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Abstract

The idea behind density-based clustering is to associate groups to the connected
components of the level sets of the density of the data to be estimated by a non-
parametric method. This approach claims some advantages over both distance- and
model-based clustering. Some researchers developed this technique by proposing a
graph theory-based method for identifying local modes of the underlying density be-
ing estimated by the well-known kernel density estimation (KDE) with normal and
t kernels. The present work proposes a semi-parametric KDE with a more flexible
family of kernels including skew-normal (SN) and skew-t (ST). We show that the
proposed estimator not only reduces boundary bias but it is also closer to the ac-
tual density compared to that of the usual estimator employing the Gaussian kernel.
Finding optimal bandwidth for one-dimensional and multidimensional cases under
the mentioned asymmetric kernels is another main result of this paper where we
shrink the bandwidth more than the one obtained under the normal assumption.
Finally, through a comprehensive numerical study, we will illustrate the application
of the proposed semi-parametric KDE on the density-based clustering using some
simulated and real data sets.

Keywords: Asymmetric kernels, Boundary bias, Density-based clustering, Density-based
Silhouette, Kernel density estimation, Optimum bandwidth.
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1 Introduction

The model-based clustering, which introduces a finite mixture of parametric distributions,

addresses some major challenges of unsupervised classification, e.g. finding the number

of clusters and working with high dimensional matrix-valued data. In this context, the

multivariate normal mixture model has been the most frequently used parametric distri-

bution (Bouveyron et al, 2019; McNicholas, 2016; Fraley and Raftery, 2002). But, single

Gaussian component is not capable to cover skewed and heavy-tailed data. Moreover, the

number of clusters in the model-based clustering may be overestimated when the compo-

nents themselves are wrongly assumed to be symmetric (Loperfido, 2019; Malsiner-Walli

et al, 2017). Thus, much attention has been paid to develop mixture models using a more

flexible parametric family of distributions for the components. For instance, Lin et al

(2007) used the skew-t distribution as the components of the finite mixture model. Inter-

ested readers are referred to Lee and McLachlan (2014) for more details on finite mixtures

of multivariate skew-t distributions. To tackle the overestimation of the number of clus-

ters, Malsiner-Walli et al (2017) also identified the mixture of mixtures model within a

Bayesian framework through a hierarchical prior construction and proposed a method to

select a suitable number of clusters. Recently, Millard (2019) developed semi-parametric

model-based clustering. He proposes a clustering approach using the finite mixture of the

exponential distributions in the context of the generalized linear modeling where the link

function is unknown and has to be estimated.

On the other hand, the mechanism behind the density-based clustering is associating

groups to the connected regions of the density. Thus, it is clear that these approaches

involve somewhat different notions of cluster: the density-based clustering falls within

the nonparametric context, while the model-based clustering has a parametric setting.
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The two concepts are different, even if they have the same outcome. The density-based

clustering claims some advantages with respect to both classical clustering approaches

(which mostly work based on a distance) and model-based clustering. Firstly, the flexibility

of nonparametric density estimators allows for detection of groups with arbitrary shapes.

In contrast, the shape of model-based clusters depends on the components of the mixture

model, and distance-based methods are known to favour specific clustering structures.

Secondly, another problem that arises in most classical clustering algorithms is that the

number of clusters is selected by the user (as in k-means) or left undetermined (as in

hierarchical clustering). On the contrary, the number of clusters in the density-based

approach is determined by the method itself. More specifically, clusters correspond to the

regions around the modes of the data distribution, as a result, their number is conceptually

well-defined and, then, estimable in practice (Menardi and Azzalini, 2014; Chacon, 2015).

Classical kernel methods are based on symmetric densities, say around zero, as in the

case of the normal kernel. However, a deficiency arises by using such kernels when we try to

estimate densities with bounded supports (Marron and Ruppert, 1994). The main benefit

of using asymmetric kernels, rather than the classical symmetric ones, are that the formers

have varying shape and are flexible in smoothing over the domain of the population. This

property implies that they reduce the boundary bias (as it will be shown by Figure 2).

Moreover, if the kernel is also bounded, then, it even avoids assigning weight outside the

density support. For more details in this regard, one can refer to Chen (1999, 2000), Fer-

nandez and Monteiro (2005), Punzo (2010), Saulo et al (2013), Mazza and Punzo (2011,

2013a,b, 2014, 2015) and Tomarchio and Punzo (2019). There is some research on the

development of the kernel density estimator (KDE) with asymmetric kernels in the litera-

ture. Among all, Abadir and Lawford (2004) provided a reason for the use of asymmetric
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kernels arguing that density estimators in moderately-sized samples tend to inherit salient

properties of their kernels, thus, if a density is suspected to be highly skewed, it makes

sense to utilize asymmetric kernels rather than a symmetric one. Saulo et al (2013) used

the skew-symmetric Birnbaum-Saunders density as an asymmetric kernel for estimating

asymmetric densities. See Chen (2000), Bouezmarni and Scaillet (2005), Kuruwita et al

(2010) for additional references in this subject area. The R package kdensity covers most

of the asymmetric kernels proposed in the literature so far (Moss and Tveten, 2019).

As mentioned before, Azzalini and Torelli (2007) proposed a density-based clustering

procedure via KDE. They exploited spatial tessellation to generalize the concept of adja-

cency among points in several dimensions and determine the connected level sets. Then,

clusters are associated to the maximally connected components with estimated density

above a threshold. As the threshold varies, these clusters may be represented according

to a hierarchical structure in the form of a tree. Their algorithm was feasible when data

dimensionality is low to moderate (up to 6 for instance). In order to improve this method,

Menardi and Azzalini (2014) found a viable solution to the problem of detecting connected

regions in higher dimensional spaces. Both methods are aggregated in a unique algorithm

and are implemented by the R package pdfCluster (Azzalini and Menardi, 2014). Our

main goal in this paper is to improve the density estimation part of this algorithm by

utilizing some skew-symmetric kernels rather than normal and t7 used in pdfCluster.

