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Abstract: Follicular thyroid carcinoma (FTC) is the second most common cancer of the thyroid
gland, accounting for up to 20% of all primary malignant tumors in iodine-replete areas. The
diagnostic work-up, staging, risk stratification, management, and follow-up strategies in patients
who have FTC are modeled after those of papillary thyroid carcinoma (PTC), even though FTC is
more aggressive. FTC has a greater propensity for haematogenous metastasis than PTC. Furthermore,
FTC is a phenotypically and genotypically heterogeneous disease. The diagnosis and identification
of markers of an aggressive FTC depend on the expertise and thoroughness of pathologists during
histopathological analysis. An untreated or metastatic FTC is likely to de-differentiate and become
poorly differentiated or undifferentiated and resistant to standard treatment. While thyroid lobectomy
is adequate for the treatment of selected patients who have low-risk FTC, it is not advisable for patients
whose tumor is larger than 4 cm in diameter or has extensive extra-thyroidal extension. Lobectomy is
also not adequate for tumors that have aggressive mutations. Although the prognosis for over 80% of
PTC and FTC is good, nearly 20% of the tumors behave aggressively. The introduction of radiomics,
pathomics, genomics, transcriptomics, metabolomics, and liquid biopsy have led to improvements
in the understanding of tumorigenesis, progression, treatment response, and prognostication of
thyroid cancer. The article reviews the challenges that are encountered during the diagnostic work-
up, staging, risk stratification, management, and follow-up of patients who have FTC. How the
application of multi-omics can strengthen decision-making during the management of follicular
carcinoma is also discussed.

Keywords: follicular carcinoma; genomics; multi-omics; pathomics; radiomics; transcriptomics;
treatment

1. Introduction

Primary thyroid carcinoma (TC) can originate from the follicular cells, para-follicular
cells, or lymphoid tissues. Thyroid cancers constitute 1–5% of malignancies in adults [1,2].
Cancers of the thyroid of follicular cell origin are divided into well-differentiated thy-
roid carcinoma (WDTC), poorly differentiated and undifferentiated/anaplastic carcinoma
thyroid carcinoma (ATC) [1–7]. The WDTCs include papillary thyroid carcinoma (PTC),
follicular thyroid carcinoma (FTC), and oncocytic cell carcinoma (OC) [8,9]. Papillary carci-
noma and FTC consist of several subtypes. The diagnosis of PTC and FTC together with

Biomedicines 2023, 11, 1217. https://doi.org/10.3390/biomedicines11041217 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines11041217
https://doi.org/10.3390/biomedicines11041217
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-7459-3388
https://orcid.org/0000-0002-9835-4290
https://orcid.org/0000-0002-8012-3646
https://doi.org/10.3390/biomedicines11041217
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines11041217?type=check_update&version=1


Biomedicines 2023, 11, 1217 2 of 28

their subtypes is based on the presence of classical nuclear features and the architecture of
the tumor [10–12].

Over 90% of WDTCs are sporadic. The major risk factors for WDTCs include previous
exposure to ionizing radiation, a persistently abnormal level of iodine, and Hashimoto’s
thyroiditis [13–17]. Around 85–90% of thyroid cancers in an iodine-replete environment
are classical and other subtypes of PTC [18,19]. The prevalence of FTC is influenced by the
iodine status of that region [20–24]. The experience of the histopathologists also influences
the rate of diagnosis, as other benign and malignant lesions of the thyroid may be mistaken
for FTC [25]. Although FTC can occur in children, it is predominantly a disease of females
over the age of 40 [26,27].

The majority of patients who have TC present with euthyroid goiter, and a few present
due to metastasis to cervical lymph nodes or distant sites from an occult primary tu-
mor [28,29]. Sometimes a WDTC is detected incidentally during the histological analysis
of a specimen following a thyroidectomy for supposedly benign goiter [30]. Sometimes, a
patient who has a localized or metastatic FTC may present with hyperthyroidism [31,32].
The diagnostic work-up of a patient who is suspected to have TC includes thyroid function
testing (TFT), ultrasound, and fine needle aspiration cytology (FNAC) [33,34]. The diag-
nosis of PTC following FNAC is based on the existence of typical nuclear features and/or
architectural changes [35]. Supplementary imaging investigations, immunohistochemistry,
mutational analysis, and diagnostic thyroid lobectomy are added if FNAC is not diagnostic,
which is likely in the case of FTC [36–39].

The definitive management of WDTC is either lobectomy or total thyroidectomy.
Lymph node dissection, thyroid stimulating hormone (TSH) suppression, I-131 treat-
ment, tyrosine kinase inhibitors, and external beam radiotherapy are added based on
clinicopathological findings [1,8,40]. The risk level of the disease influences the choice of
the management strategy for WDTC [8,41]. Well-differentiated thyroid cancers are het-
erogeneous tumors with divergent clinical behavior, response to treatment, and overall
outcome [42,43]. Risk stratification of FTC includes the age of a patient, tumour size,
evidence and extent of extra-thyroidal extension. The other factors that are important in
the risk stratification of a patient who has FTC are the existence lymph node or systemic
metastasis, pre-operative level of thyroglobulin (Tg) and completeness of surgical excision.
The histological subtype, tumour differentiation of the tumour, immunohistochemistry,
genomics, epigenomics, metabolomics and the changes in the micro-environment of the
tumour also have an influence on the prognosis of WDTC and therefore guide of appropri-
ate treatment [26–28,41,44–51]. Additional markers that have been found to be useful in
the risk stratification of patients with TC include serum Vitamin D and the neutrophil-to-
lymphocyte ratio (NLR) [52,53].

Although observation alone or lobectomy with lifelong follow-up may be appropriate
for low-risk WDTC, patients whose tumors have a high risk of local recurrence or mortality
should have total thyroidectomy with or without lymph node dissection, adjuvant or
therapeutic I-131, aggressive TSH suppression, and intense monitoring during follow-
up [1]. Although the 10-year survival of 90% of patients who are diagnosed with WDTC
is over 95%, around 10% of the WDTCs are however unexpectedly aggressive and have a
markedly reduced disease-free survival [2,3,8]. Patients who have been diagnosed with
WDTC need a lifelong follow-up, which should be more intense in the first year following
the initiation of treatment [1,54–57]. The follow-up program for patients who have WDTC
includes clinical evaluation, neck ultrasound, monitoring of serum Tg, and radioisotope
scanning, based on the patient’s risk level [1].

Thyroid cancer is a heterogeneous disease clinically and genotypically among patients
and within itself and its metastases [58,59]. There is also high inter- and intra-observer
variability during the interpretation of the results of imaging and FNAC or histopatho-
logical specimens of follicular-patterned neoplasms of the thyroid gland [60]. The current
diagnostic and staging modalities used in WDTC are not able to accurately quantify the
burden of the disease, and recurrence or progression of WDTC is sometimes detected late.
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Untreated WDTC has a propensity towards de-differentiating and becoming more aggres-
sive as it progresses, and a previously low-risk and well-differentiated cancer may acquire
new mutations, de-differentiate, and become aggressive and resistant to I-131 [8,9,61,62].

Follicular thyroid carcinoma cannot be diagnosed pre-operatively on FNAC because
it can be confused with a follicular adenoma, rarely spread to lymph nodes, and has a
different mutational landscape from that of PTC [9,25,47,63]. Additionally, FTC has a
higher tendency, when compared with PTC and other thyroid malignancies, to present with
systemic metastases from an occult primary tumor [57,64,65]. Additionally, patients who
have FTC may present with hyperthyroidism [31,32,66]. The prognosis of patients with
FTC is worse than that of classical PTC [56]. Table 1 contains a summary of the comparison
of FTC with PTC.

