) l̂(1) ← l̂(1) −
∑2

i=1 R(5 − i, 2; 3) = 0, n(1) ←
5− 3 = 2 and w(1)

← w(1)
− 1 = 2.

• i = 3:
1) R(1, 1; 3) = 1 ≥ 0 + 1 = 1 and so j = 1 and

ρ
(1)
3 = j− 1 = 0.

Finally, ρ(1)
4 = 6− 1−

∑3
i=1 ρ

(1)
i + 1 = 5− (1+ 3+ 1) = 0.

Hence, ρ(1)
= (0200). Similarly, to find ρ(2), initialize n(2) =

m− w(2)d = 7, and then:
• i = 1:

1) R(6, 2; 3) = 1 ≥ 0 + 1 = 1 and so j = 1 and
ρ
(2)
1 = j− 1 = 0.

2) l̂(2) ← l̂(2) −
∑0

i=1 R(7 − i, 2; 3) = 0, n(2) ←
7− 1 = 6 and w(2)

← w(2)
− 1 = 2.

• i = 2:

1) R(5, 1; 3)+ R(4, 1; 3)+ R(3, 1; 3) = 0+ 0+ 1 =
1 ≥ 0+ 1 = 1 and so j = 3 and ρ

(2)
2 = j− 1 = 2.

Finally, ρ(2)
3 = 7−1−

∑2
i=1 ρ

(2)
i +1 = 6−(1+3) = 2. Hence,

ρ(2)
= (022). Therefore, the balanced (1, 3)-constrained

word of rank l = 66 is ρ = (0022020) ≡ ⟨ρ(1), ρ(2)
⟩ =

⟨(0200), (022)⟩.
Conversely, if we are given the balanced (1, 3)-constrained

word ρ = (0022020), the rank l−1(ρ) can be found as fol-
lows. First, deinterleave ρ as ⟨ρ(1), ρ(2)

⟩ = ⟨(0200), (022)⟩ ≡
ρ = (0022020). Hence, w(1)

= 4 and w(2)
= 3. Then

l̂−1(ρ(1)) =
3∑
i=1

ρ
(1)
i∑
j=1

R
(
6− j−

i−1∑
h=1

ρ
(1)
h + 1, 4− i; r

)
=

0∑
j=1

R
(
6− j−

0∑
h=1

ρ
(1)
h + 1, 3; r

)
+

2∑
j=1

R
(
6− j−

1∑
h=1

ρ
(1)
h + 1, 2; r

)
+

0∑
j=1

R
(
6− j−

2∑
h=1

ρ
(1)
h + 1, 1; r

)
= R(4, 2; 3)+ R(3, 2; 3)
= 3+ 2

= 5

and

l̂−1(ρ(2)) =
2∑
i=1

ρ
(2)
i∑
j=1

R
(
7− j−

i−1∑
h=1

ρ
(2)
h + 1, 3− i; r

)

=

0∑
j=1

R
(
7− j−

0∑
h=1

ρ
(2)
h + 1, 2; r

)
+

2∑
j=1

R
(
7− j−

1∑
h=1

ρ
(2)
h + 1, 1; r

)
= R(5, 1; 3)+ R(4, 1; 3)

= 0.

Since R(1) = R(m−w(1)d,w(1)
; r) = R(6, 4; 3) = 10, R(2) =

R(m − w(2)d,w(2)
; r) = R(7, 3; 3) = 6 and j = 2(4 − 3) +

3− 4 = 1, it follows that

l−1(ρ) = l̂−1(ρ(1))R(2) + l̂−1(ρ(2))+
0∑
i=0

R̂(i)

= 5(6)+ 0+ R̂(0)

= 30+ 36

= 66.

39380 VOLUME 12, 2024



F. Palunčić, B. T. Maharaj: Quasi-Enumerative Coding of Balanced Run-Length Limited Codes

Calculating each of the terms R(n,w; r) separately is inef-
ficient. Fortunately, the parameters update in a predictable
manner, which can be utilized to lower the computational
complexity. It is easy to see that(

w+ 1
j

)
=

w+ 1
w+ 1− j

(
w
j

)
and(

n− d − jr − 1
w

)
=

(n− jr − w)(n− 1− jr − w) . . . (n− d − jr − w)
w(n− jr − 1)(n− jr − 2) . . . (n− jr − d)

×

(
n− jr − 1
w− 1

)
,

and hence(
w+ 1
j

)(
n− d − jr − 1

w

)
−

(
w
j

)(
n− jr − 1
w− 1

)
=

(
(n− jr − w)(n− 1− jr − w) . . . (n− d − jr − w)

w(n− jr − 1)(n− jr − 2) . . . (n− jr − d)

×
w+ 1

w+ 1− j
− 1

)(
w
j

)(
n− jr − 1
w− 1

)
.

Also (
w− 1
j

)
=
w− j
w

(
w
j

)
and (

n− 1− jr − 1
w− 2

)
=

w− 1
n− jr − 1

(
n− jr − 1
w− 1

)
and hence(

w− 1
j

)(
n− 1− jr − 1

w− 2

)
−

(
w
j

)(
n− jr − 1
w− 1

)
=

(w− j
w

w− 1
n− jr − 1

− 1
)(
w
j

)(
n− jr − 1
w− 1

)
.

Finally(
n− 1− jr − 1

w− 1

)
=
n− jr − w
n− jr − 1

(
n− jr − 1
w− 1

)
and hence(

n− 1− jr − 1
w

)
−

(
n− jr − 1

w

)
=

(n− jr − 1− w
n− jr − 1

− 1
)(
n− jr − 1

w

)
.

The quasi-enumerative encoding of Construction 1 is
described by Algorithms 1, 2 and 3, while the cor-
responding quasi-enumerative decoding is described by
Algorithms 4, 5 and 6.

