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Abstract

Over the years, informative frequency band (IFB) identification emerged with the aim of guaranteeing optimal demodulation-
band for the diagnostics of rotating machines. A measured vibration signal from complex rotating machinery, such as a gearbox
system, invariantly exhibits heavy and impulsive background noises. As a result, robust IFB identification methods are needed to
adapt to these background noises. In this context, a notion of spectral log-mean-exp sparsity measure using exponential function-
based quasi-arithmetic mean is coined and the synchronous median instantaneous power spectrum-gram (SM-IPSgram) is proposed
as an IFB identification method for gear diagnostics. The spectral log-mean-exp satisfies at least five of six criteria that are necessary
for the measurement of sparsity, and its performance is comparable to that of the classical (but powerful) sparsity measures. On the
other hand, the SM-IPSgram has some very attractive properties, viz: (i) it is computationally efficient, (ii) extremely robust, (iii)
can cope with all kinds of background noises, e.g. strong cyclostationary interferences, Gaussian and non-Gaussian noise, and (iv)
it produces a filter banks decomposition to accentuate only the carrier/spectral frequency of the defect, and thus gives much earlier
warning of abnormal conditions. Eventually, the experimental and numerical results are reported to corroborate the effectiveness of
the SM-IPSgram, and its intrinsic properties are pointed out and compared to other advanced methods in the literature.

Keywords: Sparsity measures, Spectral log-mean-exp, Gear diagnostics, SM-IPSgram, Weighting function, Informative frequency
band

1. Introduction

Gears are vital components in a wide range of industrial and transport applications. A faulty gear system could result in severe
damage if defects occur to one of the gears during the operating condition. Many types of gear faults, including fatigue fracture,
incipient cracks, and spalls on a tooth face, are localised [1, 2]. As a result, early detection of localised gear faults has been a
research imperative for decades. Diagnosing a gear system by examining vibration signals is the most commonly used method for
detecting gear failures [3]. Therefore, gear diagnostics is only regarded as meaningful if the damage can be detected at an early
stage. Vibration analysis has been widely used in the condition monitoring of rotating machinery [4]. It offers the advantage that
accelerometers can be used to acquire the mechanical vibration signals which are representative of physical processes within the
gearbox system. Nevertheless, it is still difficult to detect the fault since the signal resulting from the defect is generally obscure [5].

In such a situation, filtering an acceleration signal using an optimal demodulation band may be an indispensable preliminary to
gear diagnostics [2, 6, 7]. In the literature, much work has been directed towards the demodulation analysis of signals having time-
varying spectral characteristics, and strong background noises [8]. The last decade has seen dramatic advances in the development of
informative frequency band (IFB) identification methods and their application to machine condition monitoring and fault diagnosis
of rotating machinery. The history may conveniently start with the work of Antoni on the method of fast Kurtogram [7] since it
was the author who first made effective use of the spectral kurtosis [9, 10] and the 1/3-binary tree filter banks for the automatic
identification of optimal demodulation band. The fast Kurtogram in the original paper which forms the basis of all modern research
on the subject was applied to diagnose faults under various operating conditions. Spectral kurtosis is the most popular sparsity
measure to characterise the sparsity of signals. However, it was shown that spectral kurtosis which is used in the calculation of
fast Kurtogram loses effectiveness due to impulsive noise and strong interferences [11]. In more recent years, several consistent
estimates of optimal demodulation band have been proposed, each of which exhibits certain advantages over the original one i.e. fast
Kurtogram [8, 11–21].

Abbreviations: IFB, informative frequency band; STFT, short-time Fourier transform; SE, squared envelope; IPS, instantaneous power spectrum; SA-IPS,
synchronous average instantaneous power spectrum; AIPS, averaged instantaneous power spectrum; CS2, second-order cyclostationary; CIES, combined improved
envelope spectrum; TF-IPS, time-frequency instantaneous power spectrum; AF-IPS, angle-frequency instantaneous power spectrum; CS1, first-order cyclostationary;
CNS1, first-order cyclo-non-stationary; CNS2, second-order cyclo-non-stationary; FFT, fast Fourier transform; ICS2, indicator of second-order cyclostationary
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There are many paradigms stemming from diverse research domains advocating the importance of sparsity measures in demodu-
lation analysis. These techniques have been introduced as a premise that permits quantifying the sparsity of signals, and, thus, paving
the way to unprecedented possibilities in the fields of machine condition monitoring and fault diagnosis of rotating machinery. The
sparse measure is a powerful means to quantify the sparsity of repetitive transients [15] caused by a variety of faults in many types
of rotating machinery. Hence, they facilitate the detection of incipient faults and guide optimal envelope demodulation IFB identifi-
cation. Sparsity measures are based on some commonly used statistical parameters. Currently, the application of these techniques to
an angle-time cyclostationary framework offers exciting possibilities for demodulation analysis to enhance the detection of smaller
transients [22].

To date, many time-frequency analyses such as the short-time Fourier transform (STFT) and the squared envelope (SE) of the
complex envelope such as the instantaneous power spectrum (IPS) [23] have been used as a basis to identify IFB. The IPS has
emerged as a joint time-frequency plane that enables the rapid estimation of instantaneous frequency. However, it is very difficult if
not practically impossible to use sparsity measures to identify demodulation bands in the presence of non-Gaussian noise or impulsive
interference. In most cases, IFB identification in the presence of non-Gaussian noise and cyclo-stationary interferences is a matter of
great difficulty and it is quite impossible to obtain a reliable demodulation band using most existing methods in the literature. Had
this been possible, the controversy would long since have been brought to a close.

In the past decades, several extensions of the IPS were proposed which include the synchronous average instantaneous power
spectrum (SA-IPS). In the literature, Wang and McFadden [24, 25] were the first to introduce the concept of the SA-IPS by calculating
the spectrogram from a synchronous averaged signal. Later, Urbanek et al. in Ref. [26, 27] presented the concept of the averaged
instantaneous power spectrum (AIPS) that ties Wang and McFadden approach more closely, but the manner of carrying out the
work differed somewhat in details. The AIPS is probably the most significant contribution in the field of gear diagnostics. It has
been proved to be a powerful signal processing technique that enables second-order cyclostationary (CS2) signals to be separated
from the total vibration of the gearbox, and this property makes it very suitable for the detection of vibration transients generated
by localised and distributed gear faults. It is particularly useful for analysing the vibration of complex mechanical systems such as
gearboxes [24]. However, the very great majority of treatments in the ensuing 10 years used the AIPS only for gear diagnostics,
although a few authors do briefly mention how the bearing slip impedes the application of the method for bearing diagnostics. So,
when performing any form of synchronised averaging on the bearing signal, we commit an error because the repetitive transients do
not correspond to an exact angular position due to the bearing slip [28]. This error is always smaller when the signal is measured
under constant operating conditions. While the SA-IPS has proved its performance for gear diagnostics, problems arise when it is
applied to vibration signals with strong non-Gaussian noise and interferences. Further investigation thus appeared necessary, and it
was clear that it ought to be of a much more robust diagnostic procedure.

This paper concerns the development of IFB identification techniques to perform gear diagnosis of rotating machines. In the last
few years, numerous new methods have been proposed to overcome the complexity of the signals generated by complex machines
and those generated by faults. The advent of the weighting function to identify multiple filter banks has caused considerable attention
to be paid to the development of IFB identification methods that can also be used for that purpose. Hence, the great advances that
have been made in IFB identification methods in recent years have been in two directions. On one hand, they are used for the
automatic identification of the optimal demodulation band in the presence of strong background noises, and on the other hand, they
are used for designing a weighting function or a Combined Improved Envelope Spectrum (CIES) to extract multiple filter banks. The
purpose of this paper is to contribute to these criteria.

This paper has been organised as follows: Section 2 covers a brief overview of the instantaneous power spectrum, sparsity
measures, alpha-stable distribution and gear diagnostics. Section 3 introduces a new concept of spectral log-mean-exp sparsity
measure, and the synchronous median instantaneous power spectrum-gram (SM-IPSgram) is proposed. Section 4 examine the
performance of the spectral log-mean-exp and the SM-IPSgram on the Centre for Asset Integrity Management (C-AIM) experimental
datasets in diagnosing the localised gear fault. Their intrinsic properties are clearly pointed out and systematically compared to
other methods in the literature. The section ends with a weighting function for identifying multiple IFBs. Section 5 present the
phenomenological gearbox model of distributed gear-related faults. Finally, we state in Section 6 some concluding remarks.

2. Preliminaries

This section provides the reader with a short description of existing methods in the literature. First, the Instantaneous power
spectrum is described. Then, the concept of sparsity measures, alpha-stable distribution, and gear diagnostics are presented in detail.
The concept of sparsity measures has great advantages in providing reliable means of identifying IFB for demodulation analysis. In
this paper, sparsity measures will play an important role in developing a robust IFB identification methodology.

2.1. Averaged instantaneous power spectrum
Let {x[n]}Lt−1

n=0 be a discrete record of finite length Lt acquired at the sampling period ∆t (or sampling frequency ∆ f ), having a
rotational speed profile {ϑs[n]}Lt−1

n=0 of unit [rad/s]. The STFT transforms a discrete record of finite length into two-dimensional data,
with one axis as the location of the tapering data window and the second axis as the corresponding spectral frequency. The spectral
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frequency resolution ∆ f is governed by the uncertainty principle, i.e., inversely proportional to the length of each Nw-long segment.
Mathematically, the computation of the STFT or complex envelope is expressed as

x(tm; fk,∆ f ) =
Nw−1∑
n=0

x[n + mRh] · w[n]e−2πink/Nw (1)

where ∆ f = ∆ f /Nw is the spectral frequency resolution or the bandwidth. The hop size Rh is calculated as an integer of (1−Ro)Nw,
where Nw is the window length and R(0 < R ≤ 1) is the overlap fraction, i =

√
−1, is an imaginary number, {x[n + mR]}Nw−1

n=0 is the
shifted version by Rh sample such that it selects Nw-long segment of {x[n]}Lt−1

n=0 , and {w[n]}Nw−1
n=0 is a positive-definite Nw-long tapering

data window computed from a lag-window (i.e., symmetric about zero). The time-frequency instantaneous power spectrum (TF-IPS)
can be estimated by the squared envelope of the complex envelope as

εx(tm; fk,∆ f ) =
∆t

Lt
∑Nw−1

n=0 |w[n]|2
|x(tm; fk,∆ f )|2 (2)

The angle-frequency instantaneous power spectrum (AF-IPS) can be calculated by order tracking+ the TF-IPS with respect to
the time variable, denoted as

εx(φc; fk,∆ f ) = COT∆t→∆φ{εx(tm; fk,∆ f )} (3)

where COT∆t→∆φ{∗} is the computed order tracking transform that converts the time variable tm at different spectral frequency fk
to an angle variable φc. For an angular period of interest ϕ, the averaged instantaneous power spectrum is formally defined as follows
[26]:

ε
ϕ
x(φa; fk,∆ f ) = N−1

N−1∑
n=0

εx(φa + nLφ; fk,∆ f ) (4)

where Lφ is the angular length of the chosen period and εx(φa + nLφ; fk,∆ f ) is the segment of the AF-IPS.

