## Supplementary information:

## Supplementary tables:

**Table S1:** Table listing the number of replicates per lineage per generation where fathers older than 0-1 days were used due to rearing constraints.

| Lineage:    | ZA♂xZA♀ |     | AU♂rau |     | ZA 🗗 xAU 🕄 |     | AU♂xZA♀ |     |
|-------------|---------|-----|--------|-----|------------|-----|---------|-----|
| Age (days): | 0-1     | 1-3 | 0-1    | 1-3 | 0-1        | 1-3 | 0-1     | 1-3 |
| F0          | 22      | 0   | 18     | 4   | 20         | 0   | 19      | 3   |
| F1          | 19      | 1   | 17     | 1   | 20         | 2   | 18      | 1   |
| F2          | 17      | 0   | 14     | 0   | 16         | 0   | 17      | 0   |

**Table S2:** Total successful replicates performed per lineage for each generation, and the number of replicates that failed to produce any offspring.

| Lineage:    | ZA 🗗 xZA 🕄 |      | AU♂xAU♀ |      | ZA 🗗 xAU 💡 |      | AU <b>&amp;</b> xZA <b>?</b> |      |
|-------------|------------|------|---------|------|------------|------|------------------------------|------|
| Generation: | Total      | Fail | Total   | Fail | Total      | Fail | Total                        | Fail |
| F0          | 22         | 1    | 22      | 2    | 20         | 0    | 22                           | 1    |
| F1          | 20         | 0    | 18      | 2    | 22         | 0    | 19                           | 0    |
| F2          | 17         | 1    | 14      | 1    | 16         | 1    | 17                           | 2    |

**Table S3:** Results of Dunn's post-hoc tests of femur length of mother parasitoids of the F0 crosses, following on a significant Kruskal-Wallis test. Significant differences are indicated with an asterisk.

| Pairwise comparison: | Z statistic: | Adjusted p-value: |
|----------------------|--------------|-------------------|
| AU♂xAU♀ - AU♂xZA♀    | -0.746753    | 0.9104            |
| AU♂xAU♀ - ZA♂xAU♀    | 1.941672     | 0.2087            |
| AU♂xZA♀ - ZA♂xAU♀    | 2.711962     | 0.0334*           |
| AU♂xAU♀ - ZA♂xZA♀    | -0.883205    | 1.0000            |
| AU♂xZA♀ - ZA♂xZA♀    | -0.129659    | 0.8968            |
| ZA♂xAU♀ - ZA♂xZA♀    | -2.870570    | 0.0246*           |

**Table S4:** Results of Dunn's post-hoc tests of femur length of mother parasitoids of the F2 crosses, following on a significant Kruskal-Wallis test. Significant differences are indicated with an asterisk.

| Pairwise comparison: | Z statistic: | Adjusted p-value: |
|----------------------|--------------|-------------------|
| AU♂xAU♀ - AU♂xZA♀    | -2.673103    | 0.0451*           |
| AU♂xAU♀ - ZA♂xAU♀    | -1.000468    | 0.9513            |
| AU♂xZA♀ - ZA♂xAU♀    | 1.718561     | 0.3428            |
| AU♂xAU♀ - ZA♂xZA♀    | -0.453958    | 0.6499            |
| AU♂xZA♀ - ZA♂xZA♀    | 2.335002     | 0.0977            |
| ZA♂xAU♀ - ZA♂xZA♀    | 0.580790     | 1.0000            |

**Table S5:** Pairwise Fisher post-hoc test with Holm correction comparing proportions of replicates failing to produce any offspring between lineages in the F1 generation. While the Fisher's exact test indicated a significant difference, the post-hoc test indicate there are no differences between lineages.

| Pairwise comparison:          | n: | p-value: | Adjusted p-value (Holm correction): |
|-------------------------------|----|----------|-------------------------------------|
| ZA♂xZA♀ - AU♂xAU♀             | 38 | 0.218    | 1.000                               |
| ZA♂xZA♀ - ZA♂xAU♀             | 42 | 1.000    | 1.000                               |
| $ZA \Im xZA $ - $AU \Im xZA $ | 39 | 1.000    | 1.000                               |
| AU♂xAU♀ - ZA♂xAU♀             | 40 | 0.196    | 1.000                               |
| AU♂xAU♀ - AU♂xZA♀             | 37 | 0.230    | 1.000                               |
| ZA♂xAU♀ - AU♂xZA♀             | 41 | 1.000    | 1.000                               |

