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ABSTRACT 

Title: The Development and Implementation of an Innovative Smartphone 
Application to Collect Route Choice Preference Data. 

Supervisor: Professor CJ Venter 

Department: Civil Engineering 

University: University of Pretoria 

Degree: Philosophiae Doctor (Engineering) 

The research presented in this thesis was motivated by two factors. Firstly, little route choice research 

has been undertaken in South Africa, especially in urban areas. This has resulted in significant gaps in 

our understanding of commuter route choice preferences and associated willingness-to-pay measures 

such as the value of travel time. Secondly, there are recognised limitations in the experimental 

methodologies used for route preference data collection, i.e., field data collected using revealed 

preference (RP) methods, and experimental data collected using stated preference (SP) methods. RP 

methods have high external validity, but the analyst has limited experimental control. SP methods 

have a high degree of analyst control of the experiment parameters, but the hypothetical nature of the 

route alternatives provides lower levels of external validity. The research presented in this thesis 

therefore had four objectives. Firstly, to provide a review of historical research and studies into mode 

choice and route choice modeling in South Africa and highlight any gaps in our understanding of 

commuter route choice preferences and the value of travel time. The findings confirmed that no route 

choice research has been undertaken in South African urban areas for the last two decades, and large 

gaps exist in our understanding of motorists’ route choice preferences these areas. The findings 

confirmed the urgent need to undertake route choice research in South African urban settings, 

especially in the light of the governments user pays policy for urban road and public transport 

provision.  

The second objective was to develop and demonstrate the proof-of-concept for an innovative, 

smartphone-based application with the acronym RAPP-UP (Route Choice Application – University of 

Pretoria), for collecting motorist route preference data in dense, congested urban road networks based 

on real-time traffic conditions at the time of the trip. The author of this thesis designed and prepared 

the specification for RAPP-UP, and an independent contractor was appointed to code the application 

and make it available on the Google Play Store® for survey participants to download. RAPP-UP was 

designed to achieve a better balance between external validity and analyst control. The third objective 

was to use RAPP-UP to collect route preference data from a sample of commuters in Gauteng 

Province, South Africa. The fourth objective was to estimate various types of discrete choice models 
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to quantify different forms of route preference utility and estimate the associated willingness-to-pay 

measures such as the commuter value of travel time.       

RAPP-UP was designed for application in a self-validating survey context that included stated 

preference (SP) and revealed preference (RP) components. A degree of analyst control was introduced 

by allowing the analyst to factor the observed attribute levels before presentation to users in a pre-

determined manner based on an unlabelled fractional factorial design. RAPP-UP’s innovation was its 

ability to maximise external validity by generating two realistic alternative routes based on real-time 

road network travel data between a user specified origin and destination, thereby anchoring the 

experiment in a realistic and familiar setting. This innovation was enhanced by showing the route 

alternatives on a detailed road map background to provide orientation for the trip origin and 

destination locations, the routes themselves (highlighted on the road background), as well as the 

utility attribute levels for each route in a choice set format. After trading-off the attribute levels for 

each route, users were asked to choose their preferred route (SP component) and were then required to 

drive their chosen route (self-validating RP component). The GPS function in the smartphone was 

used to track the user to determine route adherence. An economic experiment was introduced by 

deducting the toll cost of a chosen tolled route from a user survey account that was allocated to each 

user at the commencement of the survey. The final survey account balance was paid to each user at 

the end of the survey. As each trip is one observation, the use of RAPP-UP was required over several 

days to obtain multiple observations from each user. RAPP-UP was designed to accommodate a 

detailed form of utility expression that contained a disaggregated form of travel time that specified the 

proportions of actual travel time (in minutes) in free-flow, slowed-down and stop-start travel 

conditions. The trip petrol cost (in Rands), toll cost (in Rands) and the probability of on-time arrival at 

the destination (in percent) were also included in the utility expression.   