Table 1. Comparison of demography and clinicopathological features of follicular and papillary
carcinomas.

Parameter FTC PTC

Gender predilection Females Females

Age [45,67] >50 years <50 years

Risk factors Iodine deficiency, colloid goiter. Radiation, iodine excess and thyroiditis.

Genetic predisposition <3% <5%

Tumour size at presentation [60] Large Small

Multifocality [68] Rare Common

FNAC diagnosis No Yes

Tumour capsule Yes No

Capsular and vascular invasion Common Rare

Main subtypes [69,70] 3 >12

Prevalent mutations or re-arrangements [71] RAS, PAX8, PPAR
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Standard surgical treatment Lobectomy or total thyroidectomy Lobectomy or total thyroidectomy with
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The sections and subsections that follow discuss challenges during the diagnostic
workup, management, and follow-up of patients who have FTC. The potential use of
radiomics, pathomics, genomics, epigenomics, transcriptomics, proteomics, metabolomics,
and lipodomics (multi-omics) to address some of the challenges and guide decision-making
in the management of FTC is also discussed [58,73,74].

2. Diagnosis and Management of Follicular Carcinoma

Follicular carcinoma is the second most common malignant tumor of the thyroid gland
and makes up around 10–15% of TCs [2,75]. There are two subtypes of FTC: minimally
invasive follicular thyroid carcinoma (mi-FTC) and widely invasive follicular thyroid
carcinoma (wi-FTC) carcinoma [9,11,35,62,76] (Figure 1).

The majority (86%) of FTC is diagnosed in women above the age of 40 years [5,77].
Less than 5% of FTC is heritable and related to syndromes such as FAP, Cowden’s disease,
ataxia telangiectasia, and Li-Fraumeni syndrome [78,79]. Follicular carcinoma can develop
from a pre-existing follicular adenoma (FA) [9,80,81]. Unlike with PTC, ionizing radiation
and Hashimoto’s thyroiditis are not risk factors for follicular carcinoma [17]. The incidence
of follicular carcinoma is decreasing globally [16,18,24,30,82,83]. Much of the decline in
the prevalence of FTC is due to the iodine supplementation program, increasing expertise
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among pathologists, advances in immunohistochemistry, and the ability to perform muta-
tional analysis [10,30,84]. However, around 72% of other types of thyroid cancer, including
the follicular variant of PTC (FVPTC), are still mistakenly diagnosed as FTC [25,34,85–89].
Additionally, the OC was in the past erroneously considered a sub-type of FTC [90].
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Figure 1. Classification and proportional rate of occurrence of follicular carcinoma and other thyroid
malignancies.

Follicular carcinoma of the thyroid usually presents as a nodular goiter, and rarely,
patients who have FTC may present with hyperthyroidism or distant metastases from
an occult primary tumor [57,64,91]. The common sites of distant metastases from FTC
include bone, lung, and brain [57,92,93]. Lymph node metastasis occurs in less than
10% of FTC. The presence of lymph node metastases in a patient who has FTC should
necessitate a review of the histopathology slides to rule out a missed FVPTC or other
malignancies of the thyroid gland [94]. Because of its relative rarity, the diagnostic workup,
staging, risk stratification, treatment, and follow-up of FTC are according to the guidelines
developed for the management of PTC [1]. Follicular carcinoma is, however, clinically
and genotypically different from PTC. Follicular carcinoma is more aggressive, has a
greater propensity for haematogenous metastasis, and is associated with a shorter disease-
free survival compared to PTC [28,85,94]. A longstanding FTC may de-differentiate and
become a poorly differentiated (PDTC) or an undifferentiated/anaplastic thyroid carcinoma
(ATC) [3,7,61,95–99]. Follicular thyroid carcinoma can also co-exist with other malignant
tumors of the thyroid gland, which include medullary thyroid carcinoma (MTC) [100,101].
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2.1. Diagnostic Work-Up of Suspected Follicular Carcinoma

Follicular carcinoma of the thyroid is rarely suspected pre-operatively except in pa-
tients who present with systemic metastasis [102,103]. The diagnostic work-up of a sus-
pected FTC is like what is done for any patient presenting with a euthyroid nodular goiter
and should include TFT, ultrasound, and FNAC [1]. None of the pre-operative investiga-
tions can confirm the diagnosis of FTC [89,102,103]. The majority of patients who have
FTC are euthyroid, and the ultrasound examination is likely to show the same worrisome
malignancy that is seen in PTC [104–108]. Among the worrisome features for malignancy
on ultrasound of FTC is a solid hypoechoic lesion that is taller than wide and has increased
intra-nodal vascularity, micro-calcifications, and an irregular border [104–107,109,110].
Follicular carcinoma is less likely to be multi-centric or multi-focal or be associated with
regional lymph node involvement when compared with PTC [40,111]. Ultrasound also
helps to pick up cervical lymph node metastasis and is complemented by a CT scan.

The Bethesda System of Reporting and Interpreting Thyroid FNAC (Bethesda System)
is the most commonly used system to guide decision making regarding observation, repeat
testing, additional pre-operative investigations, diagnostic lobectomy, or definitive surgical
procedure for cancer [33,112,113]. The categories of the Bethesda system are non-diagnostic,
benign, atypical, indeterminate, suspicious of malignancy, and malignant [33]. Result of
FNAC of FTC is likely to yield a Bethesda III or IV lesion, which is an atypical or follicular
neoplasm, respectively [33,114]. Follicular carcinoma is differentiated from FA by evidence
of vascular and/or capsular invasion, which cannot be shown on FNAC, and FNAC is
therefore not able to distinguish FTC from FA [89,102,115]. Follicular adenoma and FTC
cannot be distinguished even after immunohistochemistry and mutational analysis [115].
The other thyroid conditions that may be mistaken for FTC following FNAC are ade-
nomatous lesions of colloid goiter, FVPTC, OC, and the follicular variant of medullary
carcinoma [89,116]. The diagnosis of FTC is only made after a lobectomy or total thyroidec-
tomy. Diagnostic lobectomy is however unnecessary in up to 70% of the patients whose
FNAC yielded a Bethesda System III or IV lesion, as the histology is likely to show a benign
disease [33].

2.2. Staging of Follicular Carcinoma

The AJCC/TNM staging is used to stage WDTCs, including FTC, and parameters
that are considered during the staging are the age of the patient, size of the tumor, ev-
idence of extrathyroidal extension, presence of lymph node metastasis, and/or distant
metastases [117]. Patients who are older than 55 years are at high risk of tumor progression
or recurrence [2,118]. The categories that are used for tumor size are <2 cm, 2–4 cm, and
>4 cm, whereas the nodal involvement is divided into involvement of the central nervous
system, including level VII, or lateral cervical lymph nodes [117].

2.3. Risk Stratification and Associated Challenges in Follicular Carcinoma

The risk stratification of WDTCs considers gender and age of the patient, family history,
type of tumor and histological subtype. The other parameters for risk stratification are
tumor differentiation, degree of tumor necrosis, mitotic count, Ki67 index, mutational status
and molecular subtypes. Lymph node status, thyroglobulin level, radio-iodine uptake,
and PET/CT scan uptake are also important for risk assessment [26,35,51,94,119–123].
Follicular carcinoma is usually more aggressive than PTC, and the WI-FTC is likely to
have distant metastases at presentation and lower disease-free survival [124,125]. The
same risk scoring systems that are used in PTC are relied on for categorization of FTC, and
among them are TNM staging; metastasis, age, completeness of resection, invasion, and size
(MACIS); age, gender, extra-thyroidal extension, and size (AGES) and age, metastasis, extra-
thyroidal extension and size (AMES) [119,121,125]. Low-risk FTC is a tumor that is less than
4 cm in maximum diameter and has no extra-thyroidal extension, lymph node, or distant
metastasis, whereas an intermediate- or high-risk tumor is larger than 4 cm. A patient who
has an FTC that is not completely excised, has extensive extrathyroidal extension, or has
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metastasized to lymph nodes or distant organs has a high-risk tumor [41,126]. Markers
that have been used for risk-stratification of WDTC, including FTC, include vitamin D level
and neutrophil-lymphocyte ratio (NLR) [52,53].