Algorithm 1 Encoding of Construction 1
Input: Rank l, (d, k)-constraint, word length 2m
Output: Balanced (d, k)-constrained word ρ

EncodeCon1(l, d, k, 2m)
r ← k − d + 1
w← ⌈ m

k+1⌉

n← m− wd
l̂(1), l̂(2),w(1),w(2),R(1),R(2), α(1), α(2)

←

GroupEncodeCon1(l, n,w, r, d)
ρ(1)
← RLLEncode(l̂(1),m,w(1), d, r,R(1), α(1))

ρ(2)
← RLLEncode(l̂(2),m,w(2), d, r,R(2), α(2))

return ⟨ρ(1), ρ(2)
⟩

Algorithm 2 Finding the Group (w(1) and w(2))
GroupEncodeCon1(l, n,w, r, d)

i←−1,λ← 0, jmax← ⌊
n−w
r ⌋

α(1)
← (α(1)

0 α
(1)
1 . . . α

(1)
jmax

)

α(2)
← (α(2)

0 α
(2)
1 . . . α

(2)
jmax

)

α
(1)
j ← (−1)j

(w
j

)(n−jr−1
w−1

)
for j = 0, 1, . . . , jmax

R(1)←
∑jmax

j=0 α
(1)
j

while λ < l + 1
i← i+ 1
if i mod 2 = 0

R(2)← R(1), α(2)
← α(1)

λprev← λ, λ← λ+ (R(1))2

else
j′max← jmax, jmax← ⌊

n−d−(w+1)
r ⌋

δj←
(

w+1
w+1−j

∑d
i=0 n−i−jr−w

w
∑d

i=1 n−i−jr
− 1

)
α
(1)
j

for j = 0, 1, . . . , jmax
α
(1)
j ← α

(1)
j + δj for j = 0, 1, . . . , jmax

R(1)← R(1) +
∑jmax

j=0 δj −
∑j′max

j=jmax+1
α
(1)
j

λprev← λ, λ← λ+ R(1)R(2)

w← w+ 1, n← n− d
l̂ ← l − λprev
if i mod 2 = 0

return ⌊ l̂
R(2)
⌋, l̂ mod R(2),w,w,R(1),R(2),

α(1), α(2)

else
return ⌊ l̂

R(2)
⌋, l̂ mod R(2),w,w− 1,R(1),R(2),

α(1), α(2)

B. CONSTRUCTION 2
This and the following quasi-enumerative constructions are
based on permutation RLL codes introduced by Datta
and McLaughlin [16]. They also present enumerative
encoding and decoding algorithms for permutation RLL
codes. Permutation RLL codes consist of codewords ρ =

(ρ1ρ2 . . . ρw) consisting of w run-length segments where ρi ∈

{0, 1, . . . , r − 1}, 1 ≤ i ≤ w, and r = k − d + 1, i.e., the
ith run-length segment of length ρ′′i , d + 1 ≤ ρ′′i ≤ k + 1,

VOLUME 12, 2024 39381



F. Palunčić, B. T. Maharaj: Quasi-Enumerative Coding of Balanced Run-Length Limited Codes

Algorithm 3 Encoding ofR(d,k)(m,w)

RLLEncode(l̂,m,w, d, r,R, α)
ρ ← (ρ1ρ2 . . . ρw)
n← m− wd, jmax← ⌊

n−w
r ⌋

w′← w, t ← 0
for i = 1, 2, . . . ,w− 1

s←−1,λ← 0
while λ < l̂ + 1

s← s+ 1
if s = 0

j′max← jmax, jmax← ⌊
n−w′
r ⌋

δj← (w
′
−j
w′

w′−1
n−jr−1 − 1)αj

for j = 0, 1, . . . , jmax
w′← w′ − 1

else
j′max← jmax, jmax← ⌊

n−1−w′
r ⌋

δj← ( n−jr−w
′

n−jr−1 − 1)αj for j = 0, 1, . . . , jmax
αj← αj + δj for j = 0, 1, . . . , jmax

R← R+
∑jmax

j=0 δj −
∑j′max

j=jmax+1
αj

λprev← λ, λ← λ+ R
n← n− 1

l̂ ← l̂ − λprev
ρi← s, t ← t + s+ 1

ρw← m− wd − 1− t
return ρ

Algorithm 4 Decoding of Construction 1

Input: Balanced (d, k)-constrained word ρ ≡ ⟨ρ(1), ρ(2)
⟩,

(d, k)-constraint, word length 2m
Output: Rank l

DecodeCon1(ρ(1), ρ(2),w(1),w(2), d, k, 2m)
r ← k − d + 1
w← ⌈ m

k+1⌉

n← m− wd
l ′,R(1),R(2), α(1), α(2)

←

GroupDecodeCon1(n,w(1),w(2),w, r, d)
l̂(1)← RLLDecode(m, ρ(1), d, r,R(1), α(1))
l̂(2)← RLLDecode(m, ρ(2), d, r,R(2), α(2))
return l ′ + l̂(1)R(2) + l̂(2)

is represented by ρi = ρ′′i − (d + 1). Let νj, 0 ≤ j ≤ r − 1,
be the number of symbols j in ρ. Clearly

∑r−1
j=0 νj = w. The

length of the binary (d, k)-constrainedword x = (x1x2 . . . xm)
corresponding to ρ is

m = w(d + 1)+
w∑
i=1

ρi = w(d + 1)+
r−1∑
j=0

jνj.

Due to the result by Zehavi and Wolf [13], the run-length
segment probability distribution of a maxentropic RLL
sequence is known to be P(ρi = j) = 2−(j+d+1)C(d,k) for
j ∈ {0, 1, . . . , r − 1}. By choosing νj/w ≈ 2−(j+d+1)C(d,k),

Algorithm 5 Finding Rank Contribution for the group (w(1)

and w(2))

GroupDecodeCon1(n,w(1),w(2),w, r, d)
i←−1,λ← 0, jmax← ⌊

n−w
r ⌋

α(1)
← (α(1)

0 α
(1)
1 . . . α

(1)
jmax

)

α(2)
← (α(2)

0 α
(2)
1 . . . α

(2)
jmax

)

α
(1)
j ← (−1)j

(w
j

)(n−jr−1
w−1

)
for j = 0, 1, . . . , jmax

R(1)←
∑jmax

j=0 α
(1)
j

while w ≤ w(1)

i← i+ 1
if i mod 2 = 0

if w ≤ w(1) and w ≤ w(2)