As its terminology, the skew-symmetric (skew-modulated) distributions can generate both

symmetric and asymmetric densities: see for example Salehi and Azzalini (2018). Among

so many distributions belonging to this family, the skew-normal and skew-t, as its most

well-known members, are flexible enough to be employed as a kernel in the KDE. We will

demonstrate that our approach utilizing such skew-symmetric kernels offers more shrinkage
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for the bandwidth which is practically shown to be desirable in pdfCluster (Azzalini and

Torelli, 2007).

The rest of this paper is organized as follows: In Section 2, a semi-parametric KDE

algorithm is proposed. In Section 3, the optimal bandwidths for both one-dimensional and

multi-dimensional cases under the assumption of skew kernels are derived. Furthermore,

the boundary bias is investigated via a simulation study. Some real examples on the usage

of the proposed semi-parametric KDE algorithm in pdfCluster are presented in Section 4.

This section also presents a relatively extensive simulation study under different scenarios

to check the behaviour of the pdfCluster with various symmetric and asymmetric kernels.

Finally, some concluding remarks and discussions are given by Section 5.

2 A semi-parametric KDE

Suppose that Xi := (Xi1, . . . , Xid)
>, i = 1, . . . , n, is a random sample of size n from a

d-dimensional density function f and xi := (xi1, . . . , xid)
> is an observation. Azzalini and

Menardi (2014) performed the density estimation step of their clustering algorithm by the

kernel method employing a product KDE of the form

f̂(x) =
1

n

n∑
i=1

d∏
j=1

1

hi,j
κ

(
xj −Xij

hi,j

)
, (1)

where x = (x1, . . . , xd)
>, κ(·) is a symmetric kernel (that can either be chosen to be a normal

or a t7 density in pdfCluster) and hi,j stands for the adaptive bandwidth corresponding

to the Xij, i = 1, . . . , n, j = 1, . . . , d.

Here, we allow the κ(·) to vary for each variable with aiming to have a more efficient KDE.

In more details, we intend to employ a product kernel of the following form

f̂(x) =
1

n

n∑
i=1

d∏
j=1

1

hj
κj

(
xj −Xij

hj

)
, (2)
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where κj(·) can be either a skew-normal density or a skew-t density. More precisely, in the

former case, we have

κj(z) = 2φ(z)Φ(λjz), z ∈ R, (3)

where λj, j = 1, . . . , d, is a slant parameter, φ(·) and Φ(·) denote the density and the

cumulative distribution function of the standard normal distribution, respectively. Our

second proposal for the κj(·) is the standard skew-t density given by

κj(z) = 2t(z; νj)T

(
λjz

√
νj + 1

νj + z2
; νj + 1

)
, z ∈ R, (4)

with the slant parameter λj and the degrees of freedom νj, j = 1, . . . , d. Also, t(·; νj)

and T (·; νj) are the density and cumulative distribution function of the classical Student’s

t distribution with νj degrees of freedom, respectively. We turn the reader’s attention

to different degrees of freedom with respect to each kernel. Hence, here we have some

unknown parameters to be estimated. To this end, the maximum penalized likelihood

estimate (MPLE) can be a reasonable approximation for λj in the first case assuming that

z1j . . . , znj are observations from the SN distribution given by (3), where

zij =
xij − x̄j
sj

, i = 1, . . . , n, j = 1, . . . , d, (5)

where x̄ and sj are the sample mean and sample standard deviation of the observations

x1j . . . , xnj. The routine sn.mple() in the R package sn can be utilized for obtaining the

MPLE of the λj. For more details on the MPLE, one can refer to Azzalini and Arellano-

Valle (2013).

For the skew-t case, we have 2d unknown parameters to be approximated. Here we can

use either a one-stage or a two-stage approximation procedure depending on the dimension

of the data (d). If the dimension is high, one can use only a quick preliminary estimate for

the pair (λj, νj) given by (4). Such initial estimates are proposed by Azzalini and Salehi
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(2020) and can be implemented by the function st.prelimFit() in the R package sn.

Otherwise, for small/moderate dimensions one can use a double-step optimization method:

using the initial estimates given by the mentioned approach for the subsequent numerical

maximization of the penalized log-likelihood function which can be performed employing

the routine st.mple(). This approach is summarized by Algorithm 1.

The algorithm just described is no longer a non-parametric density estimation but a

semi-parametric one. However, Hjort and Glad (1995) were probably the first researchers

to use a semi-parametric approach by mixing the nonparametric version of the density

estimation with a parametric start where their nuisance parameters were to be estimated.

Here, another problem of interest is to find optimum values for the bandwidth hj in (2)

through minimizing the approximated mean integrated square error (MISE). To address

this, we start with the one-dimensional case first.

3 Finding an optimal bandwidth

In this section, by considering κj(·) to be the density (3), we obtain the optimal bandwidth

involved in (2) through minimizing the MISE of f̂ given by Wand and Jones (1995)

MISEhf̂(x) = E

∫ {
f̂(x)− f(x)

}2

dx

=

∫
Varf̂(x)dx +

∫
Bias2f̂(x)dx. (6)

But, a problem with the MISE in (6) is that it does depend on the bandwidth in a com-

plicated way. This fact makes it difficult to obtain the optimal bandwidth based on the

MISE. Hence, we employ the AMISE which is an approximation of the MISE.

For convenience, we start with the one-dimensional case and then give the results for the

multi-dimensional case.
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Algorithm 1: The semi-parametric KDE

1 Take zj := (z1j, . . . , znj)
> whose components are given by (5).

2 Choose the desired kernel between (3) or (4) and then estimate their unknown

parameters in Steps 3 or 4;

3 For the SN kernel, plug-in the λj with its MPLE assuming zj is a random sample

from (3).