**Table S6:** Test statistics of separate Chi-squared tests to assess the significance of GLM model terms explaining sex ratio. Only in the F1 generation a significant effect of lineage on sex ratio was found, as indicated by the asterisk.

| F0 generation           |    |          |           |                   |          |  |  |
|-------------------------|----|----------|-----------|-------------------|----------|--|--|
| Coefficient:            | Df | Deviance | Resid. Df | Resid. Dev        | Pr(>Chi) |  |  |
| NULL                    |    |          | 78        | 78.877            |          |  |  |
| lineage                 | 3  | 4.218    | 75        | 74.659            | 0.239    |  |  |
| maternal femur length   | 1  | 0.163    | 74        | 74.496            | 0.686    |  |  |
| mating status of father | 1  | 0.052    | 73        | 74.444            | 0.820    |  |  |
|                         |    |          |           |                   |          |  |  |
| F1 generation           |    |          |           |                   |          |  |  |
| Coefficient:            | Df | Deviance | Resid. Df | Resid. Dev        | Pr(>Chi) |  |  |
| NULL                    |    |          | 75        | 112.880           |          |  |  |
| lineage                 | 3  | 9.521    | 72        | 103.360           | 0.023*   |  |  |
| maternal femur length   | 1  | 3.225    | 71        | 100.140           | 0.073    |  |  |
| mating status of father | 1  | 2.615    | 70        | 97.520            | 0.106    |  |  |
|                         |    |          |           |                   |          |  |  |
|                         |    | F2 gener | ration    |                   |          |  |  |
| Coefficient:            | Df | Deviance | Resid. Df | <b>Resid.</b> Dev | Pr(>Chi) |  |  |
| NULL                    |    |          | 58        | 66.986            |          |  |  |
| lineage                 | 3  | 4.067    | 55        | 62.920            | 0.254    |  |  |
| maternal femur length   | 1  | 0.028    | 54        | 62.892            | 0.868    |  |  |
| mating status of father | 1  | 0.161    | 53        | 62.731            | 0.688    |  |  |
|                         |    |          |           |                   |          |  |  |

**Table S7:** Tukey adjusted p-values from a post-hoc analysis using the package 'emmeans' on sex ratio in the F1 generation following on a significant effect of lineage in the GLM analysis. The infinite degrees of freedom are produced by the 'emmeans' package, as it uses a z-test for calculating the Tukey adjusted p-values in the post-hoc analysis.

| comparison | odds ratio | SE    | df  | null | z-ratio | p-value |
|------------|------------|-------|-----|------|---------|---------|
| ZA♂xZA♀ -  | 1.06       | 0.222 | Inf | 1    | 0.298   | 0.9908  |
| AU∂xAU♀    |            |       |     |      |         |         |
| ZA∂xZA♀ -  | 1.32       | 0.251 | Inf | 1    | 1.483   | 0.4478  |
| ZA♂xAU♀    |            |       |     |      |         |         |
| ZA∂xZA♀ -  | 1.68       | 0.342 | Inf | 1    | 2.548   | 0.0528. |
| AU∂xZA♀    |            |       |     |      |         |         |
| AU∂xAU♀ -  | 1.24       | 0.253 | Inf | 1    | 1.077   | 0.7038  |
| ZA♂xAU♀    |            |       |     |      |         |         |
| AU∂xAU♀ -  | 1.58       | 0.346 | Inf | 1    | 2.086   | 0.1578  |
| AU∂xZA♀    |            |       |     |      |         |         |
| ZA∂xAU♀ -  | 1.27       | 0.253 | Inf | 1    | 1.192   | 0.6319  |
| AU∂xZA♀    |            |       |     |      |         |         |

**Table S8:** Test statistics of Chi-squared tests to assess the significance of GLM model terms explaining male development time. In the F0 generation a significant effect of lineage on male development time was found, as indicated by the asterisk.