R(2)← R(1), α(2)
← α(1)

λprev← λ, λ← λ+ (R(1))2

else
if w+ 1 ≤ w(1) and w ≤ w(2)

j′max← jmax, jmax← ⌊
n−d−(w+1)

r ⌋

δj←
(

w+1
w+1−j

∑d
i=0 n−i−jr−w

w
∑d

i=1 n−i−jr
− 1

)
α
(1)
j

for j = 0, 1, . . . , jmax
α
(1)
j ← α

(1)
j + δj for j = 0, 1, . . . , jmax

R(1)← R(1) +
∑jmax

j=0 δj −
∑j′max

j=jmax+1
α
(1)
j

λprev← λ, λ← λ+ R(1)R(2)

w← w+ 1, n← n− d
return λprev,R(1),R(2), α(1), α(2)

Algorithm 6 Decoding ofR(d,k)(m,w)
RLLDecode(m, ρ, d, r,R, α)

n← m− wd, jmax← ⌊
n−w
r ⌋

w′← w, l̂ ← 0
for i = 1, 2, . . . ,w− 1

s← 0, λ← 0
while s ≤ ρi

if s = 0
j′max← jmax, jmax← ⌊

n−w′
r ⌋

δj← (w
′
−j
w′

w′−1
n−jr−1 − 1)αj

for j = 0, 1, . . . , jmax
w′← w′ − 1

else
j′max← jmax, jmax← ⌊

n−1−w′
r ⌋

δj← ( n−jr−w
′

n−jr−1 − 1)αj for j = 0, 1, . . . , jmax
αj← αj + δj for j = 0, 1, . . . , jmax

R← R+
∑jmax

j=0 δj +
∑j′max

j=jmax+1
αj

λprev← λ, λ← λ+ R
n← n− 1, s← s+ 1

l̂ ← l̂ + λprev

return l̂

the rate of the permutation RLL code can be made arbitrarily
close to capacity for increasing codeword length. Any
permutation of ρ is a valid codeword as it also satisfies
the desired run-length segment probability distribution. The

39382 VOLUME 12, 2024



F. Palunčić, B. T. Maharaj: Quasi-Enumerative Coding of Balanced Run-Length Limited Codes

number of codewords in the permutation RLL code is

w!
ν0!ν1! . . . νr−1!

.

A more efficient enumerative encoding and decoding algo-
rithm for permutation RLL codes is presented by Milenkovic
and Vasić [10]. The proposed quasi-enumerative construc-
tions will make use of this enumerative coding of permutation
RLL codes.

As in Construction 1 above, a balanced RLL word is
obtained by interleaving two RLL subwords consisting of
a fixed number of run-length segments. The RLL subwords
are from permutation RLL codes of appropriate parameters.
As before, wmin = ⌈

m
k+1⌉ and wmax = ⌊

m
d+1⌋. Associate the

index i, 0 ≤ i ≤ wmax − wmin, to wmin + i. Then

P(i) ≜
(wmin + i)!

ν
(i)
0 !ν

(i)
1 ! . . . ν

(i)
r−1!

,

where P ≡ P(0). For each i, select ν
(i)
j so that ν

(i)
j /(wmin + i)

is as close to 2−(j+d+1)C(d,k) as possible, i.e., maximize the
number of permutation RLL words, under the constraint

m− (wmin + i)(d + 1) =
r−1∑
j=0

jν(i)j .

If

ν(i) ≜
ν
(i)
0 !ν

(i)
1 ! . . . ν

(i)
r−1!

ν
(i−1)
0 !ν

(i−1)
1 ! . . . ν

(i−1)
r−1 !

for 1 ≤ i ≤ wmax − wmin, then it follows that

P(1) =
wmin + 1

ν(1)
P

P(2) =
wmin + 2

ν(2)
P(1)

=
(wmin + 1)(wmin + 2)

ν(1)ν(2)
P

...

P(i) =
wmin + i

ν(i)
P(i−1)

=

∏i
j=1 wmin + j∏i

j=1 ν(j)
P.

Let Bperm(2m, d, k) represent the number of balanced (d, k)-
constrained words where the subwords are permutation RLL
words. Then

Bperm(2m, d, k)

= P2 +
wmax−wmin∑

i=1

P(i−1)P(i) + (P(i))2

= P2 +
wmax−wmin∑

i=1

[∏i−1
j=1 wmin + j∏i−1

j=1 ν(j)

]
P
[∏i

j=1 wmin + j∏i
j=1 ν(j)

]
P

+

[∏i
j=1 wmin + j∏i

j=1 ν(j)

]2
P2

= P2
[
1+

wmax−wmin∑
i=1

[∏i
j=1 wmin + j∏i

j=1 ν(j)

]2( ν(i)

wmin + i
+ 1

)]
.

Suppose we want to find a balanced RLL word of rank l.
To find w(1) and w(2) of the two subwords, find the smallest
j, 0 ≤ j ≤ wmax − wmin, such that

1+
j∑

i=1

[∏i
a=1 wmin + a∏i

a=1 ν(a)

]2( ν(i)

wmin + i
+ 1

)
≥
l + 1
P2

.

Then w(1)
= wmin + j. If

1+
j∑

i=1

[∏i
a=1 wmin + a∏i

a=1 ν(a)

]2( ν(i)

wmin + i
+ 1

)
≥
l + 1
P2
+

[∏j
a=1 wmin + a∏j

a=1 ν(a)

]2
then w(2)

= wmin+ j−1, otherwise w(2)
= wmin+ j. If j = 0,

then the residual rank is l̂ = l and the partial ranks are l̂(1) =
⌊l̂/P(0)⌋ and l̂(2) = l̂ mod P(0), so that l̂ = l̂(1)P(0) + l̂(2).
If j ̸= 0, if w(1)

= w(2) then

l̂ = l − P2
[
1−

[∏j
a=1 wmin + a∏j

a=1 ν(a)

]2

+

j∑
i=1

[∏i
a=1 wmin + a∏i

a=1 ν(a)