4 For the ST kernel, do the following procedure assuming zj as a random sample

from (4):

(i) For high dimensions: approximate (λj, νj) with quick preliminary estimates

using st.prelimFit().

(ii) For low dimensions: plug-in (λj, νj) with their MPLEs via incorporating the

routines st.prelimFit() and st.mple().

5 Compute f̂(x) in (2) with κj(·) whose parameters are approximated either in step

3 or 4 and with an optimal bandwidth which will be given in Section 3.
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3.1 One-dimensional case

Suppose that f(·) is a univariate density function to be estimated using (2) considering

d = 1. Assume further that κ(·) is a one-dimensional asymmetric kernel density satisfying

the following regularity assumptions

(A1) κ(z) ≥ 0, z ∈ R,

(A2)

∫
κ(z)dz = 1,

(A3)

∫
zκ(z)dz = µ1(κ) 6= 0. (7)

Note, unlike symmetric kernels, µ1(κ) is not equal to zero. This is an inherit property

emanated from asymmetric kernels. Also, we define µ2(κ) :=
∫
z2κ(z)dz. From Silverman

(1986) we have

Biasf̂(x) =

∫
1

h
κ

(
x− y
h

)
f(y)dy − f(x)

=

∫
κ (t) [f(x− ht)− f(x)]dt. (8)

Using the Taylor series expansion we simply get

f(x− ht) = f(x)− htf ′(x) +
1

2
h2t2f ′′(x) + · · · . (9)

Then, we have

Biasf̂(x) = −hµ1(κ)f ′(x) +
1

2
h2µ2(κ)f ′′(x) +O(h3)

≈ −hµ1(κ)f ′(x) +
1

2
h2µ2(κ)f ′′(x) (10)

where µ1(κ) and µ2(κ) are given by (7). Accordingly, from (10) we get

∫
Bias2f̂(x)dx ≈ h2µ2

1(κ)

∫
[f ′(x)]2dx+

1

4
h4µ2

2(κ)

∫
[f ′′(x)]2dx

−h3µ1(κ)µ2(κ)

∫
f ′(x)f ′′(x)dx. (11)
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The variance of the estimator evaluated at x is simply obtained as

Varf̂(x) =
1

n

∫
1

h2
κ2
(
x− y
h

)
f(y)dy − 1

n
[f(x) + Biasf̂(x)]2

≈ 1

nh

∫
f(x− ht)κ2(t)dt− 1

n
[f(x)− hµ1(κ)f ′(x)

+
1

2
h2µ2(κ)f ′′(x)]2

=
1

nh

∫
[f(x)− htf ′(x) + · · · ]κ2(t)dt− 1

n
[f(x) +O(h)]2

=
1

n

{
1

h
f(x)

∫
κ2(t)dt− f ′(x)

∫
tκ2(t)dt

}
+O

(
n−1
)
,

(12)

and accordingly

∫
Varf̂(x)dx =

1

nh

∫
κ2(t)dt+O

(
n−1
)
, (13)

Thus, by substituting (11) and (13) in (6), we obtain

AMISEhf̂(x) =
1

nh

∫
κ2(t)dt+ h2µ2

1(κ)

∫
[f ′(x)]2dx

+
1

4
h4µ2

2(κ)

∫
[f ′′(x)]2dx

−h3µ1(κ)µ2(κ)

∫
f ′(x)f ′′(x)dx. (14)

The optimal bandwidth is obtained by minimizing the AMISEhf̂(x) given by (14). Let us

consider two approaches for the purpose of minimization: (I) Drop the terms in the order

of hk, k ≥ 3, (II) Work with all the terms involved in (14).

The second approach does not give any close form for the optimal bandwidth. However,

in either case, the values of hopt are related to the density function being estimated and its

derivatives. The optimal bandwidth following Approach (I) is derived as

hopt =

{ ∫
κ2(t)dt

2µ2
1(κ)

∫
[f ′(x)]2dx

} 1
3
(

1

n

) 1
3

, (15)

10



and then the value of AMISE at hopt is obtained as follows

AMISEhopt f̂(x) =
(

2
1
3 + 2−

1
3

){
µ1(κ)

∫
κ2(t)dt

} 2
3
{∫

[f ′(x)]2dx

} 1
3

n−
2
3 .

(16)

Silverman (1986) suggested using a standard family of distributions to obtain an approxi-

mation for the terms which are related to the target density itself. A choice for this purpose

is f(x) = 1/σφ(x/σ), where φ(·) denotes the density of the standard normal distribution.

Then, we can simply obtain ∫
[f ′(x)]2dx =

1

4
π−

1
2σ−3. (17)

Also we have (Silverman, 1986, pp. 45)∫
[f ′′(x)]2dx =

3

8
π−

1
2σ−5. (18)

After some algebraic manipulation, the last integral in (14) is computed to be zero. Now

if we consider κ(·) to be the one given by (3), then

µ1(κ) =

√
2

π

λ√
1 + λ2

, µ2(κ) = 1. (19)

In addition, we have (Salehi and Doostparast, 2015)∫
κ2(t)dt = E (φSN(Zλ;λ))

= 2π−
3
2 arctan

√
1 + λ2, (20)

where Zλ ∼ SN(λ). Substituting (17), (19) and (20) in (15) yields

hopt(λ) = cλσn
− 1

3 , (21)

where

cλ =
{

2
(
1 + λ−2

)
arctan

√
1 + λ2

} 1
3
. (22)
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Figure 1: The plots of hopt versus λ for various sample sizes and σ = 1 based on approaches (I) &

(II) given by (21) and (23), respectively. The dotted lines appearing in the right panel correspond to the

optimal bandwidths given by (25) which is obtained under the normality assumption.