2.2. Sparsity measures
This subsection briefly mentions some of the most important blind indicators in the literature of sparsity measures. A number of

popular sparsity measures have been reviewed in detail elsewhere (Hurley and Rickard in Ref. [29]).

2.2.1. Hoyer index
In statistics, a norm ∥·∥ is a function that satisfies the following three conditions: relation of scalar multiplication to real multi-

plication, non-negativity and mapping of the identity, and triangle inequality. In general, norms are defined for matrices and most of
them could be defined for vectors. Hölder norm is a type of norm, often denoted as ∥·∥p [30]. It is only defined for p ≥ 1, denoted
by, ∥·∥p = p

√∑
i |xi|

p, where | ∗ | denotes the symbol of the absolute value of an input signal. We see that ∥·∥p is a non-increasing
function of p. In signal processing, Hölder norm is called Lp norm and this is used as a blind indicator for selecting IFB with maxi-
mum impulsiveness. There are two commonly used Lp norm vectors and these are: Manhattan norm [31], defined as ∥x∥1 =

∑
i |xi|,

corresponds to sums of distances along coordinate axes. Euclidean norm [32], define as ∥x∥2 =
√∑

i |xi|
2, corresponds to the length

of the vector. Therefore, the ratio between the Manhattan norm and the Euclidean norm gives birth to Hoyer index [33]. Its squared
envelope [34] is defined as:

Hoyer index =
(
√

N −
∑N−1

t=0 εx(t; f ,∆ f )√∑N−1
t=0 εx(t; f ,∆ f )2

)/(√
N − 1

)
(5)

where εx(t; f ,∆ f ) denote its squared envelope of the complex envelope, for a discrete-time signal x(t), t = 0, 1, . . . ,N−1 of length
N. The Hoyer index which is simply a normalised version of the ℓ2/ℓ1 − norm was proposed by Hoyer [33] in 2004. The Hoyer
index which satisfies at least five of six criteria that are necessary for the measurement of sparsity is the second-best sparsity measure
after the Gini index and pq-mean which satisfies six sparsity measure criteria [29, 35]. However, the mathematical representation of
the Gini index deters its use as a sparsity measure since it requires sorting of the value which is challenging. In general, the Hoyer
index has more nice properties (i.e. is sensitive to weak fault signatures) and it has been verified to perform better than most sparsity
measures.
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2.2.2. Spectral kurtosis
Kurtosis was first proposed by Karl Pearson [36, 37] in 1905 as a measure of tailedness of the probability distribution. In the

1970s, the concept of spectral kurtosis started to develop. In 1983, spectral kurtosis was first used for detecting impulsive events
in sonar signals. Two decades later, Antoni and Randall [9, 10] made an extensive investigation on the definition and calculation
of spectral kurtosis for condition monitoring of rotating machines to measure the severity of machine faults. In essence, spectral
kurtosis calculated from the STFT measures the kurtosis of the modulating signals in the time domain at different spectral frequency
bands and is used as a measure of repetitive transients [15] (impulsive and cyclo-stationary in nature). The spectral kurtosis is defined
as the fourth-order normalised cumulant [7], given as:

Kx( f ,∆ f ) =

〈∣∣∣x(t; f ,∆ f )
∣∣∣4〉〈∣∣∣x(t; f ,∆ f )
∣∣∣2〉2
− 2 (6)

where x(t; f ,∆ f ) denotes its time-frequency complex envelope in this case is the STFT, f is the spectral frequency, ∆ f = ∆ f /Nw

is the bandwidth or spectral frequency resolution calculated from sampling frequency ∆ f and the window length Nw, x(t) is the
time signal for a discrete-time signal x(t), t = 0, 1, . . . ,N − 1 of length N, and a constant value of negative 2 make use of Fisher’s
definition (i.e. spectral kurtosis becomes zero for Gaussian noises) to normalise the spectral kurtosis when complex Gaussian noises
are considered as an input to spectral kurtosis.

In signal processing, the sparsity measures such as spectral kurtosis are an essential prerequisite for IFB identification methods.
Spectral kurtosis is mostly used for STFT-based fast Kurtogram. There exist many other methods that adopted a similar procedure
as the fast Kurtogram, but use different sparsity measures or blind indicators.

2.3. Alpha-stable distribution
The alpha-stable distribution was first introduced by Lévy [38] in the late 1920s to describe the non-Gaussian (impulsive) behavior

in the data. This distribution can be described by four parameters: characteristic exponent αn, scale parameter or dispersion σ,
skewness parameter β and shift parameter µ. It is worth mentioning that the alpha-stable distribution does not have a closed-form
probability density function. The characteristic function ϕX(u) of an alpha-stable distribution [39] can be represented as:

ϕX(u) = E{eiuX} =

exp
{
− σαn |u|αn

(
1 − iβsgn(u)tan

( παn
2

))
+ iµu

}
αn , 1

exp
{
− σ|u|

(
1 + iβ 2

π
sgn(u)ln

(
|u|

))
+ iµu

}
αn = 1

(7)

where the parameters of the distribution are: αn ∈ (0, 2] which sets the level of impulsiveness and controls the heaviness of the
tail, β ∈ [−1,+1] which determines the degree of symmetry of the distribution, σ > 0, and µ ∈ R. As the characteristic exponent
αn decreases, the corresponding distribution exhibits a power-law behaviour. The alpha-stable distribution reduces to the Gaussian
distribution in the case where αn = 2 and β = 0, [40, 41]. Hence, this distribution can be used on the phenomenological gearbox
model to represent both Gaussian and non-Gaussian noise.

2.4. Gear diagnostics
The research on gear diagnostics has a significant grounding in literature and industry. The gears are commonly used in many

types of rotating machinery to transmit torque from one shaft to another. There are four principal types of gears namely, spur, helical,
worm, and bevel gears. The spur gear is one of the simplest types of gear commonly used in many applications to transmit torque
between parallel shafts [28]. The teeth of the spur gear are parallel to the shaft which makes the contact ratios lower. The helical
gear shares a similar philosophy with the spur gear, but it is less noisy because the teeth are inclined at an angle called helix angle
making the contact ratio larger [42]. In contrast, the bevel and worm gears are used to transmit the torque between intersecting and
perpendicular shafts respectively [40]. The gears are traditionally thought to be reliable and robust as compared to rolling element
bearings, however, the possibility of faults is unavoidable.

The common local gear faults include root cracks, tooth wear, and chipped and broken teeth. These local faults (i.e. CS2
signals) arise periodic shocks over a complete meshing cycle, indicating localised tooth damage. Within a gearbox system, there
exist first-order cyclostationary (CS1) signals that are deterministic (purely periodic) in nature and are known to be generated by
misalignment, shaft unbalance, and gear meshing [43]. Under time-varying operating conditions, these deterministic components and
local gear faults become first-order cyclo-non-stationary (CNS1) [44] and second-order cyclo-non-stationary (CNS2) [45] signals,
respectively. As a result, the measured vibration signal is often a mixture of the CNS1 signals, background noise, and CNS2 signals
which in combination effectively obscure the CNS2 signals. Since the gears and pinions are phase-locked to shaft speed, their
repetitive transients are intrinsically locked to a specific angular period. Hence, they will become CS2 signals after performing
angular resampling. In this case, synchronous averaging becomes a powerful tool for enhancing the presence of repetitive transients.
A simplified schematic of the gear and pinion meshing is shown in Fig. 1.
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Figure 1: A representation of the localised or distributed gear fault within a gearbox system.

where ϑ is the pressure angle between the common tangent and the line of action (or pressure line) of the pitch circle of gear
and pinion, fsh is the shaft frequency, ϕ is the angular period of interest. The pitch circle is the theoretical circle concentric with the
axis of the gear and pinion. The woodruff key or simply a shaft key is used for phase-locking the gear or pinion to the shaft. In this
case, the gear has 16 teeth, and the pinion has 12 teeth, and thus the gear ratio of this gearbox system is 16/12 = 1.333. The point of
engagement shown by the red cycle between the gear and pinion indicates any local gear faults. In signal processing, the majority of
work has been conducted on spur gears. The spur gear fault produces noticeable repetitive transients because the small face width
results in low contact ratios. The helical gears, on the other hand, have a large face width that results in larger contact ratios, making
the fault signatures weaker.

3. Spectral log-mean-exp sparsity measure

This section has three basic purposes: first is to introduce a concept of spectral log-mean-exp; second is to give the mathematically
rigorous definitions along with intuitive interpretations of six sparsity measure criteria; third is to illustrate the performance of
spectral log-mean-exp and also to give insight into the systematic error or bias associated with unnormalised exponential function
and instantaneous energy flow.

3.1. The concept of spectral log-mean-exp

As a classical method to provide a means of identifying IFB for demodulation analysis, sparsity measures have received extensive
attention and research in the academic circle. With the rapid evolution of IFB identification methods, the application of sparsity
measures has found an increasingly wide utilisation in signal processing and machine learning. In this section, a new concept of
spectral log-mean-exp sparsity measure is presented that satisfies five sparsity measure criteria. The spectral log-mean-exp is simply
a normalised version of the exponential function-based quasi-arithmetic mean (EQAM). Mathematically, the computation of EQAM
is formally defined as follows [46]:

MEx = logE

( N−1∑
n=0

EXl,h[n]/N
)
, (8)

where E is a constant and satisfies: E ∈ R+, E , 1. When E is an exponential function exp(·), logE(·) is equivalent to a natural
logarithm, viz: logE(·) = ln(·). Xl,h[n] is a bandpass filtered signal obtained by using a bandpass filter with a passband [l, h].