]2( ν(i)

wmin + i
+ 1

)]
and the partial ranks are l̂(1) = ⌊l̂/P(j)⌋ and l̂(2) = l̂ mod P(j),
so that l̂ = l̂(1)P(j) + l̂(2). Else if w(1)

= w(2)
+ 1, then

l̂ = l − P2
[
1+

j−1∑
i=1

[∏i
a=1 wmin + a∏i

a=1 ν(a)

]2( ν(i)

wmin + i
+ 1

)]
and the partial ranks are l̂(1) = ⌊l̂/P(j−1)⌋ and l̂(2) = l̂ mod
P(j−1), so that l̂ = l̂(1)P(j−1) + l̂(2).
Example 4: Consider the same parameters as from Exam-

ple 3. We want to find the balanced (1, 3)-constrained word
of rank l = 55. Recall that 3 ≤ w ≤ 5. Then
• w = 3 (i = 0): m − w(d + 1) = 10 − 3(2) = 4 and

ν
(0)
0 = 0, ν(0)1 = 2 and ν

(0)
2 = 1. Note that

∑2
j=0 jν

(0)
j =

4. Then

P ≡ P(0) =
3!

0!2!1!
= 3,

and the three words in lexicographical order are (112),
(121) and (211).

• w = 4 (i = 1): m − w(d + 1) = 10 − 4(2) = 2 and
ν
(1)
0 = 2, ν(1)1 = 2 and ν

(1)
2 = 0. Note that

∑2
j=0 jν

(1)
j =

2. Then

P(1) =
4!

2!2!0!
= 6,

and the six words in lexicographical order are (0011),
(0101), (0110), (1001), (1010) and (1100). Also

ν(1) =
2!2!0!
0!2!1!

= 2.

VOLUME 12, 2024 39383



F. Palunčić, B. T. Maharaj: Quasi-Enumerative Coding of Balanced Run-Length Limited Codes

• w = 5 (i = 2): m − w(d + 1) = 10 − 5(2) = 0 and
ν
(2)
0 = 5, ν

(2)
1 = 0 and ν

(2)
2 = 0. Note that

∑2
j=0 j

ν
(2)
j = 0. Then

P(2) =
5!

5!0!0!
= 1,

and the single word is (00000). Also

ν(2) =
5!0!0!
2!2!0!

= 30.

Therefore

Bperm(20, 1, 3)

= P2
[
1+

2∑
i=1

[∏i
j=1 wmin + j∏i

j=1 ν(j)

]2( ν(i)

wmin + i
+ 1

)]
= 9

[
1+

(4
2

)2(2
4
+ 1

)
+

( 4(5)
2(30)

)2(30
5
+ 1

)]
= 70

= 32 + 3(6)+ 62 + 6(1)+ 12.

Now we can proceed to find the balanced (1, 3)-constrained
word of rank l = 55. For j = 0, 1 < (55 + 1)/P2 = 56/9.
For j = 1

1+
1∑
i=1

[∏i
j=1 wmin + j∏i

j=1 ν(j)

]2( ν(i)

wmin + i
+ 1

)
= 1+

(4
2

)2(2
4
+ 1

)
= 1+ 6 = 7 ≥ 56/9.

Hence w(1)
= wmin + j = 3 + 1 = 4. Since 7 < 56/9 +

22, w(2)
= w(1)

= 4. The residual rank is l̂ = 55 − 9(1 +
6 − 4) = 28, and so the partial ranks are l̂(1) = ⌊l̂/P(1)⌋ =
⌊28/6⌋ = 4 and l̂(2) = l̂ mod P(1) = 28 mod 6 = 4. Then
ρ(1)
= ρ(2)

= (1010), and so

ρ ≡ ⟨ρ(1), ρ(2)
⟩

= ⟨(1010), (1010)⟩

= (11001100).

The quasi-enumerative encoding for Construction 2 is
described by Algorithms 9 and 10, while the corre-
sponding quasi-enumerative decoding for Construction 2 is
described by Algorithms 11 and 12. PermRLLEncode and
PermRLLDecode represent the enumerative encoding and
decoding algorithms of permutation RLL codes developed
by Milenkovic and Vasić [10]. The parameters ν(i) =

(ν(i)0 ν
(i)
1 . . . ν

(i)
r−1) are determined algorithmically as per Algo-

rithm 8. Since wmin + i =
∑r−1

j=0 ν
(i)
j , as i increments by one,

we have
r−1∑
j=0

ν
(i+1)
j = 1+

r−1∑
j=0

ν
(i)
j .

On the other hand, n(i+1) = n(i) − (d + 1) where

n(i) = m− (wmin + i)(d + 1) =
r−1∑
j=0

jν(i)j .

Since the probability of a run-length segment of length l
in a maxentropic RLL sequence is 2−lC(d,k), it follows that
run-length segments of longer length are less probable. For
a particular w, a heuristic algorithm to determine ν(i) =

(ν(i)0 ν
(i)
1 . . . ν

(i)
r−1) is as follows:

1) Set all ν(i)j = 0, 0 ≤ j ≤ r − 1.

2) Starting at j = 0, for each j, find the smallest ν
(i)
j such

that ν
(i)
j /w ≥ 2−(d+1+j)C(d,k). If (ν(i)j − 1)/w is closer

to 2−(d+1+j)C(d,k), decrement ν
(i)
j by one. Since w =∑r−1

j=0 ν
(i)
j , if

∑r−1
t=j ν

(i)
t > w, adjust ν(i)j accordingly.

3) If m − (wmin + i)(d + 1) ̸=
∑r−1

j=0 jν
(i)
j , starting at

j = r − 1, increment νj by one and decrement νj−1
by one to increase the length by one and vice versa to
decrement the length by one. This process is repeated
with decrementing j until the desired length is attained.

During the initialization stage, this algorithm is used to
determine ν(i) for all 0 ≤ i ≤ wmax − wmin. Then, all ν(i),
1 ≤ i ≤ wmax − wmin, can be calculated. This initialization
step is performed only once for a particular m and (d, k)
constraints and the resultant ν(i) can be used for all word
encoding and decoding.