Patients who have FTC and are older than 55 years old are at increased risk of tumor
recurrence or metastasis [2,118]. The organ involved influence the prognosis of patients who
have systemic metastases. Patients who have pulmonary metastases from FTC generally
do better than those who have metastases to bone, brain, liver, and other organs [93,127].
The prognosis depends on the volume of metastasis in an organ [93,127]. All the risk
scoring systems, including the AJCC/TNM systems, are however not able to accurately
quantify the burden of the disease, especially in patients with FTC [128]. The pathological
diagnosis of FTC and its subtypes is dependent on the availability of expertise to perform
the histopathological analysis [87]. Like other cancers, FTC is heterogenous, the aggressive
component of the tumor may be overlooked during histopathological assessment, and a
patient who has supposedly had mi-FTC and has had an appropriate lobectomy or total
thyroidectomy may present years later with distant metastases [45]. The metastases are
likely to have been there and were missed during the pre-operative assessment.

2.4. Management of Follicular Carcinoma and Related Challenges

The management of FTC follows that of PTC, and the selection of the package of
care depends on the risk of recurrence and mortality [13,111]. Lobectomy or total thy-
roidectomy is the primary curative management of FTC. The other treatment strategies of
FTC are added depending on the level of risk [51,56,59,126,129]. Lymph node metastasis
occurs in less than 10% of FTCs, and lymphadenectomy is only performed if the involve-
ment is confirmed clinically and/or following imaging investigation [40,111]. Additional
treatment that may be required during the treatment of FTC includes radioactive iodine,
TSH suppression, metastectomy, tyrosine kinase inhibitors (TKIs), multi-kinase inhibitors
(MKIs), and de-differentiation therapy [8,9,61,62,130]. Evidence of de-differentiation of
the tumor, which is likely if the tumor is locally advanced with extensive extra-thyroidal
extension or is metastatic, may also influence the decision regarding further management
of FTC [3,8,61,98,131–133].

2.4.1. Lobectomy versus Total Thyroidectomy in FTC

The diagnosis of FTC is not possible on pre-operative FNAC and is usually made
following a diagnostic lobectomy, and the need for a complete thyroidectomy is only
considered thereafter based on the size of the tumor and whether a patient is at high risk
for recurrence or metastasis [126]. Lobectomy alone is appropriate for a tumor that is
1–4 cm in maximum diameter without high-risk features based on clinical, histological,
immunohistochemical, or mutational analysis [56,59]. Total thyroidectomy should be the
standard of care for FTC if the primary lesion is more than 4 cm in diameter. Mi-FCT
usually has a benign course and does not require a complete thyroidectomy or radioactive
iodine ablation. However, areas of major invasion may be missed during histopathological
analysis, leading to the erroneous labeling of a wi-FTC as a mi-FTC [11]. The ability to
perform mutational analysis is also not universally available.

Another parameter to consider is multifocality. Although the FTC is less likely to be
multifocal when compared with the PTC, lobectomy alone in patients who have multifocal
disease may lead to recurrence of the tumor [15,68,87]. The tumor that was left in the other
lobe may de-differentiate and become a PDTC or ATC [8,54,72,124,131]. The extent of the
primary tumor is another predictor of a poorer outcome in patients with FTC. Patients
with macroscopic extra-thyroidal spread are at high risk of local recurrence or metastasis
and should therefore be offered total thyroidectomy [68,134]. A total thyroidectomy is
mandatory if the FTC is metastatic, as post-operative radioactive iodine would be required.
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2.4.2. Radioactive Iodine Therapy and Dosimetry in the Management of FTC

Radioactive iodine is indicated in the management of intermediate- and high-risk
FTC for the ablation of a remnant or as adjuvant therapy or treatment of metastatic dis-
ease following total thyroidectomy [13]. The aim of ablation therapy is to prevent local
recurrence and to facilitate the use of Tg as a tumor marker for monitoring during follow-
up [2,3,13,135]. The standard dose of I-131 for ablation of the remnant of the thyroid is 30
mCi. The dose for ablation of the remnant is administered around 6 weeks after a near-total
or total thyroidectomy, when the s-TSH level is expected to have risen to 30 mIU/mL
or higher [136]. A high level of s-TSH is achieved after a period of deferral of thyroxine
replacement or by using recombinant TSH [72,135]. Adjuvant I-131 is to target presumed
micrometastases from an intermediate- or high-risk FTC, which were however not picked
up during pre-operative evaluation [56]. A dose of up to 150 mCi is necessary for ablation
of metastases from FTC and can be increased to around 200 mCi if the metastases are
extensive [3,28,135,136].

The dose of I-131 is adjusted considering the age of the patient, co-morbidities, the
organ involved, and the burden of the metastases [72,135]. Clinical dosimetry is, however,
less accurate when compared with radioisotope-based dosimetry. Dosimetry using I-124,
I-123, or I-131 is useful for guiding the most effective dose of I-131 while reducing the
likelihood of side effects [13]. Radioisotope-based dosimetry may also assist in the early
identification of dedifferentiated metastases from FTC that are not trapping the iodine to
avoid futile treatment. Problems associated with the use of I-131 during the management
of FTC include side-effects like bone marrow suppression, xerostomia, infertility, severe
hypothyroidism during the suspension of thyroxine replacement, and the development of
a second primary malignant tumor [127,134,137,138]. The additional concerns of the use
of I-131 for treatment in patients who have extensive lungs or brain metastases are that
they may develop pulmonary fibrosis that may lead to respiratory failure or brain oedema,
respectively [92,127,138]. Other challenges linked to the management of FTC using I-131
include the heterogeneity of cancer. The FTC may not be I-131 avid and therefore resistant
to radioactive treatment. Resistance to I-131 is likely in patients who have metastatic
disease [3,47,95,99,132,135,136,139–142]. Around 10% of TC cancers are under-staged and
deemed low-risk, not needing I-131 ablation or adjuvant therapy). Similarly, areas of
WI-FTC may be missed during histopathological analysis [11,86].

2.4.3. Thyroid Stimulating Hormone Suppression during Management of FTC

Patients who have had a total thyroidectomy need thyroxine for replacement and
suppression. All patients who have FTC require TSH suppression regardless of the risk
level [13,117,126]. The intensity of TSH suppression depends on the age of the patient, the
presence of co-morbidity, and the level of risk for tumor recurrence or mortality [126,143].
The TSH suppression may be severe, moderate, or minimal [144]. Severe TSH suppression
is when the TSH level is below 0.01 mU/L, moderate suppression is 0.01–0.1 mU/L, and
mild suppression is 0.1–0.5 mIU/L [144]. Severe and moderate TSH suppression increase
the risk of cardiac and musculoskeletal side effects. Cardiac side effects of high doses of
thyroxine include atrial fibrillation and an increased risk of ischemic heart disease [145,146].
Osteoporosis is among the most severe musculoskeletal complications of a suppressive
dose of thyroxine [147]. Additional side effects of extreme TSH suppression include
depression and weight loss [147]. Furthermore, some of the patients may be misclassified
as having low-risk instead of high-risk FTC and be erroneously placed on a less intense TSH
suppression program [148]. The other problem with TSH suppression in the management
of FTC is in tumors that have acquired aggressive mutations, have de-differentiated, and
are no longer responsive to treatment [9,83,142].