In the diagnostics of rotating machines, the use of EQAM as a sparsity measure is threefold: (i) the exponential function is used
to explode (i.e. numbers go from very small to very large very quickly) the time-domain signal, (ii) the mean or average improves
the detection of low-impact energy repetitive transients [15], and (iii) the logarithmic function which is the inverse function to
exponentiation, is used to remove large values. However, this simple approach is prone to systematic errors and numerical overflow,
and thus it cannot provide reliable guidance for identifying optimal demodulation bands.

The exponential function trick [47] for avoiding numerical overflow is given as logE(
∑N−1

n=0 EXl,h[n]−max{Xl,h[n]} ·Emax{Xl,h[n]}/N), where
max{Xl,h[n]}, is the shifting to avoid numerical overflow. If max{Xl,h[n]} ∈ R then, logE(

∑N−1
n=0 EXl,h[n]−max{Xl,h[n]}/N) + max{Xl,h[n]}.

Hence, the largest positive exponentiated values boil down to unity, and the other negative exponentiated values boil down to arbitrary
infinitesimal positive values. The spectral log-mean-exp of a signal Xl,h[n] is formally defined as follows:
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MEx = logE

( N−1∑
n=0

Eξl,h[n]−max{ξl,h[n]}/N
)
+max{ξl,h[n]}, (9)

where ξl,h[n] = Xl,h[n]/⟨Xl,h[n]⟩ is the energy flow normalised by its averaged value, ⟨Xl,h[n]⟩ =
∑N−1

n=0 Xl,h[n]/N denote infinite
average operation performed over the whole length of a signal. Hence, the spectral log-mean-exp computed from the TF-IPS may be
exhibited in the expanded form, denoted as

LMEε( f ,∆ f ) = max
{
εx(n; f ,∆ f )
⟨εx(n; f ,∆ f )⟩

}
+ ln

(
1
N

N−1∑
n=0

exp
(
εx(n; f ,∆ f )
⟨εx(n; f ,∆ f )⟩

−max
{
εx(n; f ,∆ f )
⟨εx(n; f ,∆ f )⟩

}))
, (10)

where εx(n; f ,∆ f ), denote the TF-IPS shown in Eq. (2), εx(n; f ,∆ f )/⟨εx(n; f ,∆ f )⟩ is the instantaneous energy flow normalised
by its averaged value, LMEε( f ,∆ f ) is the SE spectral log-mean-exp, ⟨εx(n; f ,∆ f )⟩ =

∑N−1
n=0 εx(n; f ,∆ f )/N, denote infinite average

operation, performed over the whole length of the time signals at different spectral frequencies. The spectral log-mean-exp as a
sparsity measure serves to accentuate an optimal demodulation band that can be used to extract the most out of vibration signal,
while it is computationally efficient to calculate. This sparsity measure with two normalisations: (i) instantaneous energy flow, and
(ii) exponential function, is now sufficiently developed for our purpose.

3.2. Six sparsity measure criteria

Sparse attribute 1 (Robin Hood): Let c = [c1, c2, . . . , cn], if c′ = [c1, . . . , ci + α, . . . , c j − α, . . . , cn], then S(c′) < S(c), ∀α, ci, c j |

c j > ci, α < (c j − ci)/2, and α ∈ R holds. The Robin Hood sparsity measure criteria indicate that the signal sparsity is decreased
by subtracting a specific amount from a large coefficient and adding this amount to a smaller coefficient as the energy of the signal
spreads out along the coefficients.

Sparse attribute 2 (Scaling): Let αc = [αc1, αc2, . . . , αcn], if S(αc) = S(c), ∀α ∈ R+ holds. The scaling sparsity measure criteria
indicate that multiplying all signal coefficients with the same scalar quantity must not affect signal sparsity. Therefore, it is possible
to calculate and compare the sparsity of represented signals with unequal magnitudes in different transform domains.

Sparse attribute 3 (Rising tide): Let α+c = [c1+α, c2+α, . . . , cn+α], if S(α+c) = S(c), ∀α ∈ R+ holds, except for the case where
c1 = c2 = · · · = cn. The rising tide sparsity measure criteria indicate that signal sparsity is reduced if a scalar quantity is added to
each term. Indeed, by adding the same scalar to all coefficients, the relative difference among coefficients becomes negligible and
therefore the sparsity should asymptotically become zero.

Sparse attribute 4 (Cloning): Let c ∥ c = [c1, c2, . . . , cn; c1, c2, . . . , cn], if S(c) = S(c || c) = S(c ∥ c ∥ c) = S(c ∥ c · · · ∥ c) holds,
where ∥ denotes concatenation operation. The cloning sparsity measure criteria indicate that concatenating several signals which
comprise exact copies of the original one must not affect signal sparsity. In other words, the sparsity of each signal is equal to the
sparsity of a twin signal.

Sparse attribute 5 (Bill Gates): ∀i ∈ {1, 2, . . . , n}, ∃β = βi > 0, such that ∀α > 0 : S([c1, . . . , ci + βi +α, . . . , cn]) > S([c1, . . . , ci +

βi, . . . , cn]) holds. The Bill Gates sparsity measure criteria indicate that by increasing the scalar quantity of a signal coefficient while
maintaining the remaining coefficients, the sparsity increases, as the signal energy is concentrated to a mere coefficient.

Sparse attribute 6 (Babies): Let c ∥ 0 = [c1, c2, . . . , cn; 0, 0, . . . , 0], if S(c ∥ 0) > S(c) holds. The Babies sparsity measure criteria
indicate that by adding extra zeros to the original signal, the signal sparsity increases. This criterion has a similar effect to Bill
Gates’s sparse attribute since adding zeros increases the signal energy concentration to fewer coefficients.

Table 1: Six sparsity measure criteria (Robin Hood, Scaling, Rising Tide, Cloning, Bill Gates, and Babies) for exponential function-based quasi-arithmetic mean and
spectral log-mean-exp.

Sparsity measures Definition C1 C2 C3 C4 C5 C6

Exponential function-based quasi-
arithmetic mean (EQAM)

logE

(∑N−1
n=0 EXl,h[n]/N

)
✓ ✗ ✗ ✗ ✓ ✓

Spectral Log-mean-exp logE

(∑N−1
n=0 Eξl,h[n]−max{ξl,h[n]}/N

)
+max{ξl,h[n]},

where ξl,h[n] = Xl,h[n]/⟨Xl,h[n]⟩
✓ ✓ ✓ ✗ ✓ ✓

For the sake of simplicity, we confine ourselves almost entirely to a few sparsity measures related to exponential function-based
quasi-arithmetic mean. It is proved mathematically in Table 1 that the spectral log-mean-exp satisfies five sparsity measure criteria
(Robin Hood, Scaling, Rising Tide, Bill Gates, and Babies). These criteria have demonstrated the major effectiveness and adequacy
of the spectral log-mean-exp compared with the exponential function-based quasi-arithmetic mean which satisfied only three sparsity
measure criteria (Robin Hood, Bill Gates, and Babies).
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3.3. Examples of application

The usefulness of spectral log-mean-exp as sparsity measures for demodulation analysis is investigated. To demonstrate the
systematic error or bias associated with unnormalised energy flow, the EQAM and spectral log-mean-exp are computed and displayed
in Fig. 2. The TF-IPS used to compute the spectral log-mean-exp was calculated from the acceleration signal obtained from the C-
AIM experiment datasets which will be described in detail in Section 5.1. Experimental results for EQAM sparsity measures (see
Figs. 2(a) and 2(c)) indicate that the EQAM perform sub-optimally since it introduces too much discordant that will hinder it to
provide a means of paving a binary tree filter banks for identifying optimal demodulation band.
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Figure 2: Exponential function-based quasi-arithmetic mean (EQAM) with unnormalised instantaneous energy flow and unnormalised instantaneous energy flow in
logarithmic scale (subplot (a) and (c) respectively) and the spectral log-mean-exp with normalised instantaneous energy flow and normalised instantaneous energy
flow in logarithmic scale (subplot (b) and (d) respectively).

The experimental results for spectral log-mean-exp sparsity measure are illustrated in Figs. 2(b) and 2(d). The preceding results
proved that the spectral log-mean-exp exhibits reliable sparse quantisation capability as compared with the EQAM sparsity measure.
In particular, the normalised sparsity measures obey the central limit theorem because the spectral log-mean-exp at different window
lengths tends to a normal distribution. If such an estimate obeys the Central Limit Theorem, then the smaller and larger window
lengths tend to contain minimal impulsiveness.

In order to demonstrate the numerical overflow associated with an unnormalised exponential function, the spectral log-mean-
exp for unnormalised and normalised exponential functions using a window length of 64 and 128 are computed and displayed in
Figs. 3(a) and 3(b) respectively.
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Figure 3: Sparsity measure: the spectral Log-mean-exp with normalised exponential function and unnormalised exponential function with overflow encountered when
exponentiating a value greater than or equal to 710 in magnitude: (a) computed from the IPS with the window length of Nw = 64, and (b) computed from the IPS with
the window length of Nw = 128.

In order to get an exact idea of how numerical overflow affects the performance of the unnormalised exponential function of the
spectral log-mean-exp, it is necessary to examine in detail the sparsity measure on the SE of the complex envelope with substantially
large magnitude, so that we can show the magnitude under which the numerical overflow is encountered in the exponential function.
From the preceding results, it is apparent that the magnitude greater than exp(710) = ∞, will lead to numerical overflow to be
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encountered in the exponential function and vise versâ. One can distinguish between different normalised and unnormalised expo-
nential functions of the spectral log-mean-exp. In this way, we can guard against the numerical overflow related to the exponential
function. The utility of this sparsity measure will appear more clearly in the ensuing sections.

4. Proposed methodology

This subsection presents the state of the art regarding the IFB identification method named the SM-IPSgram. In detail the SM-
IPSgram for identifying the IFB and a weighting function is specially designed to enable pervasive monitoring of rotating machinery
under harsh operating conditions, thus allowing the detection of gear faults at an incipient stage. The performance of the proposed
method is reliant on the sparsity measures, viz., the spectral log-mean-exp. In order to decide what conventional binary tree filter
banks are to be attached to our proposed SM-IPSgram, it seems necessary in the first instance to consider the 1/2-binary tree as it is
the simplest and most cost-effective, we then consider the filter bands of the 1/3-binary tree. The flow diagram for SM-IPSgram is
shown in Fig. 4 and the step-by-step details for its extraction are described as follows.