Algorithm 7 Initialization of Construction 2
Input: (d, k)-constraint, word length 2m
Output: ν = (ν(1)ν(2) . . . ν(wmax−wmin))

Init(d, k, 2m)
r ← k − d + 1
wmin← ⌈

m
k+1⌉,wmax← ⌊

m
d+1⌋

ν(i)← (ν(i)0 ν
(i)
1 . . . ν

(i)
r−1) for i = 0, 1, . . . ,wmax−wmin

ν(0)← FindNu(m,wmin, r, d)
for i = 1, 2, . . . ,wmax − wmin

ν(i)← FindNu(m,wmin + i, r, d)

ν(i)←
ν
(i)
0 !ν

(i)
1 !...ν

(i)
r−1!

ν
(i−1)
0 !ν

(i−1)
1 !...ν

(i−1)
r−1 !

return ν

C. CONSTRUCTION 3
Construction 3 is a special case of Construction 2. Instead
of considering the different possible number of run-length
segments of the interleaved subwords as in Construction 2,
Construction 3 only uses a single value

w ≈
wmax + wmin

2
for the two interleaved subwords. This w is selected as
half-way between wmax and wmin because this selection
maximizes the codebook cardinality. For the selected w,
the values νj/w ≈ 2−(j+d+1)C(d,k) under the constraint

39384 VOLUME 12, 2024



F. Palunčić, B. T. Maharaj: Quasi-Enumerative Coding of Balanced Run-Length Limited Codes

Algorithm 8 Find ν = (ν0ν1 . . . νr−1) for Particular Length
m and Number of Run-Length Segments w

FindNu(m,w, r, d)
νj← 0 for j = 0, 1, . . . , r − 1
w′← w,m′← m− w(d + 1)
for j = 0, 1, . . . , r − 2

pj← 2−(d+1+j)C(d,k)

while νj/w < pj
νj← νj + 1

if νj/w− pj > pj − (νj − 1)/w
νj← νj − 1

if w′ < νj
νj← w′

w′← w′ − νj,m′← m′ − jνj
νr−1← w′,m′← m′ − (r − 1)νr−1
if m′ < 0

j← r − 1
while m′ < 0

if νj ≥ 1
νj← νj − 1, νj−1← νj−1 + 1
m′← m′ + 1

if j = 1
j← r − 1

else
j← j− 1

if m′ > 0
j← r − 1
while m′ > 0

if νj−1 ≥ 1
νj← νj + 1, νj−1← νj−1 − 1
m′← m′ − 1

if j = 1
j← r − 1

else
j← j− 1

return ν

Algorithm 9 Encoding of Construction 2
Input: Rank l, (d, k)-constraint, word length 2m, ν =

(ν(1)ν(2) . . . ν(wmax−wmin))
Output: Balanced (d, k)-constrained word ρ

EncodeCon2(l, d, k, 2m, ν)
r ← k − d + 1
w← ⌈ m

k+1⌉

l̂(1), l̂(2),w(1),w(2)
←

GroupEncodeCon2(l,m,w, r, d, ν)
ν(1)← FindNu(m,w(1), r, d)
ν(2)← FindNu(m,w(2), r, d)
ρ(1)
← PermRLLEncode(l̂(1),m,w(1), d, r, ν(1))

ρ(2)
← PermRLLEncode(l̂(2),m,w(2), d, r, ν(2))

return ⟨ρ(1), ρ(2)
⟩

Algorithm 10 Finding the Group (w(1) and w(2))
GroupEncodeCon2(l,m,w, r, d, ν)

i← 0, λ← 0, π ← 1
ν(0)← FindNu(m,w, r, d)
P← w!

ν
(0)
0 !ν

(0)
1 !...ν

(0)
r−1!

if 1 ≥ l+1
P2

return ⌊ lP⌋, l mod P,w,w
else

λ← λ+ 1
while λ < l+1

P2
i← i+ 1
β ← w+i

ν(i)

π ← πβ

λ← λ+ π2( 1
β
+ 1)

if λ ≥ l+1
P + π2

l̂ ← l − P2λ,P(i−1)← Pπ
β

return ⌊ l̂
P(i−1)
⌋, l̂ mod P(i−1),w+ i,w+ i− 1

else
l̂ ← l − P2λ+ P2π2,P(i)← Pπ

return ⌊ l̂
P(i)
⌋, l̂ mod P(i),w+ i,w+ i

Algorithm 11 Decoding of Construction 2

Input: Balanced (d, k)-constrained word ρ ≡ ⟨ρ(1), ρ(2)
⟩,

(d, k)-constraint, word length 2m, ν = (ν(1)ν(2) . . .
ν(wmax−wmin))
Output: Rank l

DecodeCon2(ρ(1), ρ(2),w(1),w(2), d, k, 2m, ν)
r ← k − d + 1
w← ⌈ m

k+1⌉

l ′,P(1),P(2)←
GroupDecodeCon2(m,w(1),w(2),w, r, d, ν)

l̂(1)← PermRLLDecode(m, ρ(1),w(1), d, r)
l̂(2)← PermRLLDecode(m, ρ(2),w(2), d, r)
return l ′ + l̂(1)P(2) + l̂(2)

w =
∑r−1

j=0 νj are chosen in order to maximize the cardinality
of the interleaved subword codebooks.

V. PERFORMANCE COMPARISON
The computational complexity and code rates of the enu-
merative coding by Kurmaev [7] are compared to that of
Constructions 1, 2 and 3 presented above. Enumerative
coding algorithms can be compared in terms of storage and/or
computational requirements. The enumerative coding by
Kurmaev and the quasi-enumerative constructions proposed
here are by nature computationally oriented and are not well
suited to the storage approach. Hence, the comparison will be
in terms of computational complexity.

VOLUME 12, 2024 39385



F. Palunčić, B. T. Maharaj: Quasi-Enumerative Coding of Balanced Run-Length Limited Codes

Algorithm 12 Finding Rank Contribution for the Group (w(1)

and w(2))

GroupDecodeCon2(m,w(1),w(2),w, r, d, ν)
i← 0, λ← 0, π ← 1
ν(0)← FindNu(m,w, r, d)
P← w!