Now, we give the details of Approach (II). By substituting (17)-(20) in (14), the hopt is

obtained to be a real value satisfying the following equation

−a+ 2bh3opt(λ) + ch5opt(λ) = 0, (23)

where

a :=
1

n
2π−3/2 arctan

√
1 + λ2, b :=

λ2

2π
3
2σ3(1 + λ2)

, c :=
3

8π
1
2σ5

. (24)

Figure 1 displays the plots of hopt(λ) obtained from (21) and (23), respectively, when

sample size spans from small to large. As it is observed, the optimal bandwidth obtained

via Approach (I) diverges as λ tends to zero. So, the density f will be over-smoothed for

small values of λ. On the contrary, that of the second approach has a peak around zero

according to the right pane of Fig. 1. This peak coincides with the optimal bandwidth

under the normal kernel which is known to be (Bowman and Azzalini, 1997, pp 31)

h =

(
4

3n

) 1
5

σ. (25)
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Hence, it is reasonable to ignore Approach (I) and rather exploit from Approach (II). By

this manner, we shrink the bandwidth (slightly towards zero) more than the one obtained

under the normal assumption. Azzalini and Torelli (2007) empirically showed that this

property is often desirable when a KDE is applied in their density-based clustering.

3.1.1 Boundary bias comparison

For illustrating the impact of the use of the SN and the ST as asymmetric kernels in

reducing the boundary bias, we have generated 1000 samples of size n = 150 from sym-

metric/asymmetric distributions whose densities are bounded. The average of the usual

non-parametric KDE (with Gaussian kernel and h given by (25)) and the average of the

proposed semi-parametric KDE with SN and ST kernels and h given by (23) are displayed

in Figure 2. This figure shows that the proposed estimators are smaller than the classical

KDE with the Gaussian kernel at the outside of the support and near the boundary points

for the asymmetrical bounded distributions. However, their performance is the same for

the symmetrical bounded distributions (see the bottom-left and the center-right panes in

Figure 2). It has been shown that when the density has high concentrations close to the

boundaries, the problem of boundary bias is more severe below the lower bound and above

the upper bound (Rattihalli and Patil, 2019). The SN kernel outperforms the ST one under

the mentioned circumstances (see the top-left case in Figure 2). In addition, the KDEs

with SN and ST kernels are much more closer to the true density than the Gaussian one

even in the central part.
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Figure 2: The plots of the true density, the average of the semi-parametric KDEs with the SN and the

ST kernels and the classical KDE with the Gaussian kernel for various bounded distributions.
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3.2 Multi-dimensional case

Assume f(x) is a d-variate density. Then, the kernel density estimator in its most general

form is defined as (Wand and Jones, 1995)

f̂(x) = n−1|H|−
1
2

n∑
i=1

K
(
H−

1
2 (x−Xi)

)
, (26)

where x := (x1, . . . , xd)
>, Xi := (Xi1, . . . , Xid)

>, i = 1, . . . , n, is the ith observation, H is

the so-called bandwidth matrix (a symmetric positive definite d× d matrix) and K(·) is a

d-variate kernel density. In the present paper, we restrict ourselves to a special case of this

general form given by (2). Its bandwidth indeed belongs to the class of diagonal bandwidth

matrices, namely H = Diag(h21, . . . , h
2
d). Notice that in (2), the marginal kernels κj(·) are

allowed to vary while they are typically considered to be identical in the literature. Now,

let Hf (x) = [f ′′(`,j)] and D(x) = [f ′(j)] denote the Hessian matrix and the vector of the first

derivatives of f(x), respectively. More specifically

f ′(j) =
∂

∂xj
f(x),

f ′′(`,j) =
∂2

∂x`∂xj
f(x), `, j = 1, . . . , d. (27)

Suppose further that

(i) All f ′′(`,j)’s are piecewise continuous and square-integrable.

(ii) hj = hj,n, j = 1, . . . , d, is a sequence of bandwidths tending to zero as n→∞.

(iii) Each component κj(·) satisfies the conditions (7).

Under the above definition and assumptions, we will obtain the bias, variance and accord-

ingly the AMISE of f̂(x) given by (2) as follows.
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Lemma 1 Given Assumptions (i)-(iv), the bias and the variance of f̂(x) in (2) are re-

spectively derived as

Biasf̂(x) = −
d∑
j=1

µ1(κj)hjf
′
(j) +

1

2

d∑
j=1

µ2(κj)h
2
jf
′′
(j,j)

+
∑
j<`

µ1(κj)µ1(κ`)hjh`f
′′
(`,j) + o

(
d∑
j=1

h2j

)
, (28)

and

Varf̂(x) =
1

n
f(x)

d∏
j=1

1

hj

∫
κ2j(tj)dtj +O(n−1). (29)

Proof 1 Refer to Appendix.

As it is observed from Lemma 1, the bias is related to the derivatives of the target density

being estimated. So, one can obtain an appropriate value for the bandwidth under the

assumption of normality. Specifically, analogues to the preceding subsection, we assume

that f(x) =
∏d

j=1 φ(xj/σj)/σj. Let us also simplify (28) and (29) by setting hj = h, j =

1, . . . , d. The next remark deals with obtaining the AMISE by imposing these restrictions.

Theorem 1 Assume hj = h, j = 1, . . . , d. Then, the AMISE of f̂(x) has the form

AMISEhf(x) =
1

nhd

d∏
j=1

∫
κ2j(t)dt+ A

(
Bh2 + Ch4

)
,

(30)

where

A :=
(2
√
π)−d

16
∏d

j=1 σj
, B := 8

d∑
j=1

µ2
1(κj)σ

−2
j ,

C := 3
d∑
j=1

µ2
2(κj)σ

−4
j + 2

∑
j<`

(
µ2(κj)µ2(κ`) + µ2

1(κj)µ
2
1(κ`)

)
σ−2j σ−2` . (31)

Proof 2 Refer to Appendix.
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Remark 1 As a special case, if κj(·) = φ(·), j = 1, . . . , d, then the optimal bandwidth will

be of the form

h =

{
4
∏d

j=1 σj

3
∑d

j=1 σ
−4
j + 2

∑
j<` σ

−2
j σ−2`

d

n

} 1
d+4

, (32)

and will reduce to (25) as d = 1. These formulae also coincide with Eqs (4.12) and (3.28)

of Silverman (1986), respectively.