Acquiring the acceleration signal and instantaneous angular speed (First echelon)

Pre-processing techniques and instantaneous power spectrums (Second echelon)

Proposed synchronous median instantaneous power spectrum-gram (Third echelon)

Angle-frequency instantaneous power spectrum
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ε
ϕ
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◦ Kurtosis∗

Instantaneous angular speed
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Shaft
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shaft encoder

Optical fibre
speed sensor

Acceleration signal

Instantaneous angular speed

Figure 4: A three-echelon flow diagram comprised of (i) acquiring the acceleration signal and instantaneous angular speed, (ii) pre-processing techniques and
instantaneous power spectrums, and (iii) the proposed synchronous median instantaneous power spectrum-gram. As indicated by the dashed arrow lines, the second
and third echelons are the continuation of the first and second echelons, respectively.

Step 1. Measure the vibration signal from the rotating machinery and remove the amplitude modulations using NAMVOC [48].
This changes the CNS1 signals into CS1 signals under time-varying operating conditions. Then, remove these CS1 signals
or deterministic gear components using the cepstrum pre-whitening.

Step 2. Calculate the whitened TF-IPS, εx(t; f ,∆ f ), then order tracked it with respect to the time axis to yield AF-IPS, εx(φ; f ,∆ f ).
Step 3. Apply synchronous median (SM) to a whitened AF-IPS with respect to angle φ axis at a targeted angular period ϕ = α−1

f ault

to yield a whitened SM-IPS, εϕx(φ; f ,∆ f ).
Step 4. In this step, the sparsity measures are applied to whitened SM-IPS with respect to angular position φ axis to yield a spectral

frequency vector ( f ,∆ f ) that contains rich information about the impulsiveness of the enhanced modulating signals on the
whitened SM-IPS. This procedure is repeated nth times, where n ranges from 1 to ⌊log2(length(x(t)))⌋, with an increment of
1 for 1/2-binary tree filter banks. The overlap fraction R is set to a constant value of 0.75 for the SM-IPSgram.

Step 5. Lastly, we use the IFB, [ fbw, fc], and the spectral frequency vector ( f ,∆ f ) on the SM-IPSgram corresponding to Nw to design
the weighting function, ω f ( f ,∆ f ) that is used to combine multiple IFBs.
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5. Experimental investigations

This section aims to assess and compare the detection and diagnostic capability of the SM-IPSgram estimation of the spectral
log-mean-exp to other advanced methods in the literature, on the basis of the experimental results. In Section 5.3, we demonstrate
the superiority of the SM-IPSgram in identifying optimal demodulation band of the localised gear fault over two competing methods,
namely the fast Kurtogram, and the ICS2gram. The selection of these methods is based on their advanced performance and historical
importance in this field of study. The fast Kurtogram is simpler and will be considered first. In the literature, the fast Kurtogram
has been used as a benchmark for the IFB selection to obtain a rich filter band blindly. On the other hand, the ICS2gram has the
potential to reveal weak faults more effectively because it uses an indicator of second-order cyclostationary (ICS2) content [49] as
an objective function.

5.1. The C-AIM experimental dataset

The gear run-to-failure data provided by the Centre for Asset Integrity Management (C-AIM) at the University of Pretoria in
South Africa are used as a benchmark dataset. The helical gearbox test rig was originally designed by Stander and Heyns in Ref.
[50]. It mainly consists of an alternator, three helical gearboxes, and an electrical motor. The test rig also consists of a set of vibration
acquisition systems, a personal computer, and a control box that cannot be seen in the setup. The two helical gearboxes which are
not monitored have the same structure, the one connected with the motor reduces speed and the other one increases speed. The
monitored helical gearbox is comprised of bearings, gear, pinion, and shafts. An alternator and electrical motor apply time-varying
load and speed to the test rig, respectively. The C-AIM experimental test rig is shown in Fig. 5.

Alternator Gearbox

Monitored gearbox

Gearbox

Electrical motor
Accelerometer

Optical probe, and
shaft encoder

Figure 5: Centre for Asset Integrity Management (C-AIM) experimental test rig [51].

The monitored helical gearbox on the C-AIM experimental test rig is Siemens E68-A-100 helical gearbox, and the other two
gearboxes are Siemens E38-A-100 helical gearboxes. The motor is Weg 5,5 kW three-phase four-pole squirrel cage electrical motor,
and the alternator is a 5.5 kVA Mecc Alte spa three-phase alternator. Two accelerometers were used to measure the vibration signals
on the monitored gearbox. The first accelerometer is the Wilcoxon ICP uni-axial accelerometer, which is mounted on top of the
gearbox casing. The second accelerometer is a 100 mV/g PCB ICP tri-axial accelerometer which cannot be seen in the setup, it is
mounted on the side of the gearbox casing.

In a helical gearbox system, the pinion and gear teeth are prone to local faults including root cracks, tooth wear, chipped tooth,
and broken teeth because they experience high load due to harsh environmental conditions. For these reasons, a root crack on the
gear tooth located in the monitored gearbox is created in our experiments. The gear has 37 teeth, and the pinion has 20 teeth, and
thus the gear ratio of the helical gearbox is 37/20 = 1.85. The gear before and after the fatigue experiment is shown by a cracked and
broken tooth, which is illustrated in Fig. 6. An eight-channel OROS OR35 data acquisition system is used to acquire the vibration
signal for further processing.

The rotational speed profile displayed in Fig. 7 in was measured using a Zebra-strip shaft encoder with 88 pulses per revolution
and Optel Thevon optical switch. The vibration signals were collected under various loading conditions and rotating speeds. The
sampling frequency ∆ f is 25.6 kHz, sampling length is almost 20 sec. A sampling frequency ∆ f of 51.2 kHz is used for the Optel
Thevon optical switch to capture the shaft position accurately on the Zebra-strip shaft encoder. During the fatigue experiment, a total
of 1400 files were collected. However, only 200 files ranging from files 1 to 1400 with equal spacing will be used to capture the
damage signal from inception to completion of this experiment.

The rotational speed profile ranging between 13 to 18 rad/s is imposed on the motor to represent the time-varying operating
conditions. This operating condition provides sufficient complexity to critically evaluate the performance of the proposed methods
in diagnosing the gear fault with low-impact energy. The time-varying operating conditions are expected to cause both amplitude
and phase modulation on the measured vibration signal. As a result, the measured vibration signal of the gear fault is often a mixture
of the CNS1 signals, background noise, and CNS2 signals.
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(a) (b)

Cracked tooth Broken tooth

Figure 6: Helical gear in the C-AIM experimental test rig (a) gear with 50% cracked tooth representing incipient fault, and (b) gear with broken tooth representing
matured fault [51].
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Figure 7: The rotational speed profile for C-AIM experimental test rig.
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Figure 8: Acceleration signals acquired from the helical gearbox casing with damaged gear conditions.

10



The measured vibration signal illustrated in Fig. 8 represents the localised gear fault at an incipient stage respectively. Looking
at the measured vibration signals, it is not possible to conclusively identify the localised gear fault. This vibration signal is heavily
clouded by strong interference with substantially large magnitudes. This interference appears on both vibration signals with healthy
gear conditions and damaged gear conditions. This impedes the application of many conventional signal-processing techniques. In
the next section, we study the kinematics of the first-order cyclo-non-stationary signals (i.e. a deterministic part of CNS signal)
which are known to mask the gear and bearing fault signatures of the gearbox system under non-stationary conditions.

5.2. The framework of SM-IPSgram in gear diagnostics

This section gives a comprehensive and systematic framework of the detailed applications of sparsity measures on the IPS
representation. First, some important challenges related to harsh operating conditions are summarised to underline the need for a
robust IFB identification method. Throughout this section, our attention will be confined to the case of a helical gear fault which is
a challenge due to low-impact energy. In Section 5.2.1, we present the classical SA-IPS and the whitened SM-IPS. In Section 5.2.2,
we present the mathematical computation for the whitened SM-IPS estimation of sparsity measures. In Section 5.2.3, the binary tree
filter banks for classical SA-IPS and whitened SM-IPS are compared in terms of diagnostic capabilities.

5.2.1. The whitened synchronous median instantaneous power spectrum
The object of this section is to assess the performance of the classical SA-IPS and whitened SM-IPS which are the extension

of the IPS within the angle-time cyclostationary (AT-CS) framework. The theory of AT-CS signal is recognised as an effective
tool for machine condition monitoring under extreme conditions. This theory has emerged in the last decade as a novel approach for
characterising CS2 signals. Many research efforts have been made using this theory which led to several technological breakthroughs.
One major property of the CS2 signals is that they can be isolated from compound faults with ease, allowing the detection of weak
faults hidden in high levels of stationary noise and deterministic components. For the sake of a juster comparison, the SA-IPS and
whitened SM-IPS are computed and displayed in Fig. 9 with the aim of detecting the localised gear fault at an incipient stage.

(a) (b)

(c) (d)

Figure 9: (a) averaged instantaneous power spectrum for raw signal, (b) zoomed spectra with strong deterministic gear components, (c) synchronous median instan-
taneous power spectrum for whitened signal, and (d) zoomed spectral with evidence of localised gear fault.

The SA-IPS (see Fig. 9(a)) covers a spectral frequency range of [0–12.8] kHz and an angular position of [0–360] deg. The
location of the faulty tooth is at about 135 deg and is barely visible due to deterministic gear components and strong interference.
The deterministic gear components appearing at spectral frequency range [0-1.5] kHz and 8 kHz cover the whole angular position
axis. There exist several impacts that appear at about 10.4 kHz which resemble localised faults, space randomly over the angular
position. These impulsive interferences are related to the interference on the bearing outer race. They merit attention, in view of their
possible influence on the selected IFB. Consequently, it becomes apparent that the averaging in general is not resistant to outliers,
and thus may lead to erroneous diagnostic conclusions because the localised gear fault remains undetected in this specific case. The
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performance of the SA-IPS degrades significantly in the presence of strong interference and non-Gaussian noise and thus it cannot
be expected to give more than a somewhat rough result. To separate this strong interference is a matter of great difficulty but of much
importance to gear diagnostics.