ν
(0)
0 !ν

(0)
1 !...ν

(0)
r−1!

if w(1)
= w(2)

= w
return 0,P,P

else
λ← λ+ 1, i← i+ 1

while i ≤ w(i)

β ← w+i
ν(i)

π ← πβ

λ← λ+ π2( 1
β
+ 1)

i← i+ 1
if w(1)

= w(2)
+ 1

return P2(λ− π2( 1
β
+ 1)),Pπ,Pπ

β
else

return P2(λ− π2),Pπ,Pπ

A. COMPLEXITY
For balanced RLL codes, the crux of Kurmaev’s enumerative
coding is entailed in equation (16) [7, p. 4501]. Although
more verbose, the similarity with (1) is obvious. This helps
to facilitate the comparison. Also pertinent is equation (7)
which uses (16) [7, p. 4499]. Kurmaev utilizes (dkl ′r ′)
words, where first run of zeroes is at most l ′ and the
last run of zeroes is at most r ′. The comparison will be
based on the order of multiplications/divisions needed since
the number of multiplications/divisions exceeds the number
of additions/subtractions, but it is noted that the order of
additions/subtractions is the same. Rather than calculating
the binomial coefficients from scratch each time, recurrence
relations can be utilized as in Construction 1. Assume that
the word length is 2m and w is the number of run-length
segments. For a particular m and w, there are 4(jmax + 1)
multiplications/divisions within each summation consisting
of the product of binomial coefficients, where

jmax ≈
m− w(d + 1)

r
.

Although this jmax corresponds to a charge (digital sum) σ =

0, it is noted that when the charge is non-zero, the number
of summations with positive charge are approximately
equal to that of the summations with the corresponding
negative charge. Hence, for a particular m, the number of
multiplications/divisions is approximately

(l ′ + 1)
wmax∑
w=0

w∑
j=0

40
m− j(d + 1)+ r

r

=
40(l ′ + 1)

r

wmax∑
w=0

(w+ 1)m− (d + 1)
w(w+ 1)

2
+ (w+ 1)r

=
40(l ′ + 1)

r

((wmax(wmax + 1)
2

+ wmax + 1
)
(m+ r)

−
d + 1
2

(wmax(wmax + 1)(2wmax + 1)
6

+
wmax(wmax + 1)

2

))
=

40(l ′ + 1)
r

wmax(wmax + 1)
((1

2
+

1
wmax

)
(m+ r)

−
d + 1
2

(2wmax + 4
6

))
≈

40(l ′ + 1)
r

wmax(wmax + 1)
((1

2
+

1
wmax

)
(m+ r)

−
m+ 2d + 2

6

)
= O(m3).

This process is repeated for each index in the word and so the
total number of multiplications/divisions per word is

2m∑
j=1

O(j3) = O(m4).

On the other hand, for Construction 1, the total number of
multiplications/divisions to find w(1) and w(2) is at most

4
wmax∑
j=wmin

m− j(d + 1)+ r
r

=
4
r

(
(wmax − wmin + 1)(m+ r)

− (d + 1)
(wmax(wmax + 1)

2
−
wmin(wmin − 1)

2

))
= O(m2).

Similarly, to find the subwords ρ(1) and ρ(2), each requires at
most

4r
w∑
j=0

m− j(d + 1)+ r
r

= 4
(
(w+ 1)(m+ r)− (d + 1)

w(w+ 1)
2

)
= O(m2)

multiplications/divisions. Hence, the total number of multi-
plications/divisions per word of Construction 1 is O(m2).

Constructions 2 and 3 are more efficient. For Construc-
tion 2, finding a particular ν(i) depends on r (which in turn
depends on d and k constraints) and not on m. Therefore,
the total number of multiplications/divisions to find w(1)

and w(2) is at most 4O(r)(wmax − wmin + 1) = O(m).
Similarly, it is easy to verify that the permutation RLL
enumerative coding by Milenkovic and Vasić requires O(m)
multiplications/divisions. Therefore, Construction 2 is O(m).
Finally, it automatically follows that Construction 3 is also
O(m). In absolute terms, Construction 3 is the most efficient

39386 VOLUME 12, 2024



F. Palunčić, B. T. Maharaj: Quasi-Enumerative Coding of Balanced Run-Length Limited Codes

TABLE 3. Comparison of complexities of Kurmaev’s construction,
Constructions 1–3 and Knuth-like constructions.

computationally of the three constructions proposed in this
paper. Table 3 compares the complexities of Kurmaev’s
construction and Constructions 1–3. In addition, the com-
plexity of Knuth-like balanced RLL codes (e.g. codes by
Immink et al. [4] and Palunčić et al. [5]) is also included,
since these codes are considered in the code rate efficiency
comparison in the next subsection. These Knuth-like codes
require on average O(m) bit-flips during encoding and
decoding. In addition, the balancing index is encoded by
means of a prefix/suffix. This prefix/suffix, which also needs
to satisfy certain RLL and balancing constraints, can be
encoded and decoded using enumerative coding (e.g. the
techniques proposed in this paper) and thus requiresO(logm)
multiplications/divisions.

B. CODE RATE EFFICIENCY
The code rates of the various constructions are compared for
various parameters. For the enumerative code by Kurmaev,
there are two options to consider. In the first option, l ′ = 0 and
r ′ = 0 meaning that codeword boundaries correspond to run
boundaries. Hence, the resultant code cardinality is equal to
that of Construction 1. Alternatively, for non-zero l ′ and r ′,
merging bits are required. It is easy to verify that merging bit
constructions for RLL codewords (e.g. constructions 1 and 2
in [1, Sec. 5.4.2]) do not work for balanced RLL codewords.
Merging bits

000 . . . 0︸ ︷︷ ︸
d+1

1 00 . . . 0︸ ︷︷ ︸
d

are applicable for balanced RLL codewords with l ′ = k − d
and r ′ = k − (d + 1).