Now, if we consider κj(·) to be either skew-symmetric cases (3) or (4), then, a quick

conclusion from Theorem 1 is made as follows.

Remark 2 The optimal bandwidth following Approach (I) is derived as

hopt =

{
d (2
√
π)

d∏d
j=1 σj

∫
κ2j(t)dt

n
∑d

j=1 µ
2
1(κj)σ

−2
j

} 1
d+2

, (33)

while Approach (II) leads us to find the optimal bandwidth via solving a non-linear equation

of the form

−d
n

d∏
j=1

∫
κ2j(t)dt+ 2ABhd+2

opt + 4AChd+4
opt = 0, (34)

where constants A, B and C are given by (31). For the SN case, the integral involved in

(33) and (34) is given by (20) considering λj rather than λ. The unknown parameters σj

can be substituted by sj, the sample standard deviation of the jth variable already defined

in (5), and the λj can be approximated by its MPLE discussed in Section 2.

It can be easily shown that by setting d = 1 in (33) and (34), they simplify to their

univariate versions (21) and (23), respectively. Figure 3 shows the surface plots of both

optimal bandwidths given by Remark 2 for d = 2 and different sample sizes. It is observed

that the behaviour of the optimal bandwidths in the bivariate case are similar to those of the

univariate ones exhibited in Figure 1. In this case also Approach (II) is more appropriate

than Approach (I) due to the same reasons.
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Figure 3: The plots of hopt versus the pair of (λ1, λ2) for σ1 = σ2 = 1, n = 50 (top panels) and n = 200

(bottom panels), and based on approaches (I) (right panels) and (II) (left panels) given by (33) and (34),

respectively.
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4 Clustering via the semiparametric KDE

The clustering algorithm pdfCluster, which was briefly described in the introduction,

consists of two main stages summarized by Algorithm 2. The first step of pdfCluster is

Algorithm 2: Clustering via KDE

1 Constructing a cluster tree and then obtaining the initial clusters.

2 Allocating possible unlabelled points to the clusters formed by Azzalini’s Step 1.

done using “spatial tessellation” when the dimension is less than 6 (Azzalini and Menardi,

2014, Section 2.2), while it is carried out using “pairwise connections” for higher dimensions

(Azzalini and Menardi, 2014, Section 2.3). In either cases, f̂(x) in (1) has been used with

normal (or t7) kernel. As it is mentioned in Section 1, the number of clusters in pdfCluster

is not determined by the user while it is automatically specified by the procedure (in its

Step 1) as the number of the modes of the estimated density. But this step sometimes

leaves some points with no label. In the second step of pdfCluster, the unlabelled points

are assigned to the existing clusters using a classification algorithm which works based on

a nonparametric KDE borrowing f̂(x) in (1) once again. This approach and its improved

version are explained by Azzalini and Torelli (2007) and Azzalini and Menardi (2014)

(Section 2.2), respectively. The implementation of this clustering method is carried out by

the R function pdfCluster() in the Package pdfCluster.

In this section, we intend to plug-in the f̂(x) which was obtained through a semi-

parametric approach described by Algorithm 1 in both steps of pdfCluster presented by

Algorithm 2. Thus, the resulting procedure will be a semi-parametric KDE clustering with

skew kernels. In the sequel, we demonstrate this procedure by using some real data sets as

well as some simulated samples. We apply two indexes for assessing the clusters obtained:
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the ARI criterion proposed by Hubert and Arabie (1985), as an external validity metric,

and the density-based Silhouette (DBS) information proposed by Menardi (2011) as an

internal validity index. In contrast to the ordinary Rand index which only varies on the

interval [0, 1], the ARI can also yield negative values and has an expected value of zero

under random classification. However, the higher values of the ARI correspond to the

better model. It should be noted that clustering techniques fall within the unsupervised

learning algorithms where auxiliary information is not always attached to the observations.

In such situations, a common approach is to use an internal validity measure (Ingrassia and

Punzo, 2020), e.g. the Silhouette information. The DBS is an adaptation of the Silhouette

information which is suitable for density-based clustering procedures. The interpretation

of the DBS is the same as the existing Silhouette information, i.e. large values of the DBS

are an indication of a well clustered data point while small values of the DBS mean low

confidence in the clustering. Negative values of the DBS can also occur and it is usually

evidence of an incorrect allocation of the observation.

4.1 Real data analysis

We present here the analysis of three real data sets whose dimensions are five, two and one,

respectively. The first real data set which is called olive oil data, was originally presented

by Forina et al (1983) and then used by other researchers for illustrating various clustering

techniques. Among of them, we refer you to Azzalini and Torelli (2007) and Menardi (2011)

who used this data set for illustrating the non-parametric pdfCluster procedure. The data

set collected n = 572 species of olive oil with eight chemical measurements produced in

various areas of Italy. Azzalini and Torelli (2007) carried out some manipulations on the

data to reduce the data dimensionality and used only the first five principal components.
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Here, we use the same data for all clustering methods being used. The scatter plot of the

first two components of the olive oil data colored based on the actual labels are displayed in

Figure 4. As it is observed from Figure 4, the green cluster can be potentially challenging

to be correctly detected by a clustering method.