In contrast, the localised gear fault is clearer and more visual on the whitened SM-IPS shown in Fig. 9(c). This approach provides
an effective and reliable way of maintaining the original signal structure by suppressing background noise and interference. There
exist two major IFBs at an angular position of 135 deg around the spectral frequency range of [0-1] kHz and [3-4] kHz. There are
several minor IFBs in the spectral frequency range of [5-7] kHz. In practical application, many types of gear faults including fatigue
cracks or spalls are localised and hence their angular position is very short as compared with the angular position for one complete
revolution of the gear. These results are promising and strongly indicate that the information can be used to pave a binary tree using
sparsity measures. In the next section, this representation will be used, together with the sparsity measures to obtain a filter banks
decomposition. We also intend to show how many of the disadvantages of the sparsity measures can be overcome by the whitened
SM-IPS and to indicate some of their useful properties in gear diagnostics.

5.2.2. The sparsity measures
It has been long known that the sparsity measures can identify IFB within reasonable computational times and therefore they

have the potential to be used as a basis to develop the IFB identification method efficiently. In this section, the spectral kurtosis,
Hoyer index, and the spectral log-mean-exp are considered. To allow a fair comparison of these sparsity measures in diagnosing the
localised gear fault, we first need to define them in terms of the whitened SM-IPS. This will necessitate a slight modification of the
definition of these sparsity measures. This modification we now wish to investigate this in order to give it a new meaning.

Spectral kurtosis: In the literature, spectral kurtosis has been considered by several authors from various perspectives and it
is mostly used for STFT-based fast Kurtogram to locate the carrier/spectral frequencies of the repetitive transients in the vibration
signal. The mathematical computation for the whitened SM-IPS estimation of the spectral kurtosis, S Kε( f ,∆ f ), is given as:

S Kε( f ,∆ f ) =

〈∣∣∣εϕx(φ; f ,∆ f )
∣∣∣4〉〈∣∣∣εϕx(φ; f ,∆ f )
∣∣∣2〉2
− 2 (11)

where εϕx(φ; f ,∆ f ) denote the whitened SM-IPS, f is the spectral frequency, ∆ f = ∆ f /Nw is the bandwidth or spectral frequency
resolution calculated from sampling frequency ∆ f and the window length Nw, and a constant value of negative 2 make use of Fisher’s
definition (i.e. spectral kurtosis becomes zero for Gaussian noises) to normalise the spectral kurtosis when complex Gaussian noises
are considered as an input to spectral kurtosis.

Spectral Hoyer index: In the literature on sparsity measures, the Hoyer index which satisfies at least five of six criteria that are
necessary for the measurement of sparsity is the second-best sparsity measure after the Gini index and pq-mean [35]. However, as
far as we know, there is no precise and unambiguous sparsity measure or blind indicator which may be termed the most accurate
available in identifying the optimal filter band for demodulation. We shall revert to this point in Section 5.4.4. The mathematical
computation for the whitened SM-IPS estimation of the spectral Hoyer index, HIε( f ,∆ f ), is given as:

HIε( f ,∆ f ) =
(√

Lφ −
⟨ε
ϕ
x(φ; f ,∆ f )⟩√
⟨ε
ϕ
x(φ; f ,∆ f )⟩2

)/( √
Lφ − 1

)
(12)

where εϕx(φ; f ,∆ f ) denote the whitened SM-IPS, f is the spectral frequency, ∆ f = ∆ f /Nw is the bandwidth or spectral frequency
resolution calculated from sampling frequency ∆ f and the window length Nw.

Spectral log-mean-exp: The full theoretical mathematical description of the spectral log-mean-exp is given in Section 3.3. This
subsection present only the mathematics pertinent to our implementation. Hence, the mathematical computation for the whitened
SM-IPS estimation of the spectral log-mean-exp, LMEε( f ,∆ f ), is given as:

LMEε( f ,∆ f ) = max
{
ε
ϕ
x(φ; f ,∆ f )

⟨ε
ϕ
x(φ; f ,∆ f )⟩

}
+ ln

(
1
Lφ

Lφ−1∑
φ=0

exp
(
ε
ϕ
x(φ; f ,∆ f )

⟨ε
ϕ
x(φ; f ,∆ f )⟩

−max
{
ε
ϕ
x(φ; f ,∆ f )

⟨ε
ϕ
x(φ; f ,∆ f )⟩

}))
(13)

where εϕx(φ; f ,∆ f ) denote the whitened SM-IPS, f is the spectral frequency, ∆ f = ∆ f /Nw is the bandwidth or spectral frequency
resolution calculated from sampling frequency ∆ f and the window length Nw.
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5.2.3. SM-IPSgram for gear diagnostics
The author commences by considering a very simple approach, consisting of applying a blind indicator of the classical SA-IPS. It

should be explained at the outset that we have concentrated attention on this particular problem solely because our interest is centered
on gear diagnostics. The incipient gear fault is represented by measurement 6, with a continuous record of finite length Lt = 496298
points. The maximum window length for 1/2-binary tree filter banks can be calculated as Nw = 2⌊log2(496298)⌋ = 2⌊18.9208⌋ = 218, the
sampling frequency ∆ f is 25.6 kHz. The smallest bandwidth is calculated as fbw = ∆ f /Nw = 0.0976 Hz. However, its value is very
small to capture a fault and it adds computational costs as well. As a result, the maximum window length can be reduced to a smaller
value. In this section, a window length of 214 is used and this gives a bandwidth of fbw = ∆ f /Nw = 1.5625 Hz. The overlap fraction
R of 0.75 with a Hanning window will be used for binary trees. Here, we aim to show the effect of the strong interferences on the
performance of the 1/2-binary tree paved using a well-known sparsity measure on the SA-IPS before approaching the development
of the SM-IPSgram.

(a) (b)

Figure 10: 1/2-binary tree paved using Hoyer index on the (a) SA-IPS, and (b) whitened SA-IPS.

In the literature on sparsity measures [29], the Hoyer index is the second best after the Gini index. However, it has more nice
properties and it has been verified to perform better than most sparsity measures. As a result, the Hoyer index is used as a sparsity
measure on the SA-IPS to pave the 1/2-binary tree filter banks displayed in Figs. 10(a) and 10(b) to highlight the spectral frequency
band [ fbw, fc] that carries rich diagnostic information about the impulsiveness of the enhanced modulating signal. The colours of
the binary tree are correlated with the impulsiveness of the signal. Dark blue is for minimum impulsiveness and dark red is for
maximum impulsiveness. Comparing the binary tree for raw and whitened SA-IPS, it is not possible to conclusively identify the IFB
for localised gear fault. A simple visual inspection of spectral frequency in the yellow ellipses shows little information about the gear
fault.

A glance at these binary tree filter banks shows that there is no systematic improvement. We can take this as our starting
point to understand why we gave preference to whitened SM-IPS over the classical SA-IPS. Up to this point, the procedure was
relatively simple except for the poor performance of the SA-IPS. This resulted in very feeble impulsiveness and consequently, long
vibration signals must be acquired. It is futile to endeavour to obtain reliable guidance for selecting IFB from the blind indicators
in the presence of non-Gaussian noise of strong interferences. The separation of strong interferences or non-Gaussian noise is
unfortunately by no means easy. In order to make certain of extracting the spectral frequency of the localised gear fault only, it is
essential to decompose the IPS at an angular period of interest using the synchronous median.

Illustrated in Fig. 11(a) is the 1/2-binary tree for raw SM-IPS. As expected, the method was not able to select the rich IFB because
the spurious and deterministic components effectively obscure the gear fault. But, when comparing this method with previous results,
the SM-IPS turns out to enhance the localised gear fault slightly because it attenuated high impulsiveness on the spectral frequency
range [10, 12.8] kHz. The reason behind this is that the SM is effective in attenuating strong interferences and non-Gaussian noise. It
is evident that when the SM-IPS is used, the principal difficulty relates to deterministic gear components, and that the impulsiveness
related to strong interference became infinitesimally small. This may be taken as very strong evidence that the performance of the
SM-IPS is in no way impaired by the presence of strong interferences in comparison to the SA-IPS. A higher degree of accuracy of
the selected IFB might, therefore, reasonably be expected. However, the SM cannot attenuate the deterministic gear components.
This approach performs sub-optimally and cannot be expected to give more than a somewhat rough result.

At most, the spurious harmonics due to deterministic gear components were conceded to be a possible cause for obscuring the
IFBs of the localised gear fault. It should be mentioned that although the utmost care was taken to remove the strong interference
with the SM-IPS, the deterministic gear components still present obscurity in our analysis. It is necessary to whiten the SM-IPS
very carefully if the utmost degree of accuracy is desired. Hence, the 1/2-binary tree paved using the Hoyer index on the whitened
SM-IPS is computed and displayed in Fig. 11(b). This approach produces the filter banks decomposition to accentuate only the
carrier/spectral frequency of the localised gear fault under strong interferences. As a result, this filter banks decomposition is named
the SM-IPSgram. The novelty of this method lies in the fact that it can be used for identifying IFB and a weighting function. The
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(a) (b)

(c) (d)

Figure 11: SM-IPSgram paved using the Hoyer index on (a) SM-IPS, (b) whitened SM-IPS, (c) WES of the frequency bands selected by the SM-IPSgram paved on
the SM-IPS, and (d) WES of the frequency bands selected by the SM-IPSgram paved on the whitened SM-IPS.

SM-IPSgram before and after applying pre-whitening bear little resemblance to one another, the only peak common to both being at
the spectral frequency in the range [3-4] kHz, unless we include the peak which appears at a lower spectral frequency in the range
[0-1] kHz. The SM-IPSgram can identify the IFB with the requisite accuracy, for the vibration signal with strong interferences. There
is thus nothing surprising in the fact that the whitened SM-IPS can attenuate most of the phenomena asynchronous to the desired
angular period ϕ = α−1

f ault.
To evaluate the performance of the methods in identifying rich IFB related to the fault, the improved envelope spectrum (IES)

of the order-frequency cyclic modulation coherence (OFCMCoh) are computed and displayed in Figs. 11(c) and 11(d). It is worth
recalling that the spectral frequency f contains information related to machine dynamics, while the cyclic orders contain rich diag-
nostic information related to machine kinematics. The purpose of the OFCMCoh-IES is to utilise this kinematic information at a
specific frequency band to detect the presence of a defect based on the cyclic orders α. The OFCMCoh-IES computed from the IFB
on the 1/2-binary tree of the raw SM-IPS (see Fig. 11(c)) clearly shows that it failed to identify the IFB due to deterministic gear
components. In contrast, the OFCMCoh-IES computed from the IFB on the SM-IPSgram (see Fig. 11(d)) was able to capture rich
diagnostic information. This approach can provide effective and reliable IFB.