| F0 generation         |    |           |           |            |          |  |  |  |
|-----------------------|----|-----------|-----------|------------|----------|--|--|--|
| Coefficient:          | Df | Deviance  | Resid. Df | Resid. Dev | Pr(>Chi) |  |  |  |
| NULL                  |    |           | 77        | 0.81276    |          |  |  |  |
| lineage               | 3  | 0.108934  | 74        | 0.70383    | 0.0143 * |  |  |  |
| maternal femur length | 1  | 0.000376  | 73        | 0.70345    | 0.8485   |  |  |  |
|                       |    |           |           |            |          |  |  |  |
| F1 generation         |    |           |           |            |          |  |  |  |
| Coefficient:          | Df | Deviance  | Resid. Df | Resid. Dev | Pr(>Chi) |  |  |  |
| NULL                  |    |           | 72        | 0.49267    |          |  |  |  |
| lineage               | 3  | 0.0112354 | 69        | 0.48144    | 0.6693   |  |  |  |
| maternal femur length | 1  | 0.0001696 | 68        | 0.48127    | 0.8782   |  |  |  |
|                       |    |           |           |            |          |  |  |  |
|                       |    | F2 genera | tion      |            |          |  |  |  |
| Coefficient:          | Df | Deviance  | Resid. Df | Resid. Dev | Pr(>Chi) |  |  |  |
| NULL                  |    |           | 57        | 0.48112    |          |  |  |  |
| lineage               | 3  | 0.035051  | 54        | 0.44607    | 0.2518   |  |  |  |
| maternal femur length | 1  | 0.010000  | 53        | 0.44097    | 0.4405   |  |  |  |
|                       |    |           |           |            |          |  |  |  |

**Table S9:** Tukey adjusted p-values from a post-hoc analysis using the package 'emmeans' on male development time in the F0 generation, following on a significant effect of lineage in the GLM analysis. Significant differences are indicated with an asterisk.

| comparison | ratio | SE     | df | null | t-ratio | p-value  |
|------------|-------|--------|----|------|---------|----------|
| ZA♂xZA♀ -  | 1.081 | 0.0357 | 73 | 1    | 2.361   | 0.0940   |
| AU♂xAU♀    |       |        |    |      |         |          |
| ZA∂xZA♀ -  | 1.096 | 0.0375 | 73 | 1    | 2.663   | 0.0459 * |
| ZA♂xAU♀    |       |        |    |      |         |          |
| ZA∂xZA♀ -  | 1.022 | 0.0328 | 73 | 1    | 0.673   | 0.9070   |
| AU♂xZA♀    |       |        |    |      |         |          |
| AU∂xAU♀ -  | 1.013 | 0.0349 | 73 | 1    | 0.383   | 0.9807   |
| ZA♂xAU♀    |       |        |    |      |         |          |
| AU∂xAU♀ -  | 0.945 | 0.0313 | 73 | 1    | -1.706  | 0.3280   |
| AU♂xZA♀    |       |        |    |      |         |          |
| ZA∂xAU♀ -  | 0.933 | 0.0320 | 73 | 1    | -2.027  | 0.1876   |
| AU♂xZA♀    |       |        |    |      |         |          |

**Table S10:** Test statistics of Chi-squared tests to assess the significance of GLM model terms explaining female development time. No significant effect of lineage or maternal femur length was found in any generation.

| F0 generation         |    |           |           |            |          |  |  |
|-----------------------|----|-----------|-----------|------------|----------|--|--|
| Coefficient:          | Df | Deviance  | Resid. Df | Resid. Dev | Pr(>Chi) |  |  |
| NULL                  |    |           | 78        | 0.30019    |          |  |  |
| lineage               | 3  | 0.019941  | 75        | 0.28025    | 0.1474   |  |  |
| maternal femur length | 1  | 0.009355  | 74        | 0.27090    | 0.1129   |  |  |
|                       |    |           |           |            |          |  |  |
|                       |    | F1 genera | tion      |            |          |  |  |
| Coefficient:          | Df | Deviance  | Resid. Df | Resid. Dev | Pr(>Chi) |  |  |
| NULL                  |    |           | 75        | 0.40278    |          |  |  |
| lineage               | 3  | 0.004498  | 72        | 0.39828    | 0.8530   |  |  |
| maternal femur length | 1  | 0.000921  | 71        | 0.39736    | 0.6885   |  |  |
|                       |    |           |           |            |          |  |  |
|                       |    | F2 genera | tion      |            |          |  |  |
| Coefficient:          | Df | Deviance  | Resid. Df | Resid. Dev | Pr(>Chi) |  |  |
| NULL                  |    |           | 58        | 0.42339    |          |  |  |
| lineage               | 3  | 0.044522  | 55        | 0.37887    | 0.1019   |  |  |
| maternal femur length | 1  | 0.000229  | 54        | 0.37864    | 0.8582   |  |  |
|                       |    |           |           |            |          |  |  |