2.4.4. Management of FTC with Extensive Extra-Thyroidal Extension

Some of the patients who have FTC may present with a tumor that has invaded the
aerodigestive tract [49,149]. Mortality in half of the patients who have TC is related to local
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invasion of the upper aerodigestive tract and major vessels in the neck by the tumor [150].
Despite the extensive local invasion, curative resection may still be feasible unless the
tumor is invading the carotid vessels or prevertebral fascia [149,151]. The nature of surgical
resection may be extensive en-block resection of the larynx or oesophagus or a shaved
excision [149]. Other treatment options for FTC with extensive extra-thyroidal extension
include external beam radiotherapy and radiofrequency ablation [96,152]. Extensive extra-
thyroidal extension is a marker of a high-risk FTC that is likely in tumors that have
de-differentiated and become PDTC or ATC [96,149]. The area of de-differentiation might
have been missed during the sampling and analysis of the FNAC or post-thyroidectomy
specimen [96]. In some cases, the cancer might have already spread systemically, making
the sometimes-debilitating en-block resection a futile operation.

2.5. Management of Metastatic Follicular Carcinoma and Related Challenges

The incidence of systemic metastases in FTC has been reported at 5–23% [150,153].
Follicular cancer rather than papillary thyroid cancer is more likely to metastasize to
distant organs. Common sites of metastases for WDTC are the lungs, bones, brain, skin,
and liver [65,93]. Male sex, older age, tumor size greater than or equal to 4 cm, vascular
invasion, and lymph node involvement are some of the risk factors for systemic metastasis
from FTC [153]. Systemic metastases are likely in TC with evidence of extra-thyroidal
extension [153]. Poor prognostic features in patients who have metastatic FTC include age
over 55 years, size of metastasis above 10mm in the maximum diameter at detection, and a
high neutrophil to lymphocyte ratio). Well-differentiated FTC, especially in children, and
FVPTC are relatively more I-131 avid and are therefore likely to respond to ablation or
treatment [123].

The choice of treatment for FTC considers the patient’s age, comorbid conditions, sites,
and number of metastases [1,5,40,51,63,72]. The prognosis of metastatic FTC is better in
children and young adults, patients who have isolated lung metastases, metastases less
than 5 cm in maximum diameter, and oligometastatic disease [1,2,26,40,51,56,63,66,71,72].
Patients who have intermediate- or high-risk FTC are likely to have systemic metastasis and
be given adjuvant I-131 [1]. Radioactive iodine treatment is for the management of patients
whose metastases are overt, and a dose of up to 200 mCi is used [117]. Treatment with
I-131 is added after a patient has had a total thyroidectomy with or without resection of
metastases that are amenable to resection [72]. Some of the problems associated with I-131
treatment of metastatic disease include the side effects, which are sometimes severe, like
bone marrow suppression, infertility, and the development of another cancer [72,127]. A
higher dose of I-131 is to be avoided in patients who have extensive pulmonary metastases
and borderline lung function, multiple brain metastases, or large metastases to the vertebra,
as it may lead to complications like pulmonary fibrosis, brain oedema, or instability of the
spine [117,127]. However, extensive metastases are less likely to be iodine-avid as they
would most probably have mutated and de-differentiated.

Patients who have metastatic FTC are in the high-risk group for WDTC and should
be placed on an intense or high TSH-suppression protocol, unless there are contraindi-
cations, or it is not tolerated. The other options in the management of metastatic FTC
are surgical excision, external beam radiotherapy, local ablative therapy, and kinase in-
hibitors. Surgical excision is preferred for the treatment of isolated metastases from FTC
to most organs, including the lung, bone, brain, and liver. The TKIs are useful alone
or when combined with other multi-kinase inhibitors (MKIs), especially if the FTC has
dedifferentiated and is no longer retaining I-131 [72]. Examples of TKIs include lapatinib
and vemurafenib [154]. The MKIs that are useful against WDTC include cabozantinib,
lenvatinib, and sorafenib [71,155,156].

2.5.1. Pulmonary Metastases

The lung is the commonest site of distant metastases from FTC. Patients who have
pulmonary metastases from FTC have a reduced 5-year and 10-year survival of 68.5%
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and 54%, respectively [153]. Lung metastases in FTC are likely to be macronodular when
compared with secondary tumors in PTC [153]. The success rate of I-131 in the management
of pulmonary metastases from FTC is lower than the 58% that is achieved in cases of
metastatic PTC [153]. Patients who have FTC are usually older than those who have PTC
and are therefore more likely to have co-morbidities [68]. A tolerable dose of I-131 depends
on the baseline lung function and the extent of the disease, as ablation of the extensive
pulmonary metastasis and their replacement with fibrous tissue may push the patient to
irreversible respiratory failure. The other options for the treatment of pulmonary metastasis
from FTC include surgical excision, percutaneous ablation, stereotactic radiotherapy, and
tyrosine kinase or multi-kinase inhibitors [153].

The 18F-FDG PET/CT is useful for the investigation of recurrent or metastatic FTC
when it is no longer I-131 iodine-avid. De-differentiation of FTC is associated with an
increase in the expression of glucose transporter receptor type 1 and therefore high uptake
of 18F-FDG PET/CT [72]. The uptake of DOTA PET by some of the metastases from FTC
that have lost the ability to trap iodine is even higher than that of 18F-FDGvPET/CT, which
raises the possibility of utilizing 177Lu as a potential theranostic agent [153]. There are
numerous society guidelines for the management of metastatic disease from differentiated
thyroid cancers, and most of them address WDTCs as a group and not specifically FTC [45].
The guidelines are mainly for PTC. Ongoing research for markers predictive of poor prog-
nosis includes the investigation of Telomerase Reverse Transcriptase (TERT) promoters and
RNA H-19. Challenges associated with the management of metastatic FTC include delay in
their detection, underestimation of the extent of the disease, and dealing with metastases
that do not take I-131 [150]. Sometimes, metastases are missed, and FTC is erroneously
labeled as low-risk and treated without total thyroidectomy, I-131 ablation, or adjuvant
therapy and TSH suppression, only to present years later with systemic metastases.

2.5.2. Bone Metastases

Patients with FTC are more likely to develop bony metastases than those who have
PTC. The bone is the second most common site of metastases from FTC. The prognosis
of patients who have bone metastases is poorer when it is compared with that of patients
in whom the FTC has spread to the lungs. Additionally, bone metastasis from FTC is less
sensitive to I-131. The bone metastases may be symptomatic or detected on CT, MRI, 18
FDG PET CT, SPECT/CT, or WBS using I-123, I-124, or I-131. Patients who have metastatic
FTC are treated with I-131 together with TSH suppression unless the metastases are no
longer iodine-avid, but FTC tends to acquire aggressive mutations as it progresses and
metastases. Radioisotope-based dosimetry, although not uniformly practiced, can provide
guidance on the safety and efficacy of I-131 treatment and help avoid unnecessary toxicity
and treatments in patients in whom the metastases are not responding to the treatment [153].
Usually, close to 30% of patients who have metastatic FTC do not respond to I-131 [153].