To illustrate proof-of-concept, a small sample of car commuters in the Gauteng Province of South 

Africa was recruited to participate in a route choice survey using RAPP-UP. The road network in the 

urban areas of Gauteng Province is dense and congested in the weekday peak periods, and the 

motorways are tolled. The route preference data of the sample of commuters provided the basis for the 

estimation of various forms of discrete route choice models. The models confirmed that the attribute 

coefficients for each category of travel time were significant, thereby corroborating international 

evidence. The congestion multipliers, i.e., the ratios of the travel time attribute coefficients for each 

trip time category, were within the ranges determined in international studies. The petrol cost, toll cost 

and probability of on-time arrival attribute coefficients were also significant. A toll road quality bonus 

representing the unobserved factors of utility was introduced as a dummy utility attribute for routes 

with tolled sections. The attribute coefficient had a negative sign, revealing that the survey 

participants associated a disutility for routes with tolled sections for the unobserved factors of utility.  
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All the objectives of the research were achieved. The research not only added to the body of literature 

on the topic of route choice behaviour in urban areas, but also provided insights into the practicalities 

of route choice data collection and model estimation.  
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ABBREVIATIONS 
 

The abbreviations used in this thesis are as follows: 

a) ASC – Alternative Specific Constant 

b) BRT – Bus Rapid Transit 

c) C-Logit   the Commonality-Logit model  

d) GC – Generalised costs 

e) GT – Generalised time 

f) GFIP - Gauteng Freeway Improvement Project, i.e., the Gauteng e-toll scheme  

g) GPS – file format for use with various mapping platforms such as Google Maps® and 

OpenStreetMap® 

h) IIA - Independence from Irrelevant Alternatives  

i) IID - Independent and Identically Distributed (error terms) 

j) JSON – JavaScript Object Notation text file format 

k) KML – file format for use with Google Earth® 

l) LCM – Latent Class Models 

m) ML – Mixed Logit model 

n) MNL - Multinomial Logit model 

o) NGENE® - experimental design software 

p) NLOGIT® – discrete choice modelling software  

q) POTA – probability of on-time arrival 

r) PS-Logit - Path Size Logit model 

s) RAPP-UP - the Route Choice Application developed by the University of Pretoria 

t) RP - Revealed preference 

u) RPL – Random Parameters Logit model 

v) SC - Stated choice 

w) SP - Stated preference  

x) VOR – Value of trip time reliability  

y) VTT - value of travel time (usually in the context of non-work related VTT) 

z) WTP – Willingness to Pay. 

In this report the term route is used to describe a chosen road alignment between an origin and 

destination. The term path is used in some literature to describe the same thing, and hence route and 

path in the context of this research mean the same thing and are interchangeable.  
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Note that the NLOGIT® choice modeling software was used to estimate the various discrete choice 

models presented in this report. NGENE® was used to synthesise the designs for the stated preference 

experiments. 
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1. INTRODUCTION 
 

1.1 Background 
 

Motorist route choice behaviour in the urban transport context in South Africa has been under-

researched. This is unexpected given that the results of this research underpin the basis for urban 

transport investment decisions that, in most cases, have very high capital, maintenance and operating 

cost implications, and are enduring. While the transport choice research effort in South Africa has 

mostly focussed on mode choice simulation at the metropolitan level, there has been very little 

research aimed at route choice modelling. This has had unanticipated implications for at least one 

large urban toll project where commuter behaviour has not been what was expected, and the 

anticipated economic and financial feasibilities of the schemes have fallen short of expectations.  

The last urban route choice research was undertaken in Gauteng in the early 2000’s and is now 

outdated. Since that time, there have been significant advances in data collection methodology and the 

types of discrete choice models used for route choice simulation. The lack of research effort has left 

gaps in our understanding of motorist route choice behaviour in urban areas, and in the quantification 

of key microeconomic willingness-to-pay measures such as the non-work related value of travel time 

(VTT). Willingness-to-pay measures such as the VTT should directly influence transport policy, road 

infrastructure planning, traffic demand modelling and project economic appraisal. It is a key 

consideration in user-pays transport schemes such as toll roads. The user-pay principle for funding 

transport projects is government policy in South Africa as outlined in Sections 28 of the South 

African National Land Transport Act No. 5 of 2009 for public and private transport users  

(Government of South Africa, 2009). 