The next example considers the geyser data set which is available in the R package

sm (Bowman and Azzalini, 2018). It consists of n = 299 observations representing the

features eruption time in minutes (duration) and the waiting time before the eruption for

the Old Faithful geyser in Yellowstone National Park, Wyoming. A version of this data

set including n = 272 observations of eruption length has been analyzed by Bagnato et

al (2017) from a clustering perspective. Unlike the preceding example, we are not able

to compare the clustering results with true groupings, since it does not explicitly exist.

Thus, in this example, we can only employ an internal validity measure e.g. the DBS, for

comparing various clustering methods.

In the third example, we aim to examine the ability of the proposed clustering algorithm

on a univariate data set. To this end, we work with the duration variable given by the

geyser data explained in the previous example. Of course, in this example, we do not

also have the actual groups, however, it seems that the data contain two groups, each

located around a mode (see Figure 9). For the Gaussian and the t7 kernels, we use the

optimal bandwidth under the normality assumption with the setting hmult = 1, a scalar

multiplied by the bandwidth (Azzalini and Menardi, 2014, Section 3.2), in the R function

pdfCluster while for the asymmetric kernels SN and ST we use the ones obtained in the

preceding section.

The distribution of the clusters as well as the DBS plots of some selected clustering

methods implemented on the data sets are exhibited in Figures 5-10. The latter plots
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display the DBS obtained for each observation and also return their median for each cluster.

But, as overall accuracy measures for each clustering method, some specific quartiles of the

DBSs of all observations are also reported by Table 1. From this table, one can pick the

median as the final accuracy measure of a given clustering method. Although the mean is

not a good candidate for this purpose in all scenarios due to the lack of robustness, it is

also attached to Table 1. Figures 4 and 5 reveals that heavy tails kernels (t7 and ST) have

been more successful than the Gaussian and the SN kernels in detecting the problematic

green cluster of the olive oil data, but, it is observed from the numerical metrics given by

Table 1 that they have not been the best choice in overall. Moreover, among the Gaussian

and the SN kernels, the pdfCluster with the latter kernel has recorded the best result

according to the DBS information given by Table 1 and Figure 6.

Concerning the geyser data, the superiority of the fitting of the semi-parametric KDE

with SN and ST kernels comparing to that of the non-parametric KDE with the symmetric

kernels Gaussian and t7 is revealed at the first glance on Figure 7. In other words, Figure

7 confirms the simulation results of the boundary bias problem given by Section 3.1.1. As

for the clustering results on this set of data, Table 1 and Figure 8 show that the SN is the

best kernel for the pdfCluster algorithm. With regard to the univariate data set duration,

intuition from Table 1 and Figure 10 suggests that the Gaussian is the last choice as the

kernel of the pdfCluster method. Figure 9 shows once again that using the asymmetric

kernels SN and ST reduces the weights outside the boundary of the support (refer to Figure

2 as well).
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Figure 4: The distribution of the actual clusters in the space of the first two principal components of the

olive oil data.

Table 1: Summary of DBS results of clusters obtained by the pdfCluster method with various kernels

on three real data sets.

DBS ARI

Data kernel min Q1 median mean Q3 max

olive oil Gaussian -0.019 0.258 0.321 0.350 0.416 1.000 0.885

t7 -0.007 0.059 0.077 0.134 0.144 1.000 0.825

SN 0.061 0.266 0.359 0.371 0.448 1.000 0.700

ST -0.025 0.057 0.072 0.118 0.109 1.000 0.676

geyser Gaussian 0.041 0.097 0.175 0.205 0.303 1.000

t7 0.041 0.097 0.175 0.205 0.303 1.000

SN -0.008 0.159 0.260 0.266 0.342 1.000

ST 0.078 0.173 0.210 0.250 0.297 1.000

duration Gaussian -0.005 0.076 0.130 0.158 0.198 1.000

t7 0.029 0.088 0.143 0.167 0.214 1.000

SN 0.029 0.088 0.143 0.167 0.214 1.000

ST 0.029 0.088 0.143 0.167 0.214 1.000

4.2 Simulation study

In this section, we are intending to carry out an extensive simulation in order to investigate

the impact of using asymmetric kernels on the performance of the pdfCluster algorithm.

The aim of this section is twofold: 1) to use the Monte Carlo simulation under some sce-
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Figure 5: Clustering results of olive oil data as well as contour levels of the various fitted kernel estimates.

Figure 6: dbs plots of three clusters obtained by the pdfCluster method with Gaussian and SN kernels

on the olive oil data.

narios and 2) to check the sensitivity of the chosen sample in the real data sets using the

bootstrap re-sampling method. For both mechanisms, the number of replications is consid-

ered to be 1000. For each replication, the median of the DBS of the observations is recorded
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Figure 7: Clustering results of geyser data as well as contour levels of the various fitted kernel estimates.

Figure 8: dbs plots of three clusters obtained by the pdfCluster method with Gaussian and SN kernels

on the geyser data.

as the representative candidate of this internal criterion. To visualize the distributions of

the ARI and the DBS, the adjusted boxplot is utilized (Hubert and Vandervieren, 2008).

It is to be noted that for the kmeans clustering we only compute the ARI since it belongs
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Figure 9: Clustering results of duration oil data as well as contour levels of the various fitted kernel

estimates.

Figure 10: dbs plots of two clusters obtained by the pdfCluster method with Gaussian and SN kernels

on the duration data.

to the distance-based algorithms, not the density-based ones.
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4.2.1 Monte Carlo simulation

We consider the following three simulation scenarios for evaluating the pdfCluster proce-

dure with the mentioned symmetric and asymmetric kernels.

• Scenario 1 : Our first scenario deals with a sample of size 180 of simulated data from

two sub-populations whose sizes are 100 and 80, respectively. More precisely, both

portions of the data set come from bivariate skew-t distribution with location vectors

(10, 11)> and (5, 3)>, dispersion matrices I2 and I2 + 1, slant vectors (9, 5)> and

(5, 3)> and degrees of freedoms ν1 = 2 and ν2 = 5, respectively.