2.5.3. Brain Metastasis

Brain metastases from FTC are rare and occur in less than 1% of the patients, and over
70% of the patients who have brain metastases from FTC are likely to have synchronous
pulmonary metastases [28,157]. The prognosis of patients who have FTC with metastasis
to the brain is poor, and the overall survival is less than 3 years even with treatment [158].
Resection for an isolated brain metastasis from FTC is preferred if it can be excised [157,159].
Severe TSH suppression should be part of the treatment of brain metastases from FTC.
Treatment with I-131ne is effective if the metastases are iodine-avid and not extensive.
The other options for the treatment of brain metastases from FTC include stereotactic
radiosurgery, external beam radiotherapy, and multi-kinase inhibitors [28,157].

2.6. Management of De-Differentiated FTC

De-differentiation of FTC is a process that happens during tumor progression, and a
de-differentiated cancer is likely to have new mutations and become aggressive and resis-
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tant to conventional therapy, such as I-131. De-differentiated FTC and PTC, PDTC, and ATC
account for most of the deaths due to TC. The more prevalent mutations in de-differentiated
TCs, including FTC, are BRAF, RAS, TP53, TERT promoter, and P13K/AKT/mTOR path-
way effectors [98,160]. Both SPEC/CT and PET/CT are useful for evaluating the burden
of metastases in cases where the tumor is no longer iodine-avid. The treatment of de-
differentiated FTC is like that of PDTC and ATC and includes the use of TKIs or MTIs. Some
of the de-differentiated FTCs may overexpress somatostatin receptor type 2 (SSTR2) and
could be evaluated with 68Ga-DOTANOC PET/CT. Patients whose metastases demonstrate
high uptake of 68Ga-DOTANOC may respond to treatment with 177Lu-Dotatate [161].

2.7. Follow-Up of Patients Who Have Follicular Carcinoma and Associated Challenges

Guidelines relating to the follow-up of FTC are often inferred from those of PTC, even
though FTC forms a unique subgroup of DTC (differentiated thyroid cancer) and, there-
fore, requires specific considerations. A multidisciplinary approach with well-established
communication channels between clinical endocrinologists and surgeons, pathologists,
oncologists, radiologists, and nuclear physicians should form the backbone of the care of a
patient who has FTC. Placing the patient in the center goes a long way towards improving
the quality of care and eventually securing a good outcome. An important tool in achieving
this is risk stratification, which consists of both. Patients who have been treated for FTC
require lifelong follow-up, regardless of the initial risk level of the tumor [121]. The follow-
up is intense in the first year following definitive treatment. Dynamic risk stratification,
clinical evaluation, serum basal and stimulated Tg levels, and neck ultrasound are used
during follow-up monitoring. Concurrent testing for the existence of Tg antibodies must
be done to reduce the likelihood of falsely low levels of Tg.

The success of the management of the FTC should be determined within the first 3–6
months. Patients can be categorized as possibly cured both biochemically and anatomically,
biochemically incomplete, or anatomically residual. The primary purpose of the stringent
follow-up of cases of FTC is for the timeous diagnosis of persistence or local recurrence of
the tumor or the appearance of new metastases. It is also critical that the de-differentiation
of FTC is detected and managed early, using agents such as TKI or de-differentiation
therapy to improve the chance of long-term survival [8,72,131]. The follow-up of patients
on TKIs or MKIs must be regular and stringent to watch for side-effects. The most dreadful
complication is bleeding, which, although rare, may be fatal [70].

It is not usual for metastases from FTC to lie dormant and unsuspected, even for
tumors that are deemed low-risk clinically, pathologically, and radiologically [54,57,148,162].
Follicular thyroid carcinoma may acquire aggressive mutations as it progresses. Some of the
aggressive mutations that the FTC can acquire include TP53, TERT, and PI3K/AKT/mTOR
mutations [3,6,9,47,61,98,99,132,163,164].

2.8. Outcome of Treatment of Follicular Carcinoma

The outcome of patients who have FTC depends on the stage of the disease at pre-
sentation. The available staging systems for WDTC are not able to accurately predict
disease-specific mortality [35]. The AJCC is the most commonly used staging system.
Unfortunately, the AJCC/TNM staging on its own is not enough to direct and monitor a
specific therapy. Other risk stratification systems are considered to improve the care of
patients with DTC. The inclusion of intra-operative findings, histopathological changes,
and genomics improves the prognostication of FTC.

3. Recent Development in the Genomics of Follicular Carcinoma and Other Thyroid Tumors

The development of cancer, including its progression and metastasis, is usually driven
by genetic aberrations due to mutations and re-arrangements in genes that regulate path-
ways that are controlled by trans-membrane mitogen-driven activating kinases [9,99].
The main pathways in tumorigenesis in WDTCs are the mitogen-activating protein ki-
nases, phosphatidylinositol 3, and Wnt/mammalian target of rapamycin (Wnt/mTOR)
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pathways [160]. The mutations that drive the protein kinases may be oncogenes or tumor
suppressor genes [8,9]. The effects of the mutations or re-arrangements on the pathways
may include the initiation of the tumor, proliferation, failure of apoptosis, neovascular-
ization, neo-lymphogenesis, neurogenesis, epithelial to mesenchymal differentiation, and
acquisition of metastatic potential [9]. The genetic aberrations are usually mutually exclu-
sive but may rarely occur in combination [47,83]. Changes in the manifestations of a gene
may also occur with or without mutation and be driven by epigenetic alterations.

The genes that are commonly dysregulated in TC are BRAF, RAS, PTEN, TERT and
TP53 [9,58,61,71,132,165]. Some of the receptors that are controlled by genes that are
either up- or down-regulated in thyroid cancers are located within the cell membrane,
whereas others are found inside the cells. An example of transmembrane receptors are the
various types of tyrosine kinase receptors (TKRs) such as RET, VEGFR, EGFR, PDGFR, MET
and c-KIT [71]. Mutations of the RAS-related genes (K-RAS, N-RAS and H-RAS) usually
occur in the earlier phases of tumorigenesis in WDTCs [9]. The RAS mutations are more
prevalent in FTC but have also been reported in FA, FVPTC, and OC [47,166]. Epigenetic
changes, including those caused by non-coding RNAs, may modify the impact of the genetic
changes [115,167]. The genotype and behavior of WDTCs, including FTCs, change as the
tumor grows. For example, the sodium iodide symporter (NIS) stops functioning as FTC
progresses, which makes the tumor less avid and responsive to I-131 treatment [136]. The
number of mutations tends to increase as FTC progresses and de-differentiates [98,133,168].
The dysregulation of the p53 and Wnt pathways occurs later during the progression of
TC. Figure 2 is a schematic illustration of the common mutations that are implicated in
tumorigenesis, progression, and de-differentiation of FTC compared to PTC.
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neoplasms of the thyroid. The initiating event may be a gain mutation or re-arrangement in the
genes that regulate the transmembrane tyrosine kinase receptors or involve intracellular kinases. The
MARK, PI3K/AKT/mTOR and RET pathways are involved in the early phase of tumorigenesis. The
RAS mutation is an upstream event for FTC, FA, FVPTC, and rarely PTC. RAF mutations are seen
more frequently in PTC. The p53, Wnt, PTEN, TERT, and other mutations or rearrangements occur
later as WDTC progresses towards PDTC or ATC. (Created using BioRender.com accessed on 13
February 2023).