The comparison is in terms of efficiency

η ≜
r̄

C(d, k)
,

where r̄ is the code rate. It is to be noted that efficiency is
less than one for any finite codeword length since capacity
by definition is when codeword length tends to infinity.
Let ηK represent the efficiency of Kurmaev’s code with
merging bits and η1, η2 and η3 represent the efficiencies of
Constructions 1, 2 and 3, respectively. Then

ηK =
r̄K

C(d, k)
, η1 =

r̄1
C(d, k)

, η2 =
r̄2

C(d, k)
, η3 =

r̄3
C(d, k)

,

where

r̄K =
log2 Ĉ(2m− 2d − 2, 0, d, k, k − d, k − d − 1)

2m
,

and

r̄1 =
log2 B(2m, d, k)

2m
,

TABLE 4. Comparison of ηK , η1, η2 and η3 for various m and (d , k)
constraints.

and

r̄2 =
log2 Bperm(2m, d, k)

2m
,

and

r̄3 =
log2 Bperm(2m,w, d, k)

2m
.

Ĉ(2m, σ, d, k, l ′, r ′) is obtained with equations (7) and (16)
from [7], while Bperm(2m,w, d, k) = P2 where

P =
w

ν0!ν1! . . . νr−1!

and

w =
⌈wmax + wmin

2

⌉
.

Table 4 shows a comparison of ηK , η1, η2 and η3.
Construction 1, which is equivalent to Kurmaev’s code with
no merging bits and l ′ = 0 and r ′ = 0, has the best code
rate. The use of merging bits with Kurmaev’s code leads
to a reduced code rate and efficiency. It worth noting that
a better merging bits scheme could improve the code rate
and efficiency. Comparatively, the reduction in code rate and
efficiency of Constructions 2 and 3 is larger. This is the
price of the reduced computational complexity of these two
constructions.

As a final comparison, the selection of ν(i) for Construc-
tions 2 and 3 is not limited by a particular m, but rather
ν(i) is chosen algorithmically for a particular w. This will
give ν(i) that is closer to the optimal run-length segment
distribution. The results are shown in Table 5. A comparison
of Tables 4 and 5 demonstrates that Constructions 2 and 3 can
achieve similar efficiencies to that of Construction 1 at larger
codeword lengths.

Thus, Constructions 1 to 3 have decreasing computa-
tional complexity and decreasing code rate efficiency. This
is the fundamental trade-off between the three proposed
constructions.

VOLUME 12, 2024 39387



F. Palunčić, B. T. Maharaj: Quasi-Enumerative Coding of Balanced Run-Length Limited Codes

TABLE 5. Comparison of η2 and η3 for various m and (d , k) constraints
where ν(i ) are selected for a particular w .

While Construction 1 is of maximal cardinality, Con-
structions 2 and 3 are not. In order to further contextualize
their efficiency, it is instructive to compare them also to
the efficiencies of balanced RLL codes based on Knuth-like
balancing schemes. Specifically, in this context, pertinent
code constructions are those of Immink et al. [4] and
Palunčić et al. [5]. The codes by Palunčić et al. [5] are of
variable and fixed length. The original fixed-length codes by
Immink et al. [4] cannot be cascaded freely as run-length
violations could occur at codeword boundaries. For fair
comparison, the merging bits proposed in [5] to rectify this
will be taken into account. In all these codes, the balancing
procedure is applied to a RLL source word. Hence, the code
rate of the overall code is dependent on the code rate of
the RLL code. We will assume maximal cardinality of the
RLL codes, as this is an upper bound on the desired code
rates. For fixed-length codes, we compute the maximum
number of RLL words of particular length. The codes
by Palunčić et al. [5] require the codeword boundaries to
correspond to the run-length boundaries, so the cardinalities
of the fixed-length codes are computed using the generating
function approach from [9]. Such a limitation does not apply
for the constructions from [4]. The maximal cardinalities
are between those of the above method and the cardinalities
calculated using the formula in [1, Eq. (4.4)]. For the
variable-length codes from [5], the cardinality is rw, where
r = k − d + 1 and w is the number of runs in the source RLL
word (for more details, see [5, p. 7061]).

In Tables 6–8, FL1 denotes the fixed-length codes from [4],
FL2 the fixed-length codes from [5], and VL1 and VL2 the
variable-length codes 1 and 2 from [5], respectively. For ease
of reference to Tables 5–7 in [5], the balanced RLL code
length (2m) is shown as the sum of the (average) source
RLL word length and (average) balancing redundancy. The
last column in the tables also includes η1 for comparison
purposes. For FL1, ηKnuth has two values separated by a dash:

TABLE 6. Comparison of ηKnuth for various variable- and fixed-length
codes with η2 and η3 for (d , k) = (1, 3).

TABLE 7. Comparison of ηKnuth for various variable- and fixed-length
codes with η2 and η3 for (d , k) = (1, 9).

TABLE 8. Comparison of ηKnuth for various variable- and fixed-length
codes with η2 and η3 for (d , k) = (3, 7).

the first value is based on maximal cardinality assuming RLL
codeword boundaries correspond to run boundaries and the
second value without this limitation using [1, Eq. (4.4)]. The
actual value is between these two bounds.

For (d, k) = (1, 3), Table 6 shows that η2 is bigger than
ηKnuth for various values of 2m and different constructions.
In the case of η3, the same applies, except for FL2, where
ηKnuth is marginally greater. But recall that ηKnuth assumes
maximal cardinality for the source RLL code, which can
be achieved with enumerative coding, but would be more
complex than quasi-enumerative coding since interleaved
RLL codes are generated at half codeword length. Non-
enumerative RLL codes operate at lower efficiency.

In the case of (d, k) = (1, 9) shown in Table 7,
a slight majority of the entries have η2 and η3 better than
ηKnuth. Notable are the cases of FL1 and FL2 for larger
2m which demonstrate ηKnuth larger than η2 and η3. The
gain is significant. The comparison can be further refined
by considering the very efficient rate 8/12, (1, 9)-constrained
code developed by Immink [17]. By concatenating the RLL
codewords of length 12 to be as close to the source RLL
length of 136 for FL1, an efficiency of 0.8405 can be attained,
which is still greater than η2 and η3. Similarly, in the case
of length 338 FL1, an efficiency of 0.9084 can be attained,
which is slightly better than η2 and η3. However, it should
be noted that the 8/12, (1, 9)-constrained encoder consists of
358 states.