In the urban context, the reliable prediction of traffic demand is becoming more important as traffic 

congestion levels increase, emphasising the need to efficiently allocate scarce resources for new and 

upgraded road infrastructure. Small and Verhoef (2007) state that the most critical part of planning 

transport infrastructure is predicting what will happen, especially how many people will use it and 

therefore what it will cost and what benefits it will provide. Furthermore Prato (2009) highlights that 

understanding motorists’ route choice behaviour (and therefore the prediction of traffic demand on 

road networks) in urban areas is necessary for several reasons. Firstly, to support transport policy 

development, for example, to understand the demand implications of travel demand measures (TDM), 

user-pays schemes such as urban tolls, and congestion pricing schemes. Secondly, to provide inputs 

into the economic appraisal of new road and road improvement schemes through the estimation of 

demand as well as key non-market related input measures such as the value of travel time and the 

value of trip time reliability. And thirdly, to provide inputs into transportation demand models that are 
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used in the planning and evaluation processes for demand prediction and for the calculation of the 

generalised time parameters that are used in the trip assignment sub-model. An example is the use of 

the value of travel time (VTT) for the conversion of monetary based trip costs into equivalent time 

units for the calculation of generalised time units used in the trip assignment process.  

Two data collection methodologies are used to collect motorist route preference data, i.e., either 

revealed preference (RP) methods, or stated preference (SP) methods. Revealed preference methods 

are field data methods that observe or record the actual routes used by survey participants. Stated 

preference methods use hypothetical routes and trip attributes to generate route alternatives that the 

survey participant is required to choose from. However, the collection of motorist route choice 

preference data using either RP and/or SP methods is not straightforward. The strength of RP methods 

is that actual route choices are observed. But with RP these methods there are several weaknesses to 

be considered including the limited extent of analyst control over the survey parameters; the inability 

to gain insights into road schemes or policies that do not yet exist; and the absence of insights into the 

alternative routes that may be considered by motorists. The high number of potential alternative routes 

between an origin and destination on a dense urban road network is not an insignificant problem.  

While SP methods provide high levels of analyst control of the experiment parameters, there are 

limitations associated with the validity and realism of the trip attributes when describing the 

hypothetical alternative routes. Also, survey participants may not act the same way in a hypothetical 

situation as in a real situation as there are not real trip time and cost implications for the trips in a 

hypothetical setting. This is termed “hypothetical bias,” which means that respondents in stated 

preference surveys tend to be willing to pay less than they would if there were real monetary 

consequences to their choice. An issue to keep in mind when using SP methods for route choice is the 

practical issue of the inclusion of route overlap in the choice sets. Route overlap is likely to occur to 

varying degrees in a dense urban road network. This issue of route similarity, i.e., the correlation 

between overlapping routes, also undermines the independent and irrelevant alternatives (IIA) 

constraint for the application of multinomial logit (MNL) models and requires the application of 

models that take account of route correlation. 

More recently, SP surveys have been designed to include an RP component by incorporating the 

solicited trip time and cost attribute levels of an actual route from the survey participant (e.g., from a 

current or recently used route) into the choice set and pivoting the alternative route attribute levels off 

these actual levels. This requires the experimental design and pivoting process to be done ‘on the run’ 

in real time with pre-specified attribute level variations. This is easily achieved with either internet-

based or face-to-face survey methods. This method does not however remove the risk of hypothetical 

bias in the responses. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



18 
 

18 
 

The efficiency and cost of transport-related data collection has been substantially improved with the 

use traveller of smartphone devices and the development of applications for the collection of specific 