4. Multi-Omics of Follicular Carcinoma and Other Thyroid Tumors

A vast amount of information is collected during the clinical evaluation, diagnostic
work-up, staging, and follow-up of patients with FTC. The collected information may
be categorized into biographic, life-style, environmental, clinical, radiological, biochem-
ical, cytopathological, histopathological, or genetic categories [169]. The big data that is
obtained during whole genome sequencing adds to the enormity of the collected informa-
tion [170–175]. Currently, a minute fraction of the information that is generated during
the investigation is used to guide decision-making during the care of patients who have
cancer, including FTC. Even where the data is used, it tends to be fragmented, and the
analysis rarely incorporates results from all the omics. Recent advances in computing
have allowed for the mining of the data as part of the different types of omics that include
radiomics, pathomics, and genomics [72–74,176–180]. The field of multi-omics is a process
of integrating the personal background of a patient and results from clinical evaluation,
radiomics, pathomics, genomics, proteomics, and metabolomics to guide decision-making.
Multi-omics is the consolidation and integration of findings from several omics to ad-
dress some of the challenges that are encountered during the diagnostic work-up, staging,
risk-stratification, management, and follow-up of most cancers, including FTC.

4.1. Pathomics in the Diagnostic Work-Up of Follicular Carcinoma

Several investigations have been trialed to distinguish FA from FTC, but none can
confirm FTC before lobectomy or thyroidectomy. Another challenge in the assessment of
the pre-operative investigation of FTC is its heterogeneity [139,178]. A site in the tumor that
contains evidence of invasion or nuclear features of PTC may be missed during sampling,
leading to the mis-classification of the tumor [34,35,86,88]. Among the additional investiga-
tions that are used during the attempts to rule in or rule out cancer in a thyroid nodule with
an indeterminate FNAC are elastography and elastometry, an I-123 scan, a CT scan, and an
MRI [181]. Thyroid neoplasms are associated with either an up- or down-regulation of the
expression of proteins that regulate proliferation, differentiation, mobility, and apoptosis of
cells that may be assessed through immunohistochemistry [9,136]. The application of AI
can help distinguish FA from FTC [182,183]. Digital slides may be generated, which may
enhance the thoroughness of the evaluation of FNAC or histopathology slides.

4.2. Genomics of Follicular Carcinoma and Other Thyroid Malignancies

The most frequently encountered mutation in PTC is the BRAF V600E mutation,
whereas the RAS mutation is more common in FTC [58,97,99]. The types of mutations seen
in FTC often do not differ from those seen in FA. The diagnosis of FTC can only be made
following a lobectomy [58,69]. The other genes that are mutated or re-arranged during
tumorigenesis and progression of WDTC are the v-raf murine sarcoma viral oncogene
homolog B1 (BRAF), rat sarcoma virus (RAS) and mitogen activated protein kinase (MEK).
Mutations in patients who have WDTC may also involve the extracellular signal-regulated
kinase (ERK), tumour protein 53 (TP53), telomerase reverse transcriptase (TERT), Phos-
phatase and TENsin homolog deleted on chromosome 10 (PTEN) and Retinoblastoma-1
(RB1) genes [7,9,14,35,47,86–98,98–117,117–131,131–141,141–166,166–184] (Table 2).
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Table 2. Lists of reported mutations, histone modifications, and overexpressed non-coding RNA in
follicular carcinoma of the thyroid.

Gene Nature of Change Direction Implication Associated
Thyroid Tumour/s

Targeted Therapy/
Druggable

BRAF
[35,63,166,185,186].

Mutation or
re-arrangement Over-expressed. Inconclusive PTC, FTC, FVPTC,

PDTC, ATC Yes

RAS [6,35,43,47,187]. Mutation or
re-arrangement Over-expressed. Inconclusive FTC, FA, FVPTC,

PTC, PDTC, ATC Yes

PAX8/PPAR
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Fusion Over-expressed Favourable FTC, FA, FVPTC,
OC Yes

PAX8/PPARG [9,116]. Rearrangement Over-expressed ? FTC, FA, FVPTC

RET [3]. Fusion Over-expressed Aggressive MTC, PTC Yes

TP53 [7,96,98,133,136]. Mutation Down-regulated Aggressive PDTC, ATC -

TERT [3,98,136,188]. Mutation Over-expressed Aggressive FTC, PTC, PDTC,
ATC

PTEN [136,189]. Mutation Down-regulated Aggressive PDTC, ATC -

E-Cadherin [44,49]. Mutation Down-regulated Aggressive .

ß-Catenin Mutation Down-regulated Aggressive PDTC, ATC -

TSHR [133]. Mutation Down-regulated Aggressive PDTC, ATC -

PIK3/AKT/mTOR [9,136]. Mutation Over-expressed Aggressive FTC, PDTC, ATC Yes

ALK [9,98,168]. Mutation Over-expressed Aggressive PDTC, ATC Yes

AKT1 [190,191]. Mutation Over-expressed Aggressive FTC -

MEK [9]. Mutation Over-expressed Aggressive PTC, FTC Yes

ERK [186]. Mutation Over-expressed Aggressive PTC, FTC Yes

RB1 [160]. Mutation Down-regulated Aggressive PTC, FTC, OC,
ATC Yes

NF-1 [9,98,154]. Mutation Over-expressed Aggressive PDTC, ATC Yes

CDKN2A/2B [192]. Mutation Over-expressed Aggressive PDTC, ATC -

ARID1A, ARID1B,
ARID2, ARID5B [98]. Mutation Over-expressed Aggressive PDTC, ATC -

KIT [9]. Mutation Over-expressed Aggressive ATC Yes

RBM10 [193]. Mutation Over-expressed Aggressive PTC, FTC, PDTC,
ATC -

NTRK1 [9,98]. Mutation Over-expressed - PTC, FTC -

EIF1AX [9,98,114,194]. Mutation Over-expressed Aggressive FA, OC, PTC,
PDTC, ATC -

ATM [78]. Mutation Over-expressed Aggressive PDTC, ATC -

KMT [194]. Mutation Over-expressed Aggressive PDTC, ATC -

HMT [98]. Mutation Over-expressed Aggressive PDTC, ATC -

ALK: alkaline phosphatase; AKT: Ak strain transforming; ARID: AT-rich interactive domain-containing protein 2;
ATM: ataxia-telangiesctasia mutated; CDKN2A: cyclin-dependent kinase inhibitor 2A; HMT: histone methyltrans-
ferases; mtDNA: mitochondrial DNA 1; NF1: neurofibromin 1; NTRK1: neurotrophic tyrosine kinase receptor 1;
RB1: retinoblastoma 1; RBM10: RNA-binding motif 10.

Thyroid cancers that harbor BRAF V600E are likely to be more aggressive and less
I-131-avid [98,99]. The RAS gene associated mutations (Kirsten-RAS, Neuroblastoma-RAS,
and Harvey-RAS) have not been conclusively linked to the clinical behavior of FTC or other
thyroid malignancies and are not useful for differentiating FA from FTC [80,164,195]. The



Biomedicines 2023, 11, 1217 14 of 28

TP53 mutation happens in the later stage of the development of FTC and is likely to be
associated with the de-differentiation of the cancer to a poorly differentiated or anaplastic tu-
mor [95,98,99,140]. The mutations, together with the epigenetic and transcriptomic changes,
are sometimes used to risk-stratify WDTCs and predict the likelihood of local recurrence,
micro-metastasis, and disease-free survival. The non-coding RNAs that may be under- or
over-expressed and can be used to predict the clinical behavior of FTC [2,45,50,167,189]. A
change in the level of histone acetylation or methylation can sometimes also influence the
development, progression, and response of FTC to treatment [189].