39388 VOLUME 12, 2024



F. Palunčić, B. T. Maharaj: Quasi-Enumerative Coding of Balanced Run-Length Limited Codes

For all the entries of Table 8 for (d, k) = (3, 7), η2 is better
than ηKnuth, while η3 is slightly lower in most cases. With
non-enumerative RLL codes, the efficiency would be lower
than η3 for the variable-length codes.
For the majority of cases considered, η2 and η3 are larger

than ηKnuth. The significant exception is when the difference
between k and d is large.

VI. CONCLUSION
Quasi-enumerative coding is proposed as a means of more
efficiently constructing balanced RLL codes. All three
proposed quasi-enumerative coding constructions have a
significantly lower computational complexity compared to
the enumerative coding construction developed by Kurmaev.
Constructions 2 and 3, which are based on permutation RLL
codes, have a lower computational complexity than Construc-
tion 1, but this reduction in computational complexity comes
at the cost of reduced code rate efficiency. In comparison to
balanced RLL codes based on Knuth-like balancing methods,
Constructions 2 and 3 achieve better code rate efficiency
in the majority of cases. The three quasi-enumerative
coding constructions can cater for different operational
requirements in terms of computational complexity and code
rate efficiency.

REFERENCES
[1] K. A. S. Immink, Codes for Mass Data Storage Systems, 2nd ed.

Eindhoven, The Netherlands: Shannon Foundation, 2004.
[2] B. Vasic and E. M. Kurtas, Coding and Signal Processing for

Magnetic Recording Systems. Boca Raton, FL, USA: CRC Press,
2005.

[3] I. Djordjevic, W. Ryan, and B. Vasic, Coding for Optical Channels.
New York, NY, USA: Springer, 2010.

[4] K. A. S. Immink, J. H. Weber, and H. C. Ferreira, ‘‘Balanced runlength
limited codes using Knuth’s algorithm,’’ in Proc. IEEE Int. Symp. Inf.
Theory, St. Petersburg, Russia, Aug. 2011, pp. 317–320.

[5] F. Paluncic, B. T. Maharaj, and H. C. Ferreira, ‘‘Variable- and fixed-
length balanced runlength-limited codes based on a Knuth-like balancing
method,’’ IEEE Trans. Inf. Theory, vol. 65, no. 11, pp. 7045–7066,
Nov. 2019.

[6] D. Knuth, ‘‘Efficient balanced codes,’’ IEEE Trans. Inf. Theory, vol. IT-32,
no. 1, pp. 51–53, Jan. 1986.

[7] O. F. Kurmaev, ‘‘Constant-weight and constant-charge binary run-length
limited codes,’’ IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4497–4515,
Jul. 2011.

[8] A. Manada and H. Morita, ‘‘On the capacities of balanced codes with run-
length constraints,’’ in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen,
Germany, Jun. 2017, pp. 1391–1395.

[9] F. Paluncic and B. T. J. Maharaj, ‘‘Using bivariate generating functions
to count the number of balanced runlength-limited words,’’ in Proc.
GLOBECOM IEEE Global Commun. Conf., Singapore, Dec. 2017,
pp. 1–6.

[10] O. Milenkovic and B. Vasic, ‘‘Permutation (d,k) codes: Efficient enumer-
ative coding and phrase length distribution shaping,’’ IEEE Trans. Inf.
Theory, vol. 46, no. 7, pp. 2671–2675, Nov. 2000.

[11] P. Flajolet and R. Sedgewick, Analytic Combinatorics. Cambridge, U.K.:
Cambridge Univ. Press, 2009.

[12] M. Abramson, ‘‘Restricted combinations and compositions,’’ Fibonacci
Quart., vol. 14, no. 5, pp. 439–452, Dec. 1976.

[13] E. Zehavi and J. K. Wolf, ‘‘On runlength codes,’’ IEEE Trans. Inf. Theory,
vol. IT-34, no. 1, pp. 45–54, Jan. 1988.

[14] T. M. Cover, ‘‘Enumerative source encoding,’’ IEEE Trans. Inf. Theory,
vol. IT-19, no. 1, pp. 73–77, Jan. 1973.

[15] A. Hareedy, B. Dabak, and R. Calderbank, ‘‘The secret arithmetic
of patterns: A general method for designing constrained codes based
on lexicographic indexing,’’ IEEE Trans. Inf. Theory, vol. 68, no. 9,
pp. 5747–5778, Sep. 2022.

[16] S. Datta and S. W. McLaughlin, ‘‘An enumerative method for runlength-
limited codes: Permutation codes,’’ IEEE Trans. Inf. Theory, vol. 45, no. 6,
pp. 2199–2204, Sep. 1999.

[17] K. A. S. Immink, ‘‘Block-decodable runlength-limited codes via look-
ahead technique,’’ Philips J. Res., vol. 46, no. 6, pp. 293–310, 1992.

FILIP PALUNČIĆ (Member, IEEE) was born in
Belgrade, Serbia. He received the M.Ing. and
D.Ing. degrees from the University of Johannes-
burg, South Africa, in 2008 and 2012, respectively.
He spent four years in industry as a Research
and Development Engineer with IDX, a com-
pany specializing in industrial communications.
From 2016 to 2017, he was a Postdoctoral
Research Fellow of broadband wireless multi-
media communications with the Sentech Group,

Department of Electrical, Electronic and Computer Engineering, University
of Pretoria, where he is currently a Faculty Member of the Department
of Electrical, Electronic and Computer Engineering. His research interests
include coding techniques (in particular error control coding and con-
strained coding), information theory, cognitive radio networks, and wireless
communications.

B. T. (SUNIL) MAHARAJ (Senior Member,
IEEE) received the Ph.D. degree in engineering
in the areas of wireless communications from
the University of Pretoria. He is currently a Full
Professor and holds the research position with the
Sentech Chair in Broadband Wireless Multimedia
Communications, Department of Electrical, Elec-
tronic and Computer Engineering, University of
Pretoria. His research interests include OFDM-
MIMO, massive MIMO systems, cognitive radio

resource allocation, and 5G cognitive radio sensor networks.

VOLUME 12, 2024 39389