data types including origin-destination (O-D) studies, travel diary surveys, and revealed preference 

route choice surveys using the GPS tracking devices in smartphones. In addition, route guidance and 

trip information and planning platforms such as TomTom®, Google Maps® and Waze® have been 

available on mobile smartphones applications for several years. While the transport survey 

applications are typically developed as bespoke to researchers and transport authorities, there are 

platforms that provide templates that allow the development of applications for various types of 

surveys. The advantages of smartphone applications for transport data collection are the accuracy of 

the data and the level of detail that can be achieved. However, their use requires the widespread use of 

smartphones in the study setting, the ability by users to use and understand the use of the applications, 

and their willingness to participate. Ethics considerations are of high importance, especially the 

storage and security of collected data.  

This discussion has highlighted two requirements, firstly, the need for the development of a route 

preference survey method that better balances the competing constraints of analyst control and 

external validity in the congested urban road environment incorporating the benefits of both RP and 

SP methods. Secondly, the collection of route preference data from a sample of motorists using this 

methodology and showing proof-of-concept by using the data to estimate different types of discrete 

choice models. Thirdly there is the opportunity to take advantage of the rapid technical development 

and abilities of smartphones and the data transmission speeds of 4G and 5G cell phone technology. 

1.2  Objectives of the Research 
 

The research presented in this thesis had four main objectives. The first objective was to undertake a 

review of the historical research and studies undertaken in South Africa for the estimation of the value 

of travel time, and specifically the non-work related value of travel time (VTT). The review 

considered the VTT estimates for public transport users and car users. The review placed the research 

conducted in this research in context, especially for car users, although the values for public transport 

users were also used to benchmark the values determined in this research. The review also identified 

the gaps that exist in our understanding of route choice behaviour and the route preferences of 

commuters. The failure of the largest urban toll scheme implemented in South Africa emphasised the 

urgent need to obtain a reliable and proven survey method for the collection of route choice 

preference data, the estimation of appropriate route choice models, and the derivation of robust 

estimates of VTT.           

The second objective was the development of a low-cost smartphone application for the collection of 

route choice preference data from (commuting) motorists based on real-time travel conditions at their 
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time of travel, including the generation of realistic alternative routes and their associated attribute 

levels. The application was required to accommodate both SP and RP components in the 

methodology. The SP component required the participant to choose between two route alternatives 

based on near real-time travel time and cost attributes in a choice set format. The RP component was 

introduced by embedding route choice consequences into the experiment with the participant having 

to physically drive their chosen route and be tracked while doing this to monitor route compliance. 

This approach emphasised the RP component as the participant experienced the travel time and cost 

implications associated with their preferred route. It should be noted that the route characteristics 

included the SP survey were focussed on the time and cost factors of utility. The impact of factors 

such as route safety, route familiarity and roadway condition were not considered.  

Furthermore, the application accommodated an economic experiment to reinforce the financial 

implication of route choice. Survey participant accounts were established for each participant with a 

starting balance of R300.00. If participants chose a route with a tolled section, the toll cost was 

deducted from their survey account. At the end of the survey the balance of their survey account was 

paid to them. Thus, the survey participants were incentivised to carefully consider the route time and 

cost trade-offs when choosing their preferred route.  

The third objective of the research was to demonstrate the efficacy of the application by undertaking a 

route choice survey on a small sample of Gauteng Province commuters in the Johannesburg - Pretoria 

region. The road network in this part of Gauteng Province is dense and has congested conditions 

during the weekday peak periods. The aim of this proof-of-concept survey was to ensure that the 

application could successfully be implemented on a small sample of commuters; to ensure the design 

of the application by ‘stress-testing’ it on a sample of commuters; and to collect route choice 

preference data for use in discrete choice models.       