• Scenario 2 : The second scenario uses a sample of size 300 of simulated bivariate data

from three sub-populations. More specifically, this data set consists of two variables

which are independent and identically distributed observations. Each column gathers

a sample of size 150 from the standard SN distribution (3) with λ = 2, a sample of

size 100 from N(3, σ = 0.3) and a sample of size 50 from the SN distribution with

the location parameter ξ = 8, the unit scale parameter, and λ = 2.

• Scenario 3 : In the third scenario, we apply our method on a sample of size 600

of simulated data from three sub-populations with sample sizes 200, 300 and 100,

respectively. All of the populations follow from bivariate skew-t distribution with

location vectors (10, 11)>, (5, 3)> and (2, 20)>, dispersion matrices I2, I2 + 1 and

I2 + 2× 1, slant vectors (9, 5)>, (5, 3)> and (0, 3)> and degrees of freedoms ν1 = 5,

ν2 = 2 and ν3 = 7, respectively.

• Scenario 4 : In this case, a sample of size 180 of simulated data from two sub-

populations is drawn. Both groups of the data set come from 5-variate skew-t

distribution with location vectors µ1 = (10, 11, 5, 6,−6)> and µ2 = (5, 3, 0, 0, 1)>,
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dispersion matrices I5 + 0.5 × 1 and I5 + 1, slant vectors α1 = (9, 5, 2, 0, 1)> and

α2 = (5, 3, 0, 2, 3)> and degrees of freedoms ν1 = 2 and ν2 = 5, respectively.

The Monte Carlo distributions of the DBS and the ARI under the above-mentioned scenar-

ios are given by Table 2 and Figure 11. From the results of the ARI metric it is concluded

that it does not matter which kernel is selected, the density-based pdfCluster has been

reasonably successful to detect the right clusters comparing to the conventional clustering

kmeans (except the last scenario). But, it is hard to choose between the symmetric and

asymmetric kernels by using this criterion. Thus, the DBS information can help us in such

circumstances. The DBS results indicate that the pdfCluster algorithm supplied by the

asymmetric kernel SN always outperforms the other kernels and its accuracy is significantly

higher than those of the symmetric kernels in Scenario 2. However, the ST kernel has been

the best option in the mentioned scenario but is not considerably better than the SN.

4.2.2 More explorations on real-life data

In Section 4.1, we analyzed three real data sets and observed that the semi-parametric

pdfCluster with asymmetric kernel SN outperformed the other competitors according

to the internal validity measure of DBS. In this section, we are seeking to present more

distributional information on the DBS metric computed for the pdfCluster algorithm. To

this end, we employ the non-parametric bootstrap re-sampling method. The results of the

bootstrap are presented by Table 3 and Figure 12. These results coincide with the results

obtained in Section 4.1 and confirm the appropriateness of the SN kernel on the three real

data sets once again.
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Table 2: Central tendencies, quartiles and standard deviation of the empirical distribution of the DBS

and the ARI of various clustering methods for the scenarios given by the previous section.

DBS ARI

Scenario method median mean Q1 Q3 sd median mean Q1 Q3 sd

kmeans - - - - - 0.846 0.851 0.798 0.922 0.085

Gaussian 0.112 0.132 0.075 0.171 0.076 0.978 0.964 0.956 0.988 0.054

1 t7 0.115 0.137 0.075 0.180 0.081 0.956 0.956 0.934 0.978 0.055

SN 0.132 0.152 0.087 0.197 0.092 0.956 0.926 0.913 0.978 0.107

ST 0.112 0.130 0.073 0.171 0.077 0.934 0.933 0.913 0.978 0.071

kmeans 0.965 0.920 0.954 0.977 0.161

Gaussian 0.154 0.163 0.123 0.199 0.053 0.988 0.986 0.977 1.000 0.013

2 t7 0.159 0.163 0.123 0.199 0.054 0.988 0.985 0.977 1.000 0.014

SN 0.207 0.215 0.166 0.246 0.087 1.000 0.943 0.988 1.000 0.159

ST 0.209 0.215 0.166 0.249 0.074 1.000 0.966 0.988 1.000 0.121

kmeans 0.876 0.840 0.857 0.891 0.128

Gaussian 0.102 0.113 0.064 0.154 0.061 0.872 0.856 0.852 0.888 0.098

3 t7 0.094 0.108 0.064 0.144 0.061 0.868 0.847 0.849 0.888 0.111

SN 0.116 0.121 0.063 0.168 0.073 0.869 0.865 0.849 0.888 0.051

ST 0.065 0.085 0.041 0.107 0.062 0.849 0.849 0.823 0.876 0.055

kmeans 0.919 0.907 0.851 0.966 0.067

gaussian 0.169 0.186 0.126 0.234 0.086 0.978 0.966 0.956 1.000 0.050

4 t7 0.167 0.176 0.126 0.213 0.074 0.978 0.971 0.956 1.000 0.033

sn 0.202 0.216 0.149 0.265 0.097 0.966 0.939 0.932 0.978 0.107

st 0.174 0.187 0.130 0.226 0.083 0.956 0.927 0.913 0.978 0.110

5 Conclusion and discussion

This paper proposed a semi-parametric KDE with a more flexible family of kernels includ-

ing SN and ST. Furthermore, the optimal bandwidth under the mentioned kernels was

obtained. Through a simulation study, we observed that the proposed estimator not only

reduces boundary bias but also it is closer to the true density comparing to that of the usual

KDE employing the Gaussian kernel. Then, we applied the proposed semi-parametric KDE

in the density-based pdfCluster of Azzalini and Torelli (2007) and Azzalini and Menardi

(2014) to improve the performance of this clustering method when we are exposed to skewed
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Figure 11: Empirical distribution of the DBS and the ARI of various clustering methods for the various

scenarios used in the previous section.

and bounded distributions of data. The application of the semi-parametric pdfCluster

was presented on three real data sets. Moreover, a relatively comprehensive simulation

study was conducted based on three artificial scenarios. For the comparison purpose, we

used the ARI and the DBS as external and internal validation criteria. In practice, we

found that if either the data supports are bounded or the data are asymmetric in some
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Table 3: Central tendencies, quartiles and standard deviation of the empirical distribution of the DBS of

the pdfCluster method with various kernels on the real data sets.