4.3. Epigenomics of Follicular Carcinoma and Other Thyroid Tumors

Tumorigenesis or tumor progression not always linked to the down- or up-regulation
of a gene but to epigenetic changes. The epigenetic changes may be due to modifications of
histones or post-transcriptional changes. Histone forms a complex with the chromosome.
Acetylation, methylation, phosphorylation, and other forms of modification of histones may
lead to the down- or up-regulation of a gene [196,197]. Non-coding RNAs may modify the
activities of messenger RNA (m-RNA) or indirectly through their effect on ribose binding
proteins (RBPs). The types of non-coding RNA include circular RNA (crRNA), long non-
coding RNA (ln-RNAs), and micro-RNAs (mi-RNAs). The up- or down-regulation of
non-coding RNAs is associated with the development and progression of FTC and other
thyroid malignancies.

4.3.1. Histone Modification

The epigenetic modifications reported commonly in patients who have FTC and
other thyroid malignancies involve acetylation or methylation of histones. The pattern of
acetylation or methylation can be useful to resolve a diagnostic dilemma or guide treatment.
Histone modification may induce cancer by either augmenting the oncogenes, interfering
with the activities of tumor suppressor genes, or inhibiting the apoptosis of cells [197,198].

4.3.2. Non-Coding RNAs

Most of the genes (75% of them) that are transcribed into RNA do not translate into
proteins but result in the production of non-coding RNAs (Liu et al., 2021). Among the
non-coding RNAs are micro-RNA (mi-RNA), long non-coding RNA (ln-RNA), circular
RNA (circRNA), and PIWI-interacting (piRNA) (Yan and Bu, 2021). Non-coding RNAs
have been shown to play a crucial role in the initiation, proliferation, and progression of
many cancers, including TCs [45,50]. Non-coding RNAs are variably expressed in TCs,
including FTC, and may be used during diagnostic investigation, risk stratification, or to
guide treatment [45,199,200]. Examples of mi-RNA and ln-RNA that are useful during the
diagnostic investigation or treatment of FTC is miR-146b and H19 [45,199].

4.4. Proteomics of Follicular Carcinoma and Other Thyroid Malignancies

Proteins are very intimately involved in the regulation of the behavior of cancers,
including FTC. Some of the mutations, fusions, or re-arrangements of genes that occur
during tumorigenesis lead to either an increase or a decrease in the synthesis of proteins
and their metabolic products. The level of certain proteins and their metabolites is either
increased or decreased, and their expression profile may be used for the diagnosis or risk
stratification of cancers. There is a difference in the profile of proteins that are increased in
the serum of patients who have thyroid nodules that may be used to assist in differentiating
FTC from FA or PTC [201]. Immunohistochemistry on the FNAC specimen may be used
in the diagnostic evaluation of indeterminate thyroid nodules [183]. Among the markers
that are used during risk stratification of WDTCs, including FTC, are galectin-3, HMBP-1,
E-cadherin, PGER1, PD-L1, and TFF-1 [8,39,44,49,96,110,183,200,202,203]. Table 3 contains
a list of some of the tyrosine kinase receptors whose expression is altered during the
tumorigenesis and progression of FTC and other TCs.
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Table 3. A list of transmembrane receptors, including their ligands, whose expression is altered and
plays a role in the tumorigenesis and progression of FTC and other TCs.

Receptor/Ligand Expression Implication Availability of TK Inhibitor

Vascular endothelial growth factor receptor
(VEGFR) [154,156,204]. Increased Aggressive disease Yes

Epidermal growth factor Receptor (EGF) [47]. Increased Aggressive disease Yes

Thyroid stimulating hormone receptor (TSHR) Decreased Aggressive disease -

E-Cadherin [44]. Decreased Aggressive disease -

ß-Catenin [154]). Increased Aggressive disease -

Galectin-3 [88,183,202]. Increased Aggressive disease -

Human bone marrow endothelial cell marker-1
(HBME-1) [110,183]. Increased Unknown -

Estrogen receptor α/β (ERα and ERβ) [205]. Increased Aggressive disease -

Human epidermal receptor 1 and 2 (HER1 and
HER2) [154,205]. Increased Aggressive disease Yes

G protein-coupled estrogen receptor (GPER1) [191]. Increased Aggressive disease -

Fibroblasts growth factor receptor (FGFR) [204]. Increased Aggressive disease Yes

CXCR1 [206]. Increased Aggressive disease -

Thyroid transcription factor-1 (TFF-1) [75]. Decreased Aggressive disease -

Thyroglobulin Decreased Aggressive disease -

Hepatocyte growth factor receptor (HGFR) [83]. Increased Aggressive disease Yes

Placental growth factor receptor (PIGFR) [204]. Increased Aggressive disease -

Platelet derived growth factor receptor
(PDGFR) [154,204]. Increased Aggressive disease Yes

Angiopoietin-like protein 1 (ANGPTL1) [207]. Decreased Aggressive disease -

Somatostatin Receptor Type (SSTR2) [161]. Increased Aggressive disease Yes

Lysine-specific histone demethylase 1A [208]. Increased Aggressive disease Yes

Human bone marrow endothelial cell marker-1
(HBME-1) [110]. Increased Unknown -

4.5. Metabolomics of Follicular Carcinoma and Other Thyroid Tumors

The majority of cancers are associated with changes in the metabolic processes within
the cancer and the TME [200]. Some of these changes have a significant influence on the
behavior of tumors, including their local aggression and their ability to spread to distant
sites. Cancer cells are characterized by rapid division and multiplication, which are energy-
dependent processes [209]. Cancer cells can alter their metabolic process and predominantly
utilize the pyruvate acid cycle to obtain their energy regardless of oxygen status, the
so-called Warburg effect [209,210]. Adipocytes in the TME can promote tumor growth,
progression, and metastasis through the secretion of adipokines). The differentiated profile
of metabolites in the tumor itself, TME, and fluid in a patient with a thyroid nodule whose
FNAC result is inconclusive may be used to differentiate FTC from FA or other follicular-
patterned lesions [201]. The study of the change in levels of these molecules (metabolomics)
is assessed using nuclear magnetic resonance spectrometry or mass spectrometry. The
other strategy to investigate the profile of metabolites in tissues or fluids from patients
who have FTC or other cancers is gas or liquid chromatography [209]. Metabolomics may
also be applied to FNAC specimens from thyroid nodules to help distinguish benign from
malignant causes. Among the metabolites that expressed differentially in patients who have
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benign and malignant conditions of the thyroid gland are lactate, glutamate, methionine,
hypoxanthine, phenylalanine, taurine, and tyrosine [209].

4.6. Liquid Biopsy in Follicular Carcinoma and Other Thyroid Tumors

Differentiating FTC from FA and other follicular neoplasms remains a challenge de-
spite the increasing availability of expertise in pathological analysis, immunohistochemistry,
and mutational analysis. Because of the heterogeneity of FTC, the specimen for FNAC,
which was taken from a small area, may not be a true reflection of the type and subtype of
TC [139,179]. Confirmation of FTC is challenging even after thyroid lobectomy, as areas
where there is capsular or vascular invasion may be missed. Another of the challenges
that is persistent is the inability to accurately diagnose the extent of vascular invasion,
which is required for the differentiation of mi-FTC from wi-FTC [86,211]. That a low-risk
WDTC has become high-risk or de-differentiated may also go unnoticed following FNAC,
diagnostic lobectomy, or total thyroidectomy [10,54,55,57,86,98,162]. Tumor recurrence and
metastasis from FTC are often diagnosed late, when they are extensive and have acquired
aggressive mutations [54,96,148]. Liquid biopsy provides a non- or minimally-invasive
approach to the diagnostic work-up, risk stratification, and monitoring of patients who
are suspected of having or are on treatment for FTC [212]. Liquid biopsies sample blood,
saliva, or urine to look for circulating tumor cells, cell-free DNA, or extracellular vesi-
cles (exosomes) that are released from the tumor [199,213,214]. Liquid biopsy is useful
for differentiating FA from FTC, assessing the TME, early identification of metastases,
and a de-differentiated FTC [163,199,212,215,216]. The existence of mutations such as the
BRAF600E may be confirmed through a liquid biopsy done on the serum of a patient who
has WDTC [199].