The fourth objective was to estimate different types of logit-based route choice models using the 

preference data from the sample of car commuters in Gauteng and derive estimates of the value of 

travel time. A variety of models were tested and evaluated including multinomial logit models 

(MNL); random parameter logit models (RPL) (also known as mixed logit models); and models that 

specifically take account of route overlap (i.e., route correlation) including the C-Logit and path-size 

(PS) logit. The RPL, C-Logit and PS-Logit models have never been applied in a route choice context 

in South Africa.  

The research thus added to the academic body of knowledge into route choice data collection and 

behaviour simulation as follows: 

a) It reviewed the history of choice modelling in general and route choice modelling specifically 

in South Africa, as well as the values of travel time derived from various studies. 
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b) It demonstrated a new, innovative, low-cost approach using a smartphone application for 

route choice data collection in a congested urban environment using real-time travel data and 

a combination of SP and RP methods. 

c) It demonstrated the efficacy of the application by conducting a proof-of-concept route choice 

survey amongst a small sample of Gauteng Province commuters for their weekday morning 

trip to work.       

d) It confirmed the statistical significance of discrete route choice models that have not been 

applied to route choice formulations before in South Africa including the RPL, C-Logit and 

PS-Logit models. 

e) The results of the discrete choice models provided new and valuable insights into route choice 

behaviour for the small sample of commuters, enabling robust estimates of the value of travel 

time to be made.  

Furthermore, the application was designed to accommodate a complex form of utility expression, with 

attributes that have not previously been tested in South Africa, such as the reliability of travel time 

and the trip travel times associated with different levels of congestion.  

The development of the route choice application has enabled the expansion of research opportunities 

in motorist route choice behaviour in South Africa and internationally. It provides the opportunity to 

gain further insights into motorist behaviour in specific contexts such as urban tolls, congestion 

pricing and traffic demand management schemes. The outputs provide a deeper insight into the 

implications of transport policy; improved reliability of traffic demand modelling; and more accurate 

inputs into the economic appraisal of new and improved road schemes.   

1.3 Scope and Requirement of the Research 
 

The scope of the research was limited in the following respects: 

a) The smartphone application limited the utility expression to a total of six time, cost and 

reliability attributes. The application has the flexibility to increase the number of route 

attributes to a total of eight, this number being constrained by the practical issue of space 

availability on a smartphone screen. 

b) Only a linear-in-coefficient form of utility expression was tested for two route alternatives. 

The application had the flexibility to increase the number of route alternatives presented to 

users, however two route alternatives were considered adequate to demonstrate proof-of-

concept.    

c) The efficacy of the application was confirmed using a small sample of car commuters in 

Gauteng Province. While the small sample size was adequate to demonstrate proof-of-
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concept, it was not adequate to investigate the heterogeneity in route choice behaviour, 

including income, route length, trip purpose and gender effects.        

The research requirement was for a proof-of-concept for the new data collection methodology and its 

application in discrete route choice models. This required the execution of the route choice survey on 

a small sample of motorists in the Gauteng Province, mainly in the Johannesburg, Tshwane and 

Ekurhuleni metropolitan areas. The road network in this region is dense, consisting of tolled and un-

tolled freeways, arterial roads and collector and distributor roads. While the traffic demand reduced 

during the COVID pandemic lockdown periods in 2020 and 2021, demand has since increased, and 

significant levels of congestion occur on the network during weekday morning and afternoon peak 

periods. 

In summary, the requirements of this research were to: 

a) Develop and implement a new smartphone-based route choice application that combines SP 

and RP methods using real-time traffic data in the alternative route generation process. 

b) Use a proof-of-concept approach to validate the application of the application in an 

experimental setting using a sample of road users in the Gauteng region in South Africa to 

generate a combined SP and RP preference data set.   

c) Use the preference data set to apply several discrete choice models for route choice 

simulation including models account for route overlap and correlation. 

d) Use the discrete choice model outputs to estimate the non-work related value of travel time 

for the sample of survey participants. 