| Table S11: Test statistics of Chi-squared tests to assess the significance of linear model terms explaining |
|-------------------------------------------------------------------------------------------------------------|
| total offspring production. No significant effect of lineage was found in any generation. In the F1         |
| generation there was a significant effect of maternal femur length (indicated with an asterisk).            |

| F0 generation         |    |         |         |                |                  |  |  |  |
|-----------------------|----|---------|---------|----------------|------------------|--|--|--|
| Coefficient:          | Df | Sum Sq  | Mean Sq | <b>F-value</b> | Pr(>F)           |  |  |  |
| lineage               | 3  | 217.89  | 72.632  | 2.1383         | 0.1021           |  |  |  |
| maternal femur length | 1  | 47.10   | 47.100  | 1.3867         | 0.2425           |  |  |  |
| residuals             | 78 | 2649.39 | 33.967  |                |                  |  |  |  |
|                       |    |         |         |                |                  |  |  |  |
| F1 generation         |    |         |         |                |                  |  |  |  |
| Coefficient:          | Df | Sum Sq  | Mean Sq | <b>F-value</b> | <b>Pr(&gt;F)</b> |  |  |  |
| lineage               | 3  | 82.65   | 27.55   | 0.9828         | 0.4057           |  |  |  |
| maternal femur length | 1  | 481.54  | 481.54  | 17.1766        | < 0.000 *        |  |  |  |
| residuals             | 73 | 2046.52 | 28.03   |                |                  |  |  |  |
|                       |    |         |         |                |                  |  |  |  |
|                       |    | F2 gene | eration |                |                  |  |  |  |
| Coefficient:          | Df | Sum Sq  | Mean Sq | <b>F-value</b> | Pr(>F)           |  |  |  |
| lineage               | 3  | 89.56   | 29.853  | 0.7176         | 0.5454           |  |  |  |
| maternal femur length | 1  | 0.05    | 0.052   | 0.0013         | 0.9718           |  |  |  |
| residuals             | 59 | 2454.39 | 41.600  |                |                  |  |  |  |
|                       |    |         |         |                |                  |  |  |  |

**Table S12**: Test statistics of Chi-squared tests to assess the significance of linear model terms explaining male offspring production. No significant effect of lineage, maternal femur length or mating status of the father was found in any generation.

| F0 generation           |    |        |         |                |        |  |  |
|-------------------------|----|--------|---------|----------------|--------|--|--|
| Coefficient:            | Df | Sum Sq | Mean Sq | <b>F-value</b> | Pr(>F) |  |  |
| lineage                 | 3  | 34.93  | 11.6436 | 1.8282         | 0.1490 |  |  |
| maternal femur length   | 1  | 2.78   | 2.7816  | 0.4368         | 0.5107 |  |  |
| mating status of father | 1  | 0.78   | 0.7811  | 0.1227         | 0.7271 |  |  |
| residuals               | 77 | 490.4  | 6.3688  |                |        |  |  |
|                         |    |        |         |                |        |  |  |

| F1 generation           |    |         |         |         |        |  |  |  |
|-------------------------|----|---------|---------|---------|--------|--|--|--|
| Coefficient:            | Df | Sum Sq  | Mean Sq | F-value | Pr(>F) |  |  |  |
| lineage                 | 3  | 12.83   | 4.2774  | 0.638   | 0.5930 |  |  |  |
| maternal femur length   | 1  | 16.69   | 16.6935 | 2.4899  | 0.1190 |  |  |  |
| mating status of father | 1  | 1.05    | 1.0453  | 0.1559  | 0.6941 |  |  |  |
| residuals               | 72 | 482.72  | 6.7045  |         |        |  |  |  |
|                         |    |         |         |         |        |  |  |  |
| F2 generation           |    |         |         |         |        |  |  |  |
| Coefficient:            | Df | Sum Sq  | Mean Sq | F-value | Pr(>F) |  |  |  |
| lineage                 | 3  | 17.382  | 5.7939  | 1.2263  | 0.3084 |  |  |  |
| maternal femur length   | 1  | 0.003   | 0.0031  | 0.0007  | 0.9795 |  |  |  |
| mating status of father | 1  | 4.576   | 4.5759  | 0.9685  | 0.3291 |  |  |  |
| residuals               | 58 | 274.039 | 4.7248  |         |        |  |  |  |