5.3. The fast Kurtogram and the ICS2gram

In the earlier sections, the proposed SM-IPSgram has made it easy to carry out the estimation of the IFB and it forms a very
valuable indication of the presence of the localised gear fault. However, in order to assess the practical accuracy of such a method,
it is necessary to compare its results with those of more well-known analyses. In this section, the 1/3-binary tree which has higher
resolution as compared to the 1/2-binary tree will be used to identify the optimal demodulation band. Moreover, the intrinsic
properties of the SM-IPSgram are pointed out and systematically compared to the fast Kurtogram and the ICS2gram. The former
is a blind method that selects a band with maximum impulsiveness, whilst the latter is a targeted method that selects a band with
maximum ICS2 content.

Illustrated in Figs. 12(a) and 12(b) are the SM-IPSgram estimation of the spectral log-mean-exp, and the fast Kurtogram respec-
tively. Both methods identified the IFB with maximum impulsiveness, but from diametrically opposite points of view. In this case
of the localised gear fault of the helical gearbox, the load is shared across a large face width of a tooth, and this makes the IFB
identification using the fast Kurtogram difficult since the changes in vibration are smaller as compared to strong interference. As a
result, the fast Kurtogram gave a misleading IFB of { fbw; fc} = {1067 Hz; 12267 Hz}, which is almost similar to that of the sparsity
measure on the SA-IPS represented in a 1/2-binary tree (see Fig. 10). On the other hand, it is seen that the SM-IPSgram estimation of
the spectral log-mean-exp is insensitive to the strong interferences and clearly reveals multiple IFBs in the spectral frequency range
[0-7] kHz. In particular, the optimal demodulation band of { fbw; fc} = {100 Hz; 550 Hz}, is associated with maximum impulsiveness
produced by the localised gear fault.

The fast Kurtogram has become famous because it is the first successful attempt to introduce a little more scientific precision into
the treatment of problems that involve automatic IFB identification by using spectral kurtosis. However, this classical approach is
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(a) (b)

Figure 12: Localised gear fault: (a) SM-IPSgram estimation of the spectral log-mean-exp, and (b) fast Kurtogram.

open to criticism in light of modern standards of accuracy and robustness. It is doubtful whether a high degree of accuracy can be
attained by this fast Kurtogram since the blind methods usually perform sub-optimally as compared to targeted methods. In general,
the discordance between the IFB on the SM-IPSgram and fast Kurtogram is very significant, and this demonstrates the superiority of
the former over the latter. We must conclude that the blind method such as the fast Kurtogram is quite insufficient for determining
the reliable IFB in the presence of strong interferences.

(a) (b)

Figure 13: Localised gear fault: (a) SM-IPSgram estimation of the spectral Hoyer index, and (b) ICS2gram.

The results obtained are quite remarkable, as seen by comparing the SM-IPSgram and the ICS2gram in Figs. 13(a) and 13(b)
respectively. It has become evident that there are definite limitations in the ICS2gram, like all methods of analysis, which greatly
restrict its usefulness in gear diagnostics under strong interferences. In this specific case, the ICS2gram gave what purported to be
optimal filter band, { fbw; fc} = {400 Hz; 12600 Hz}, that contained the localised gear fault. Had it been possible to remove the strong
interference from the squared envelope spectrum, the IFB identification of the localised gear fault would not have been different from
that of the SM-IPSgram. Generally, the fast Kurtogram and this approach performed the same when comparing the IFB. However,
the ICS2gram can potentially reveal weak gear damage more effectively than the fast Kurtogram. We conclude with considerable
assurance that the SM-IPSgram is the most robust IFB identification method that can be used in gear diagnostics in the presence of
non-Gaussian noise and strong interference. The proposed SM-IPSgram, which performs comparatively better than other reported
methods in literature guarantees reliable performance in gear diagnostics.

5.4. SM-IPSgram estimation of the sparsity measures

To further lay a clear foundation for the concept of spectral log-mean-exp, this section presents the SM-IPSgram estimation of
the sparsity measures and discusses the similarities and differences of the filter banks decomposition when being implemented using
1/2 and 1/3-binary trees. Each sparsity measure is first outlined and its properties concerning the detection of the localised gear faults
are shortly examined. In practice, the most frequently discussed facets of IFB identification methods include the binary tree filter
banks which is directly related to the resolution. Hence, it was considered essential to present both the 1/2 and 1/3-binary tree in a
sufficiently elementary manner so that it might become apparent why we choose the latter over the former.

5.4.1. The spectral kurtosis
The notion of binary tree filter banks is a well-recognised and useful concept in signal processing for efficient accurate automatic

identification of the IFB. The 1/2-binary tree and 1/3-binary tree are used frequently and variously in paving the binary tree filter
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banks. Some researchers employ them interchangeably; others use them consistently in a specific manner. The question naturally
arises as to how these binary trees should be used in practice. This section will provide in sufficient detail the various approaches
to implementing binary tree filter banks. Hence, the 1/2 and 1/3-binary trees for SM-IPSgram estimation of the spectral kurtosis are
presented in Fig. 14, respectively.

(a) (b)

Figure 14: The SM-IPSgram estimation of the spectral kurtosis: (a) 1/2-binary tree, and (b) 1/3-binary tree.

As expected, the SM-IPSgram estimation of the spectral kurtosis produced a filter banks decomposition to accentuate only the
spectral frequencies of the localised gear fault. The whitened SM-IPS in general makes it possible to remove any periodic events not
exactly synchronous with the localised gear fault and to attenuate strong interferences and vibration sources other than the considered
gear fault. In this case, the maximum window length of Nw = 29 is used on the 1/3-binary tree. Based on the results of the 1/2-binary
tree (see Fig. 14(a)), the range of window lengths on the 1/3-binary tree seems intuitively reasonable: a smaller window length Nw

less than or equal to 24 may not provide enough spectral frequency resolution to capture narrowband localised gear faults, while a
higher window length Nw greater than or equal to 211 not provide enough impulsiveness on the modulating signals. Hence, in general,
it will be wasteful to demand more frequency resolution than we actually need. This maximum window length secures a reasonable
impulsivity of the modulating signals. In this specific case, the OFCMCoh-IES for both representations look similar to the results
presented in Fig. 11(d).

Generally speaking, the spectral kurtosis enjoyed many useful properties including reliable IFB identification in the presence
of strong interferences because the SM-IPSgram merges the benefits provided by whitened SM-IPS with the benefits provided by
the spectral kurtosis. However, it has been long known that spectral kurtosis loses this superiority when interference exists in the
measured vibration signal. This has been demonstrated using the fast Kurtogram which performed sub-optimally in diagnosing the
localised gear fault. This obviously adheres to our intuition since the spectral kurtosis only measures impulsiveness, and thus it
cannot distinguish between non-Gaussian noise, interferences, and repetitive transients which are impulsive in nature.

5.4.2. The spectral Hoyer index
In the previous subsection, the SM-IPSgram estimation of the spectral kurtosis has been demonstrated to provide consistently

reliable guidance for identifying optimal demodulation bands. This section considers the case of SM-IPSgram estimation of the
spectral Hoyer index. Hence, the 1/2 and 1/3-binary trees are presented in Fig. 15. The performance of the SM-IPSgram estimation
of the spectral Hoyer index is almost similar to that of the spectral kurtosis. Nevertheless, the concept of the SM-IPSgram enables
a more detailed analysis of the spectral frequencies of the localised gear fault and leads to a physically meaningful interpretation of
underlying phenomena in the presence of strong interferences.

(a) (b)

Figure 15: The SM-IPSgram estimation of the spectral Hoyer index: (a) 1/2-binary tree, and (b) 1/3-binary tree.
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All these sparsity measures have certain peculiar features in common, which are mainly rooted in the fact that they make use of
different statistical features. It is clear that we cannot decide which method of analysis is appropriate before we have investigated the
performance of these sparsity measures under a variety of operating conditions. As will appear in a Section 5.4.4, the performance
of the sparsity measures is not necessarily the same on different measurement numbers, but the IFB is almost the same for most
occasions.

This approach has the very great advantage that it attenuates both interferences and deterministic gear components and that the
sparsity measures are simple. Even though the 1/3-binary tree is probably preferable to the 1/2-binary tree, for this specific case, it
does not make any difference whether one used the 1/2-binary tree or a 1/3-binary tree since the identified IFB is exactly the same.
For extreme cases where the Nw is very large (e.g. Nw ≥ 212) the value selected by blind indicators tends to zero because of the
Central Limit Theorem. On contrary, the smaller Nw (e.g. Nw ≤ 24) leads to significantly large bandwidth, fbw = ∆ f /Nw which may
not allow the blind indicators to detect the faults with narrowband.

5.4.3. The spectral log-mean-exp
In this subsection, the performance of the proposed spectral log-mean-exp is assessed and its intrinsic properties are pointed out

and compared to the spectral kurtosis and the Hoyer index. The binary tree filter banks for spectral log-mean-exp as a sparsity measure
are presented in Fig. 16. Before considering the main results of the intercomparison of the three sparsity measures considered, it
will be convenient to refer to some incidental facts which were disclosed in the preceding sections. A question of interest is whether
any sensible systematic difference exists between the spectral kurtosis and log-mean-exp. Looking at different levels of the window
length [2n], it is apparent that there is no perceptible difference between the proposed log-mean-exp and the spectral kurtosis other
than the identified IFB on the 1/3-binary tree.

(a) (b)

Figure 16: The SM-IPSgram estimation of the spectral log-mean-exp: (a) 1/2-binary tree, and (b) 1/3-binary tree.

Therefore, it seemed desirable to make a more exhaustive investigation of the IFB of various these sparsity measures under
different measurement numbers, with a view to obtaining the filter bands and ascertaining if the spectral kurtosis and log-mean-exp
are interrelated. In general, we wish for an IFB identification method to extract the spectral frequencies of the defect. This approach
seems to be appropriate for gear diagnostics under harsh operating conditions. To conclude, the spectral log-mean-exp is simple and
reliable, and its performance is comparable to that of the classical sparsity measures. The SM-IPSgram of the sparsity measures
seems quite effective in detecting developing localised gear faults. The technique excels in accentuating the spectral frequencies of
the faults in the presence of strong interferences.