 

1.4 Summary of the Methodology 
 

The research methodology adopted is summarised in Figure 1. There were seven steps in the process 

with steps 2, 3 and 5 requiring external inputs, and specific interventions required between steps 1 and 

2, 3 and 4 and 5 and 6.  Each step is discussed briefly below. 
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Figure 1: Research Methodology Flow Chart 

 

Step 1 - Specification of the Application: The application concept was defined in this step. The 

concept was to collect preference data for route choice model estimation using real-time traffic data 

and a complex form of utility expression by means of a smartphone application. It required a detailed 

literature review of the use of smartphone applications for transport data collection, and specifically 

route choice SP and RP data collection. No evidence could be found of smartphone application-based 

SP methods for route choice. Mazen et al., (2019) developed a smartphone-based application to 

undertake SP surveys for mode choice. This app generated a random experimental design using 

context-aware SP profiles using user specific socioeconomic characteristics and past travel data along 

with relevant web data for alternative mode scenario generation. The generated choice tasks were 

automatically validated to reduce the number of dominant or inferior alternatives in real-time, then 

validated using Monte-Carlo simulations offline.  

The specification of the route choice application required the formulation of four key issues. Firstly, 

whether it was feasible and practical to develop the application using real-time traffic data, Secondly, 

what the technical requirements were for the development, and thirdly the detailed specification of the 

application. Finally, the form and content of the utility expression was required. Particular focus was 

paid to two issues, firstly, the use of existing transport and traffic platforms such as TomTom®, 

Google Maps®, Waze® and Mapbox® to generate routes and route attribute levels.  Secondly the route 

data format, transmission, cloud-based storage and retrieval requirements of what were anticipated to 

be large quantities of route data. 

Step 2 - Design of the Application: The design stage comprised the design and coding of the 

application. Application performance monitoring (APM’s) were designed and coded to use TomTom® 

traffic data to generate alternative routes, identify route travel times (categorized by free-flow, 

slowed-down and stop-start times and route lengths. APM’s are software applications that enable 
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monitoring of software and telemetry data. Traffic and route data can be monitored and downloaded 

from service providers such as TomTom for use in mobile applications. The route and traffic data is 

provided in specific formats as prescribed by the International Standards Organisation (ISO). The 

design of the application also required the specification of the background roadmap showing the 

highlighted route alternatives; the format of the route attribute levels in a clear and understandable 

format in a choice set format; and the provision of route guidance for the chosen route alternative. The 

route tracking feature was undertaken using the GPS devices in modern smartphones. The application 

was designed for use with recent model Android smartphones and was downloadable from the 

Android Play Store.    

Step 3 – Application Pilot Testing: On completion, the application was pilot tested by a small group 

of University of Pretoria students. The pilot testing revealed that the application worked as required. 

However, modifications were needed to make the presentation of the route attributes clearer; the 

transmission of the route data more efficient (especially the feature to download the data from a 

smartphone in the case; the use of a remote database (MongoDb®) to store the considerable amount of 

route data in the cloud, and more easily retrieve the data. Ethics approval for undertaking the survey 

was obtained from the University of Pretoria Ethics Committee.   

Step 4 – Application Modification: The modifications were made to the application screen 

presentation for better clarity. The data transmission process was modified as well as the data 

downloading process. The downloading process required the scripting of short command files that are 

executed in the Windows Command Prompt.  

Step 5 – Full Survey: The sample of car commuters was recruited for participation in the full survey. 

A total of 50 participants were recruited, with 48 of these eventually taking part in the survey. The 

criteria for survey participation were owning their own car and using it for regular commuting to work 

in the Johannesburg – Pretoria area, ownership of a recent model Android smartphone, and 

willingness to do a total of eight trips to work on different days using the application. The participants 

were required to sign an informed consent form and complete a short socio-demographic 

questionnaire. Participants were provided with a questionnaire information brochure that explained 

the reasons for the survey, the process for downloading the application from the Google Play Store®, 

how their survey account balance operated, and the use of the application itself (participants were 

encouraged to trial use the application). During the survey the data transmitted from the smartphones 

was checked daily to ensure its integrity.  