**Table S13**: Test statistics of Chi-squared tests to assess the significance of linear model terms explaining female offspring production. No significant effect of lineage or mating status of the father was found in any generation. In the F1 generation there was a significant effect of maternal femur length (indicated with an asterisk).

| F0 generation           |    |                |         |                |                  |  |  |  |
|-------------------------|----|----------------|---------|----------------|------------------|--|--|--|
| Coefficient:            | Df | Sum Sq         | Mean Sq | F-value        | Pr(>F)           |  |  |  |
| lineage                 | 3  | 108.21         | 36.071  | 2.0390         | 0.1154           |  |  |  |
| maternal femur length   | 1  | 26.99          | 26.990  | 1.5256         | 0.2205           |  |  |  |
| mating status of father | 1  | 3.30           | 3.301   | 0.1866         | 0.6670           |  |  |  |
| residuals               | 77 | 1362.17 17.691 |         |                |                  |  |  |  |
|                         |    |                |         |                |                  |  |  |  |
| F1 generation           |    |                |         |                |                  |  |  |  |
| Coefficient:            | Df | Sum Sq         | Mean Sq | F-value        | Pr(>F)           |  |  |  |
| lineage                 | 3  | 107.58         | 35.86   | 2.2359         | 0.0913           |  |  |  |
| maternal femur length   | 1  | 318.92         | 318.92  | 19.8850        | < 0.000 *        |  |  |  |
| mating status of father | 1  | 36.41          | 36.41   | 2.2705         | 0.1362           |  |  |  |
| residuals               | 72 | 1154.74        | 16.04   |                |                  |  |  |  |
|                         |    |                |         |                |                  |  |  |  |
| F2 generation           |    |                |         |                |                  |  |  |  |
| Coefficient:            | Df | Sum Sq         | Mean Sq | <b>F-value</b> | <b>Pr(&gt;F)</b> |  |  |  |
| lineage                 | 3  | 56.82          | 18.9412 | 0.6838         | 0.5655           |  |  |  |
| maternal femur length   | 1  | 0.08           | 0.0811  | 0.0029         | 0.9570           |  |  |  |
| mating status of father | 1  | 6.61           | 6.6118  | 0.2387         | 0.6270           |  |  |  |
| residuals               | 58 | 1606.48        | 27.6980 |                |                  |  |  |  |
|                         |    |                |         |                |                  |  |  |  |

**Table S14:** Some relevant Bioclim variables describing mean temperatures for important sites for this study. Boonah is the site where *Anaphes nitens* was collected from Australia in the current study, and the areas around Kwambonambi in Zululand, South Africa, are the target release sites. Penola is the original collection site of *A. nitens* in Australia, and Rooihoogte is the site where the South African parasitoids were collected for this study. Bioclim variables were obtained from WorldClim 2 (Fick & Hijmans, 2017) using the 'geodata' package in R, and averaged for an area with a 5km radius around the site.

| site                                      | latitude                            | longitude | bio1 | bio5 | bio6 | bio10 | bio11 | remarks                               |
|-------------------------------------------|-------------------------------------|-----------|------|------|------|-------|-------|---------------------------------------|
| Boonah (AU)                               | -27,9743                            | 152,7208  | 19,4 | 30,3 | 5,8  | 24,0  | 13,9  | AU population used in this study      |
| Kwambonambi<br>(ZA)                       | -28,5987                            | 32,0904   | 21,5 | 29,3 | 12,0 | 24,7  | 18,0  | Zululand, intended release area       |
| Penola (AU)                               | -37,3755                            | 140,8366  | 14,2 | 27,0 | 5,3  | 18,8  | 9,9   | Original collection site of A. nitens |
| Rooihoogte (ZA)                           | -26,0613                            | 30,2709   | 14,6 | 23,7 | 1,9  | 18,0  | 10,0  | ZA population used in this study      |
|                                           |                                     |           |      |      |      |       |       |                                       |
| Explanation of the Bioclim variables:     |                                     |           |      |      |      |       |       |                                       |
| Bio1                                      | Annual Mean Temperature             |           |      |      |      |       |       |                                       |
| Bio5                                      | Max Temperature of Warmest Month    |           |      |      |      |       |       |                                       |
| Bio6                                      | Min Temperature of Coldest Month    |           |      |      |      |       |       |                                       |
| Bio10                                     | Mean Temperature of Warmest Quarter |           |      |      |      |       |       |                                       |
| Bio11 Mean Temperature of Coldest Quarter |                                     |           |      |      |      |       |       |                                       |