5.4.4. Comparison between three sparsity measures
The preceding results did not absolutely show any perceptible systematic difference in identifying IFB. Thus, we cannot reach

any conclusion about the performance of the proposed log-mean-exp as compared to other sparsity measures. To diminish the
risk of arriving at erroneous conclusions the performance of the sparsity measures is accessed for different measurement numbers.
The object of the present investigation has been to obtain quantitative about the performance of the sparsity measures, and more
especially to ascertain the centre frequencies fc and the magnitude of the bandwidths fbw. Hence, the identified IFB, [ fbw; fc], of
the SM-IPSgram estimation of the three sparsity measures represented in a 1/3-binary tree for different measurement numbers are
computed and displayed in Fig. 17. It is noticed that the centre frequency fc for three sparsity measures is all much the same, the
most noticeable difference being that they are sensitive to impulsiveness in different spectral frequencies of the localised gear fault.
One of the most curious facts about blind indicators is that they perform differently in identifying impulsiveness of the enhanced
modulating signals. The IFBs on the spectral log-mean-exp and spectral kurtosis are by no means sui generis, and a remarkable
instance has been observed in the case of their bandwidths. All the sparsity measures give the remarkably close agreement of the
IFB for localised gear fault.
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Figure 17: The IFB of the SM-IPSgram estimation of the three sparsity measures represented in a 1/3-binary tree for different measurement numbers.

The bandwidth fbw varies very little throughout a measurement number, such that throughout this range the bandwidth will be
very nearly constant. Hence, if we draw a graph to represent the mean bandwidth fbw, we get very approximately a straight line that
represents the bandwidth throughout the measurement number accurately. It is clear that the SM-IPSgram estimation of the spectral
Hoyer index (see Fig. 17(d)) has the merit of giving nearly constant bandwidth for various measurement numbers. The fact that this
results of the bandwidth fbw shows that there is no striking resemblance between the spectral log-mean-exp and spectral kurtosis (see
Figs. 17(e) and 17(f)), except for a measurement number 1 up to 50, while the centre frequencies were almost the same for almost
all the measurement number, was at first very puzzling; but it began to dawn on us that the exponential function of the spectral
log-mean-exp is able to identify IFB with much more impulsiveness on the squared envelope of the complex envelope.

As anticipated in previous subsections, the performance of the spectral log-mean-exp and kurtosis are nearly the same for the
considered cases. Hence, it would be exceedingly interesting to investigate whether there exists any mathematical relation between
the log-mean-exp and the spectral kurtosis. We believe that the accuracy of the identified IFB for different measurement numbers
is sufficient to establish the conclusion that it is intended to draw from them. In general, the centre frequency fc was roughly
concordant throughout the measurement number. However, the proposed spectral log-mean-exp ensures a much broader bandwidth
than the Hoyer index and spectral kurtosis, which is believed to provide consistently reliable guidance for selecting a rich filter band.
In practice, a narrow bandwidth may lead to a poor filter band that excludes most of the diagnostic information. On the other hand,
a broader bandwidth than necessary may lead to high noise content.

The sparsity measures are indeed the core impetus for developing the IFB identification method, thus facilitating effective fault
diagnostics while reducing computational costs. As a result, the SM-IPSgram estimation of the sparsity measures is seen as promising
IFB to tackle non-Gaussian noise and strong interferences, their success of them is very dependent on sparsity measures and prior
knowledge of the fault period. The SM-IPSgram is found to offer distinctive features in the presence of many types of background
noises. Another key finding is that the full spectral frequency corresponding to maximum impulsiveness offers a better weighting
function that is rich with diagnostic information.

5.5. Weighting function based on the SM-IPSgram

Some progress has been made to develop a weighting function or a combined improved envelope spectrum (CIES) from the IFB
identification method, and in this connection, we may mention the work of Mauricio and Gryllias in Ref. [21], who established a
general method for identifying a multiband envelope spectra extraction. However, cyclo-stationary interferences have been the chief
obstacle to the progress of the CIES approach. Even though this matter appears very simple, it has been found in practice to be
fraught with very serious difficulties which have taken a long time to overcome. As a result, comparatively few investigations have
been carried out to use the IFB identification methods for extracting multiple IFBs.

In this section, we will briefly discuss the weighting functions based on the SM-IPSgram to show their applicability for combining
multiple IFBs and compare their performance with the existing results. By using a full spectral frequency corresponding to maximum
impulsiveness on the SM-IPSgram (e.g. {Nw; R} = {256; 0.75} for SM-IPSgram estimation of the spectral log-mean-exp), it appeared
possible to throw a little more light upon the problem of the weighting function or CIES of the localised gear fault under strong
interferences. Hence, the weighting functions to regulate the contribution of each spectral frequency band for the SM-IPSgram
estimation of the three sparsity measures is presented in Fig. 18. This approach gives a systematic and consistent means of designing
a weighting function in a manner that is both new and precise.
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Figure 18: The weighting function estimation of the three sparsity measures, that is calculated from the whitened SM-IPS using {Nw; R} = {256; 0.75} which
correspond to maximum impulsiveness on the SM-IPSgram.

From the preceding results, it can be seen that the spectral Hoyer index may lead to high noise content. On the other hand, the
spectral kurtosis and log-mean-exp may provide reliable weighting functions that attenuate noise content, especially on the higher
spectral frequencies in the range of [7-12.8] kHz. However, when considering these pieces of information closely, we see immediately
that the spectral log-mean-exp performs effectively in regulating the contribution of each spectral frequency band. It is believed that
certain formal advantages accrue from the present approach, particularly with respect to robustness to strong interference. The
weighting function can be multiplied with the OFCMCoh. The CIES estimators are computed by averaging the modified OFCMCoh
over the entire spectral frequency axis. Nevertheless, this approach is beyond the scope of this paper.
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Figure 19: The weighting function estimation of the three sparsity measures, that is calculated from the whitened STFT using {Nw; R} = {256; 0.75}: (i) Spectral
Kurtosis (black dotted line), (ii) Spectral Hoyer index (red dashed line), and (iii) Spectral Log-mean-exp (blue continuous line).

To exemplify the benefit of the whitened SM-IPSgram over the STFT, Fig. 19 shows the weighting function estimation of the
three sparsity measures which were calculated from the STFT. This approach which has long been used to compute the spectral
kurtosis [9, 10], provides a means of designing the weighting functions to regulate the contribution of each spectral frequency band.
However, it is apparent that the strong interference impedes the application of the sparsity measures, and thus they cannot be expected
to give more than a somewhat rough IFB of the localised gear fault. In this way, the proposed weighting function can be considered
as a potential benefit, for the fact that it is sensitive to localised gear fault, and thus possesses advantages over this classical approach.

6. Numerical investigations

In this section, numerical results are presented in order to demonstrate the performance of the SM-IPSgram when it is exploited
in diagnosing gear faults under harsh operating conditions. The phenomenological gearbox model will be used to represent the
distributed gear fault under harsh operating conditions (i.e. in the presence of strong interferences, Gaussian and non-Gaussian
noise). Emphasis is placed on a description of how the SM-IPSgram is robust to harsh operating conditions, and two examples are
included to corroborate its effectiveness. At the end of this section, we demonstrate the superiority of the SM-IPSgram in identifying
rich IFB of the distributed gear fault over a competing method, namely the ICS2gram.
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6.1. Phenomenological gearbox model
The phenomenological gearbox model developed and proposed by Abboud et al. [52] will be used in this section to evaluate the

performance of the proposed methods in a controlled environment. This model approximates the dynamic and kinematic behaviour
of a faulty gearbox (i.e. gear and bearing faults). The results obtained from such a model are still consistent with real applications,
while it is computationally efficient to calculate. The model parameters and equations as described by Schmidt et al. [53] will be
used. The synthetic vibration signal from the gearbox model consists of four components:

xgb(t) = xdg(t) + xrg(t) + xb(t) + xn(t) (14)

where xgb(t) is the time waveform of a synthetic gearbox signal, xdg(t) is the deterministic gear component, xrg(t) is the random
gear components, xb(t) is the bearing component and xn(t) is the background noise. The source signal is affected by transmission
from the excitation source to the sensor. As a result, xdg(t), xrg(t), and xb(t) can be decomposed into a source signal and transmission
path as follows:

xdg(t) = hdg(t) ⊗ qdg(t) (15)

xrg(t) = hrg(t) ⊗ qrg(t) (16)

xb(t) = hb(t) ⊗ qb(t) (17)

where hdg(t), hrg(t), and hb(t) are the impulse response function that represents the transmission path from the excitation to
the sensor. The convolution operator is denoted as ⊗ and the source signal of the deterministic gear, random gear, and bearing are
presented as qdg(t), qrg(t) and qb(t) respectively. The general expression of the impulse response function of single-degree-of-freedom
can be written as:

hi(t) = e−ζi2π fn,it · sin
(
2π fn,it

√
1 − ζ2

)
(18)

where hi(t) the impulse response function of component i, ζi represent the damping ratio, and fn,i represent the natural frequency.

qdg(t) = Mdg(wr(t)) ·
Ndg∑
k=1

A(k)
dg · cos

(
k · Nt,g ·

∫ t

0
wr(τ)dτ + ϕ

(k)
dg

)
(19)

qrg(t) = Mrg(wr(t)) · εrg(t) ·
Nrg∑
k=1

A(k)
rg · cos

(
k ·

∫ t

0
wr(τ)dτ + ϕ(k)

rg

)
(20)

where
∫ t

0 wr(τ)dτ represents an angular position of the reference shaft rotating with the angular frequency wr. Mdg(wr(t)) and
Mrg(wr(t)) are monotonic functions simulating the dependence of the amplitude of the signal on the rotational speed. Ndg and Nrg

are the number of gear mesh and random components respectively. A(k)
dg and A(k)

rg are the amplitudes. Nt,g is the number of gear teeth.