Step 6 – Route Choice Data Transmission and Storage. The route data was transmitted to the 

remote database from the individual smartphones by means of the GSM cellular network. During the 

full survey this database was monitored daily to ensure the integrity of the data. Data was also 
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downloaded daily to analyse and transform into the format for input into the choice modelling 

software, NLOGIT®. The data was downloaded from the database in JSON format (Java Script Object 

Notational) which is a text file format. These files were easily converted to CSV (comma separated 

variable) file format that can be read into Microsoft Excel. Some external data manipulation was 

required, in particular the calculation of the extent of the route overlap. In addition, the route co-

ordinate data can be read into a GIS file converter to plot the route in either Google Maps® or Google 

Earth®. 

Step 7 – Discrete Choice Model Estimation. Once downloaded from the remote database, the route 

data and choice sets were downloaded, and the data prepared in NLOGIT® format. The various route 

choice models were estimated, and the outputs interpreted. 

1.5 Structure of the Thesis   
 
 The remainder of this thesis consists of the following chapters and annexures: 

a) Chapter 2 presents a background to the value of travel time in South Africa.  

b) Chapter 3 discusses the data collection framework for route choice surveys. 

c) Chapter 4 investigates the generation of routes on congested urban road networks. 

d) Chapter 5introduces RAPP-UP, and innovative smartphone based route choice application for 

collecting SP and RP data . 

e) Chapter 6 describes the technical RAPP-UP specification.  

f) Chapters 7 discusses the generation of choice set attribute levels for route alternatives. 

g) Chapter 8 presents the forms of discrete choice models for modelling route choice. 

h) Chapter 9 describes the  characteristics of the sample of car commuters who took part in the 

RAPP-UP survey . 

i) Chapters 10 provides the results of the various discrete choice models that were estimated 

with the preference data collected using RAPP-UP. 

j) Chapter 11 discusses the conclusions and recommendations of the route choice research 

undertaken using the data collected by RAPP-UP. 

k) Annexure A contains the survey participant questionnaire. 

l) Annexure B contains the survey participant instruction form. 

m) Annexure C contains the RAPP-UP technical specification. 
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2. THE SUBJECTIVE VALUE OF TRAVEL TIME 
 

2.1 Introduction 
 

The value of travel time is perhaps the most important microeconomic parameter used in the 

transportation planning and appraisal process. This chapter provides a background to the theory of the 

value of time and presents values of time that have been derived in the South African urban commuter 

context. The context of the research presented in this thesis is route choice preference data collection 

and simulation in urban areas. This chapter also provides a review of the historical context of route 

choice data collection and simulation, starting with a literature review of route choice modelling in 

South Africa.  

2.2 The Theory of Time Allocation  
 

The theory of the allocation of time has been of interest since the early 20th century. Jara-Diaz and 

Rosales-Salas (2017) provide a detailed historical overview of the development of the theory. In the 

early part of the 20th century, time use studies were politically oriented, with Soviet studies focussed 

on the central planning of their economy, resting on the view that the value of an item was dependent 

on the time required for its production. American time use studies concentrated on home economics 

and the analysis of domestic labour (i.e., non-work related time allocation). The economic theory of 

the valuation of time was determined in the 1960’s. In that period western time use studies started to 

focus on the informal economy and time allocation for leisure activities.  

Becker’s (1965) theory of the allocation of time that attached a value to time was a landmark. He 

postulated that individual satisfaction did not come from goods consumed directly, but from the “final 

commodity” itself whose value was derived from the market goods (i.e., input raw materials) and the 

time to prepare the commodity (Mackie, et al., 2001). Introducing time as a component of individual 

utility required the introduction of time input constraints in addition to the raw material input 

constraints. Becker argued that these two constraints were essentially one constraint to the individual 

as time could be converted to money by assigning less time to consumption and more time to work. 