## Supplementary figures:



**Figure S1:** Mean femur length of the mother parasitoids used for the different lineages in each generation. Different letters indicate significant differences (for F0: Kruskal-Wallis test;  $\chi^2 = 10.2986$ , df = 3, p = 0.02; subsequent Dunn's post-hoc tests with p <0.05. For F2: Kruskal-Wallis test;  $\chi^2 = 8.6234$ , df = 3, p = 0.03; subsequent Dunn's post-hoc tests with p <0.05). Lineages were compared separately within each generation; the significance letters only apply within a generation. The error bars show the standard error.



**Figure S2:** The proportion of *A. nitens* fathers which mated prior to the experiment is shown per lineage for each generation. Since mating usually happens quickly after a pair is put together, males that emerged together with females were assumed to have mated. Due to limitations in parasitoid and host egg capsule availability, those males were still used, but their mating status was recorded for later analysis.



**Figure S3**: Average development time of male and female offspring for the whole dataset combined. The difference was significant according to the Wilcoxon signed rank test (V= 4944.5, p<0.001 and effect size = 0.304). Parasitoids were reared at a constant temperature of 23°C and 95%RH with a light:dark cycle of 14:10 hours. The error bars show the standard error.



**Figure S4**: Estimates for each model term in the GLMs for sex ratio, shown with the 95% confidence intervals. The ZA $\Im xZA \clubsuit$  lineage serves as the reference level for the effect 'lineage', and the model estimates of the other lineages indicate the estimated difference from this lineage. If there is no real difference between two lineages, the estimate of the model term is expected to be close to zero. Meanwhile, the 95% confidence intervals provide an indication for the level of certainty about the observed value. The graph shows that in the F1 generation for the AU $\Im xZA \clubsuit$  lineage the value zero does not fall within the 95% confidence interval. This could indicate a true difference with the ZA $\Im xZA \clubsuit$  lineage, which was also suggested by the Chi-squared test to assess the significance of the GLM model terms (Table S6), but not confirmed by the subsequent post-hoc test (Table S7). If sex ratio were to be truly lower for this lineage, it would still not be a concern as it is not an indication of reproductive incompatibility, but instead, a lower sex ratio means more daughters are produced and fertilization is succesfull.



**Figure S5**: Estimates for each model term in the GLMs for development time of daughters (top row) and sons (bottom row), shown with the 95% confidence intervals. The ZA $\Im xZA \square$  lineage serves as the reference level for the effect 'lineage', and the model estimates of the other lineages indicate the estimated difference with this lineage. In the F0 generation the sons of the ZA $\Im xAU\square$  lineage were found to develop faster compared to the ZA $\Im xZA\square$  lineage (Table S8 & S9) which is also supported by the model estimate and the 95% confidence intervals; all values are smaller than zero. Furthermore the 95% confidence intervals suggest that the sons of the AU $\Im xAU\square$  lineage also develop faster compared to the ZA $\Im xZA\square$  lineage, but this was not supported by the GLM analysis (Table S9). Note that the x-axes all have the same scale.



**Figure S6**: Estimates for each model term in the linear models for fecundity in terms of production of daughters (top row), sons (middle row) and total offspring (bottom row), shown with the 95% confidence intervals. The ZA $\Im xZA \square$  lineage serves as the reference level for the effect 'lineage', and the model estimates of the other lineages indicate the estimated difference of those lineages from the ZA $\Im xZA \square$  lineage by the model. No discrepancies with the other analyses for fecundity were found. Note that the x-axes have different scales.



**Figure S7**: Predicted relationship between the size of a mother parasitoid with total (A) and female (B) offspring production in the F1 generation. The estimated marginal means were calculated using the *emmeans* package from the linear models, and the 95% confidence intervals are shown with the shaded areas.