4.7. Radiomics and FTC

Facilities and expertise for liquid biopsy are not freely available. Ultrasound of
the thyroid is operator-dependent, and the level of expertise influences the accuracy of
the interpretation of FNAC, imaging, histopathology, and genomic studies. There is a
possibility that the FNAC or post-lobectomy may either miss a cancer or underestimate
the histological grade and aggressiveness of the tumor as the entirety of the tumor and
the tumor micro-environment are not assessed [102,162,179,206]. Artificial intelligence is
useful in the diagnostic work-up of a thyroid nodule, especially when the FNAC result
is indeterminate [73,177–179]. An integration and concurrent analysis of findings from
ultrasound and elastography, radioisotope scan and MRI is most likely going to increase
the accuracy of predicting the likelihood of FTC. The extent of vascular or capsular invasion
of the FTC into may also be determined without the need for an invasive biopsy or a costly
and potentially risky diagnostic lobectomy [176,217–223] Radiomics enables segmentation
of the tumor and facilitates a thorough analysis of the tumor and the TME [163,224,225].A
thorough analysis of a thyroid nodule and the TME may enable a “virtual” biopsy of the
lesion and accurate histological diagnosis and grading of the tumor, like what would be
achieved following a tissue or liquid biopsy. Some of the imaging investigations, such as
[18F] FDG PET/CT and [18F] FDG/MRI, can localize metastases from FTC when there is
discordance between the serum Tg level and the results of a whole-body radioiodine scan
(WBS) [72,131,142,226].

5. Artificial Intelligence and Management of FTC

Follicular carcinoma is a heterogeneous disease. Its heterogeneity is manifested in
its clinical presentation, findings on diagnostic investigation, response to treatment, and
long-term outcome [35,150]. A vast amount of information is collected during history
taking, physical examination, diagnostic and staging investigations, and monitoring fol-
lowing definitive management [170,173]. Analysis of the findings is influenced by the
level of expertise, which explains the often very high intra- and intra-observer variation
regarding histological confirmation of the type and subtypes of TC, differentiation, and
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changes in the TME [227,228]. Consequently, it is not unusual for a high-risk TC to be
under-staged and undertreated until it recurs or metastasis becomes evident [54,150]. The
inability to incorporate all the relevant information that is collected during the evaluation of
patients is evident in those who have FTC and are still not cured, even where management
decisions are made through a multidisciplinary team. The use of artificial intelligence (AI)
in healthcare has led to an improvement in the accuracy of diagnosis and decision-making
during the management of benign and malignant disease [179,229].

Artificial intelligence relies on advanced computing to make decisions based on the
information obtained from multiple sources [230–232]. Artificial neural network (ANN) and
convolutional neural network (CNN) are examples of AI, which vary based on the number
of inputs and hidden layers that are involved before a decision is reached [183,229,233]
(Figure 3).
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Figure 3. Progressive increase in the levels of complexity from machine learning to CNN in AI
programs.

Using CNN would be ideal to deal with problems like indeterminate FNAC result.
Other problems that can be addressed if AI is implemented is the incorrect risk-stratification
of patients who have FTC and the appropriate level of TSH suppression in intermediate
and high-risk patients. Additional benefits of AI is accurate calculation of I-131 dose
for ablation, adjuvant therapy or treatment, a delay in the detection of progression, re-
currence, and de-differentiation of the tumor, and prediction of the response to treat-
ment [183,221,223,231,234]. The use of AI in the management of FTC can simultaneously
incorporate background personal, life-style, and environmental factors (digital personal
twin), imaging results (radiomics), FNAC and histological results (pathomics), mutational
analysis (genomics), histone modification and transcriptomics (epigenomics), and post-
translational changes (proteomics and metabolomics).

The complexity of FTC starts with diagnostic investigations, continues through staging
and decision-making regarding appropriate management, and ends with how to timeously
detect tumor recurrence or metastasis. Although the majority of patients with FTC are
clinically and biochemically euthyroid, some may be thyrotoxic [31]. Follicular carcinoma
does not share the same ultrasound features of malignancy that are seen in PTC and other
TCs [235]. Furthermore, the clinical presentation and ultrasound findings in FTC are usually
like those in FA. Fine needle aspiration cytology cannot distinguish FTC, FA, FVPTC, and
other follicular-patterned lesions [215]. The application of AI can predict the diagnosis of
cancer in a thyroid nodule that returned a Bethesda III or IV following FNAC [223,236].
The performance of AI-based technology sometimes surpasses that of less experienced
radiologists, which would be useful in areas where resources are limited [236–238].

Artificial intelligence programs are also able to predict the mutational status of FTC and
other malignancies of the thyroid gland [69,155,239]. Additionally, based on ultrasound
features, which include the diameter of FTC, the use of AI can accurately predict the
existence of systemic metastases and lead to timeous escalation of treatment [235]. Artificial
intelligence is also useful for the identification of high-risk MI-FTC that have metastatic
potential, ensuring the early initiation of aggressive treatment [45]. The other benefit of
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using AI is in the analysis of cytological specimens [240]. Machine learning applications can
accurately predict FTC when the FNAC result is inconclusive [240,241]. The application of
AI-aided evaluation of FNAC specimens may also determine the nature of TME and predict
the likelihood of the existence of mutations such as the BRAF600E mutation [239,242].
Imaging techniques such as plain x-ray and CT scan may miss small lung metastases from
FTC and lead to erroneous categorization of a patient as being at low risk of persistence
or recurrence of the tumor. Using a combination of demographic, clinical, imaging, and
histopathological features, AI can accurately predict the existence of pulmonary metastases.

Multiple omics data is collected during the investigation, treatment, and follow-up
of a patient who has FTC [243]. Although the information is presented at an MDT, the
sets of data that are generated are vast and are often interpreted in isolation. Making
decisions based on one set of omic data may lead to over- or under-treatment of FTC,
like other cancers [244]. The availability of AI provides a platform for the integration and
analysis of the data obtained from various omics to enable computer-aided diagnosis, risk
stratification, choice of treatment, and follow-up instead of the current treatment guidelines,
which oversimplify the complexity and heterogeneity of FTC [245] (Figure 4).
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for computer-aided decision making in the management of FTC.

6. Conclusions

The challenges associated with the management of FTC cover the entire continuum
from diagnosis, risk stratification, treatment decision, and follow-up. Whilst most FTCs are
mi-FTC, some of the wi-FTC may be missed, leading to an underestimation of the risk of
the tumor progressing, recurring, or spreading systemically. None of the available inves-
tigations can accurately distinguish FTC from FA, FVPTC, and other follicular-patterned
lesions of the thyroid gland. Follicular carcinoma is a complex and heterogeneous disease
and is more aggressive than PTC. The risk stratification and treatment of FTC should
therefore not be inferred from the experience gathered during the treatment of PTC, as
FTC and PTC are clinically and genetically distinct diseases. Integration and simultaneous
analysis of findings from the available omics are likely to lead to a more accurate diagnosis,
prognostication, and prescription of effective treatment for FTC. The adoption and use of
multi-omics and AI in the management of FTC should therefore be encouraged.
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