ϕ(k)
dg and ϕ(k)

rg are the phase. The general expression of the monotonic function Mi(wr(t)) has the following form:

Mi(wr(t)) = a · wr(t) + b (21)

The main difference between Eq. (19) into (20), is that they contain an additional component which is Nt,g and εrg(t) respectively.
The random component εrg(t), can be expressed as a Gaussian distribution with zero mean and constant variance as:

εrg(t) ∼ N(0, σ2
rg) (22)

The surrounding or background noise component is written as:
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xn(t) = εn(t) · Mn(wr(t)) (23)

with Mn being the monotonic function of wr, and εn(t) being the Gaussian distribution with zero mean and constant variance and
has the following form:

εn(t) ∼ N(0, σ2
n) (24)

The last component is the outer race bearing damage which is simulated as a train of Dirac functions

qb(t) = Fdam · Fconst · Mb(t) ·
NT∑
i=1

δ(t − Ti) (25)

The bearing slip is introduced by adding Gaussian noise with zero mean and a standard deviation of 0.1 to the expected impact
angles. In order to simulate the gearbox with damaged bearing, qb(t) > 0 is used. The signal-to-noise ratio (SNR) is defined as:

SNR = 10 · log10

(σ2
b

σ2
n

)
(26)

Where σ2
n is the variance of additive noise and σ2

b is the observed signal. In the next section, the theoretical background of
the alpha-stable distribution is introduced. This distribution will be used for the phenomenological gearbox model to represent the
Gaussian and non-Gaussian noise to perform the sensitivity analysis of the proposed methods. The rotating speed profiles of the
phenomenological gearbox model and their corresponding equations are shown in Section 6.1.1 (see Fig. 20).

6.1.1. Rotational speed profiles
In this section, the rotational speed profiles of the phenomenological gearbox model are presented. One of the aims of this

paper was to perform fault diagnostics in the presence of time-varying operating conditions. Hence, the phenomenological gearbox
model will be used throughout this section to represent the distributed gear fault under time-varying operating conditions. The model
parameters and equations of the phenomenological gearbox model have four rotational speed profiles given as:

wr,1 = 2π · (1.3t + 7) (27)

wr,2 = 2π · (5 sin(0.4πt) − 20 · (0.1t − 0.5)2 + 15) (28)

wr,3 = 2π · (6.5 cos(0.2πt) + 13.5) (29)

wr,4 = 2π · (6.5 sin(0.2πt) + 13.5) (30)

The four rotating speed profiles are mathematically represented by wr,1, wr,2, wr,3, and wr,4. The speed profile 2, wr,2 will be used
in this section to represent the time-varying operating conditions for pseudo-CNS signals such as bearing outer race fault.

Illustrated in Fig. 20 is the rotational speed profile for the phenomenological gearbox model. Looking at the results, we can see
the time-varying operating conditions which cause both amplitude and phase modulation on the measured vibration. In practice, the
time-varying operating conditions are caused by many types of rotating machinery including wind turbines, making fault diagnostics
of gears and bearings challenging.
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Figure 20: The rotational speed profiles for phenomenological gearbox model.

6.2. Comparison between the SM-IPSgram and the ICS2gram

In real-world applications, the measured vibration signal from a rotating machinery such as a gearbox is almost always interfered
with by background noise including meshing gears, electronic noise, random noise, shafts misalignment, cyclo-stationary interfer-
ences from near mechanical components, and other parts. The combination of these signals reduces the signal-to-noise ratio (SNR).
Hence, the detection of rotating machinery faults in the early stage is very difficult. Early detection of faults such as distributed gear
faults is essential for the prevention of sudden tooth breakage which can lead to gear failure. Therefore, it is very important to extract
useful features from the noise-contaminated mechanical signals.

In this section, the phenomenological gearbox model will be used to represent harsh operating conditions. This model is capable
of describing the fundamental mechanisms and dynamics of gear vibrations in a controlled environment. To accurately model the
distributed gear fault of the acceleration signals acquired from the gearbox casing, all of the potential vibration sources are taken into
consideration in the synthesised signal of the phenomenological gearbox model. This includes the deterministic gear components,
cyclostationary interferences, and Gaussian and non-Gaussian noises. The combined synthetic signals with the low-energy distributed
gear fault are displayed in Fig. 21.

Four criteria have been selected to evaluate the merits of the proposed methods for the purpose of gear diagnosis in the presence
of harsh operating conditions. This includes robustness against rapid speed fluctuation, interferences, Gaussian, and non-Gaussian
noise. The amplitude modulations in the vibration signals were removed using NAMVOC [48]. The robustness against rapid speed
fluctuation is evaluated using time-varying operating conditions which introduces amplitude and phase modulation in a vibration
signal. The robustness against interferences is evaluated using cyclo-stationary interference with a substantially large magnitude.
The robustness against Gaussian and non-Gaussian noise is evaluated using Gaussian noise and alpha-stable noise, respectively.

6.2.1. Case 1: The combined signals
Some barriers need to be considered and understood to be able to use the proposed SM-IPSgram in practical applications. To

this end, a distributed gear fault with a fault period of 1 order of the shaft speed, the spectral frequency of 3.5 kHz, the sampling
frequency ∆ f of 50 kHz, and the duration of the signal of 4 sec (or 200 000 points) is simulated using the phenomenological gearbox
model to mimic a distributed gear fault in practical applications. For the sake of comparison and to match the screen resolution for
the SM-IPSgram estimation of the spectral log-mean-exp and ICS2gram, the same window lengths [2n] and the 1/3-binary tree filter
banks are used. The corresponding 1/3-binary trees are computed and displayed in Fig. 22. In the case of a single IFB, there is no
need to design a weighting function because the results will be the same.

These results demonstrated that the proposed SM-IPSgram (see Fig. 22(a)) can accurately fulfil its mission of identifying rich
IFB under harsh operating conditions. The SM-IPSgram effectively extracted the spectral frequencies of the distributed gear fault
contained in the combined signals to get the earliest and most accurate diagnosis. This fact will not surprise those who recall that a
whitened SM-IPS can is capable of attenuating strong background noises in the case where the signal-of-interest is phase-locked to
a specific angular period. However, the SM-IPSgram estimation of the spectral log-mean-exp indicates that it will fail under heavy
Gaussian noise.

On the other hand, the ICS2gram (see Fig. 22(b)) failed completely in the presence of cyclo-stationary interferences with a
spectral frequency of 2 and 9 kHz. High ICS2 content at the first bandwidth (i.e. fbw = ∆ f /2) indicates that the method will fail
under non-Gaussian noise. This obviously adheres to our intuition since the non-Gaussian noise cripples the performance of the
squared envelope spectrum. It has become evident that there are definite limitations in the ICS2gram, like all methods of analysis,
which greatly restrict its usefulness in gear diagnostics under harsh operating conditions.
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Figure 21: Phenomenological gearbox model: (a) distributed gear fault with a spectral frequency of 3.5 kHz, (b) zoomed-in view of the deterministic gear components
in range [0, 0.06] sec, (c) random cyclostationary interferences with a spectral frequency of 2 and 9 kHz, (d) Gaussian noise with SNR = -17.53 dB, (e) alpha-stable
noise with a stability index of αn = 1.7, and (f) zoomed-in view of the combined signals in the range [-30, 30]: (i) the combined signals (blue continuous line), and
(ii) distributed gear fault (red continuous line).
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(a) (b)

Figure 22: Case 1: The combined signals (a) SM-IPSgram estimation of the spectral log-mean-exp, and (b) ICS2gram.

6.2.2. Case 2: Distributed gear fault + Gaussian noise (SNR = -17.53 dB)
In the previous subsection, the SM-IPSgram estimation of the spectral log-mean-exp has been demonstrated to provide consis-

tently reliable guidance for identifying rich IFB. The efficiency of this method is believed to exceed most of the IFB identification
methods (including the fast Kurtogram and the ICS2gram) when diagnosing gear faults in the presence of harsh operating conditions.
Rather harsh operating conditions were purposely chosen to illustrate both the capabilities and superiority of the SM-IPSgram in gear
diagnostics. In a similar way, we may use the SM-IPSgram again for motives of convenience to diagnose the distributed gear fault in
the presence of Gaussian noise. Hence, the SM-IPSgram estimation of the spectral log-mean-exp, and the ICS2gram are computed
and displayed in Figs. 23(a) and 23(b) respectively.

(a) (b)

Figure 23: Case 2: Distributed gear fault + Gaussian noise with SNR of -17.53 dB (a) SM-IPSgram estimation of the spectral log-mean-exp, and (b) ICS2gram.

As expected, the SM-IPSgram estimation of the spectral log-mean-exp (see Fig. 23(a)) effectually extracted the spectral frequency
of the distributed gear fault in the presence of heavy Gaussian noise. In general, these SM-IPSgram show no significant perceptual
differences when we compare the results in cases 1 and 2. For this specific case, the ICS2gram ( Fig. 23(b)) is very informative and
imposes no difficulty in the automatic identification of rich IFB. These results clearly indicate that most signal processing techniques
perform sub-optimally in the presence of strong interferences and non-Gaussian noise.

A considerable number of observations would be necessary to determine whether the SM-IPSgram can be used for bearing
diagnostics despite the bearing slip that worsens the method’s performance. We propose to carry out some further investigations
on the subject. Further investigations of the methods to remove the effects of the bearing slip on the whitened SM-IPS should be
able to settle this question. A detailed paper by the authors on the SM-IPSgram for bearing diagnostics, together with a rigorous
mathematical treatment of the binary tree resolution, will be published shortly. We also hope to show the performance of the spectral
log-mean-exp for bearing diagnostics in a subsequent paper.

7. Conclusions

To conclude, the informative frequency band (IFB) in the presence of strong cyclo-stationary interferences, Gaussian and non-
Gaussian noise is a difficult but important problem that often arises in many types of rotating machinery. The work presented in
this paper is motivated by the need to perform gear diagnostics under these background noises. Hence, a new concept of spectral
log-mean-exp sparsity measure was coined and the synchronous median instantaneous power spectrum-gram (SM-IPSgram) was
proposed as an IFB identification method for gear diagnostics. The C-AIM (Centre for Asset Integrity Management) experimental
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datasets and the phenomenological gearbox model have been used to demonstrate the performance of the SM-IPSgram with respect
to the well-known fast Kurtogram and ICS2gram. The result of the comparison reveals that the proposed methods are effective in
diagnosing the gear fault under harsh operating conditions. The SM-IPSgram is believed to be a very worthwhile IFB method for
the following reasons: (i) it is computationally inexpensive, (ii) extremely robust, (iii) can cope with all kinds of background noises,
e.g. strong interferences, Gaussian and non-Gaussian noise, and (iv) it produces a filter banks decomposition to accentuate only the
carrier/spectral frequency of the defect.
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