Data kernel median mean Q1 Q3 sd

Gaussian 0.201 0.208 0.165 0.230 0.070

Olive oil t7 0.192 0.202 0.172 0.213 0.053

SN 0.245 0.284 0.177 0.330 0.192

ST 0.189 0.183 0.086 0.264 0.103

Gaussian 0.224 0.234 0.173 0.286 0.075

geyser t7 0.231 0.235 0.170 0.287 0.075

SN 0.239 0.238 0.190 0.281 0.068

ST 0.193 0.204 0.154 0.255 0.076

Gaussian 0.133 0.161 0.116 0.209 0.054

duration t7 0.133 0.159 0.115 0.202 0.052

SN 0.142 0.157 0.119 0.195 0.062

ST 0.140 0.155 0.118 0.190 0.069

clusters, then, it would be better to use the semi-parametric pdfCluster model proposed.

In the contrary, when the underlying data are symmetric in each cluster, no matter which

kernel is selected for the pdfCluster. Thus, in such a situation, if we are exposed to a big

data set with thousands of observations and variables, it would be logical to employ the

non-parametric pdfCluster rather than its semi-parametric counterpart due to the compu-

tation time. To see the computation time of the pdfCluster algorithm based on different

symmetric and asymmetric kernels, we replicated Scenario 1-3 given by Section 4.2.1 for

1000 times and report the average runtime in Table 4. Although the computation time of

the semi-parametric pdfCluster algorithm is negligible, the non-parametric pdfCluster

is more time-efficient than the semi-parametric one since in the latter we should estimate

the nuisance parameters involved while in the former we do not have such an extra step.
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Figure 12: Empirical distributions of the DBS of the pdfCluster method with various kernels imple-

mented on the real data sets.
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Table 4: The average computation time elapsed (in Sec.) for implementation of the non-parametric and

semi-parametric pdfCluster algorithms on the data generated under some scenarios given by Section 4.2.1

based on 1000 Monte Carlo replications.

Scenario Gaussian t7 SN ST

1 0.30 0.31 1.24 1.32

2 0.62 0.61 1.80 2.10

3 0.81 0.76 2.55 3.5

Appendix

Proof of Lemma 1:

Proof 3 The bias of f̂ evaluated at x is obtained as

Biasf̂(x) =

∫ d∏
j=1

1

hj
κj

(
xj − yj
hj

)
f(y)dy − f(x)

=

∫ d∏
j=1

κj (tj)
{
f
(
x−H

1
2 t
)
− f(x)

}
dt,

(35)

where H = Diag(h21, . . . , h
2
d). Now using the multivariate Taylor’s theorem (Wand and

Jones, 1995, pp. 94) we get

Biasf̂(x) =

∫ d∏
j=1

κj (tj) {−t>H
1
2Df (x) +

1

2
t>H

1
2Hf (x)H

1
2 t + o(Tr(H))}dt

= −
∫ d∏

j=1

κj (tj)
d∑
j=1

tjhjf
′
(j)dt

+
1

2

∫ d∏
j=1

κj (tj)

(
t21h

2
1f
′′
(1,1) + t1h1

d∑
j=2

tjhjf
′′
(j,1) + · · ·

+ t2dh
2
df
′′
(d,d) + tdhd

d−1∑
j=1

tjhjf
′′
(j,d)

)
dt + o(Tr(H)),

where Df (·) and Hf (·) are respectively the vector of first derivatives and the Hessian matrix

already defined. So the desired result of the bias follows. As for the variance, essentially

the same algebraic manipulations as in the one-dimensional case yield (29).
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Proof of Theorem 1:

Proof 4 Considering f(x) =
∏d

j=1 φ(xj/σj)/σj, it can be easily seen that∫
f ′(j)f

′
(`)dx =

∫
f ′(j)f

′′
(j,j)dx =

∫
f ′(j)f

′′
(`,j)dx

=

∫
f ′′(j,j)f

′′
(`,j)dx = 0, `, j ∈ {1, . . . d}, ` 6= j

(36)

and also ∫
f ′′(`,j)f

′′
(`′,j′)dx = 0, `′, j′ ∈ {1, . . . d},

`′ 6= j′, ` 6= `′, j 6= j′. (37)

Thus, by using Lemma 1 and assuming hj = h, j = 1, . . . , d we get∫
Bias2f(x)dx = h2

d∑
j=1

µ2
1(κj)

∫ (
f ′(j)
)2
dx

+
1

4
h4

d∑
j=1

µ2
2(κj)
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)2
dx

+
1

4
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(`,`)dx

+
1

4
h42

∑
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µ2
1(κj)µ

2
1(κ`)

∫ (
f ′′(`,j)

)2
dx,

(38)

where ∫ (
f ′(j)
)2
dx =

∫
x2j
σ4
j

d∏
`=1

1

σ2
`

φ2

(
x`
σ`

)
dx

=
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(
Z2φ(Z)

)
{E (φ(Z))}d−1

=
(2
√
π)−d

2
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j=1 σj
σ−2j , (39)
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∫ (
f ′′(j,j)
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f ′′(j,`)

)2
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Z2φ(Z)

)
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√
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4
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Finally, from (29) the desired result follows.
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