The concept of the value of time was thus based on the opportunity cost of assigning saved time for 

any activity but work, and thus time was valued by the wage rate. In Becker’s time allocation theory, 

the individual is balancing (leisure) time spent in consumption with the money value of work, 

therefore leisure had to be valued at the wage rate. This activity indifference approach to time 

valuation (i.e., all time should be valued at the wage rate) was the flaw in Becker’s theory. In reality, 

some activities are assigned more time than wanted by individuals, i.e., there are some activities an 

individual would like to shorten but cannot as it is an intermediate activity undertaken not for its own 
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sake, but as a necessary input to other activities. This includes the time spent travelling, especially for 

specific purposes such as commuting to work. 

DeSerpa introduced a second landmark theory of time allocation in 1971 (DeSerpa, 1971). He 

included a set of minimum time requirement for each activity in an analytical form and postulated a 

utility function that depended on all goods and all time periods, including work and travel. The 

constraints he introduced established that consumption of a specific good required a minimum 

assignment of time. He defined the value of time as the marginal utility of (total) time and the 

marginal utility of income, and specifically attached a value for travel time savings. DeSerpa’s 

economic theory of time allocation specifically recognised that not all activities could be adjusted 

until equality with the value of work, and the value of travel time (and especially in urban transport) 

was not wage-rate related, but rather from an individual’s perception of time - cost trade-offs. A 

reduction in travel time potentially matters to the individual because of less travel, more of other 

(pleasurable) activities, changes in consumption patterns, and a change in activity schedule. If the sum 

of these effects is positive, then the individual is willing-to-pay to reduce travel time (Mackie, et al., 

2001).   

In the latter part of the 20th century, the focus of studies into time allocation changed to the domestic 

economy (i.e., unpaid work), gender equity, valuing non-market production, monitoring trends and 

the trade-off between domestic labour and leisure activities (Robinson, et al., 1989). The development 

of individual preference data collection methods (especially stated preference methods) and modelling 

techniques (especially discrete choice models instead of conjoint based models) were substantially 

improved in this time. In the 21st century these topics have continued to receive attention, but with 

more focus on policy-oriented issues such as work-leisure balance, the social impact of digital 

technologies, and more environmentally sustainable ways of living. 

Jara-Diaz and Rosales-Salas (2017) propose the framework shown in Figure 2 for the allocation of 

time use that they derived from time allocation literature. The perspectives gained from the literature 

were classified as historical, disciplinary and analytical. The types of analyses that have been 

performed are conceptual and/or theoretical; data collection and analysis; descriptive data (descriptive 

statistics are used to describe the basic features of data and provide summaries about the sample and 

the quantified measures); and modelling. The modelling analyses have focussed on paid work; unpaid 

work; leisure; and tertiary activities that include transport and sleep. Overall time use is a combination 

of these.    

Thus, the value of travel time is a component of the tertiary activities in the overall time allocation 

spectrum. Reviews of transport time allocation have focussed on different aspects of travel demand 

and behaviour (for a large number of commercial and academic applications); on revealed and stated 

preferences methods for the collection of mode and route choice preference data; and the value of 
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travel time and associated heterogeneity e.g., Wardman & Ibanez (2012) and household activity travel 

decisions for use in activity based transport simulation approaches e.g., Timmermans and Zhang 

(2009). In the context of the research into the VTT presented in this report, an analytical approach 

using discrete choice models has been used to estimate the value of travel time. A key feature of this 

approach the disaggregation of the overall VTT based on the total trip time into estimates for free 

flow, slowed-down and stop-start time travel conditions. This trip time distinction provided insights 

into the variation of VTT within the overall constrained utility maximisation process.      

 

Figure 2: Time Use Literature Classification (after Jara-Diaz and Rosales-Salas (2017))  

The  

2.3 The Subjective Value of Travel Time (VTT) 
 

The subjective or behavioural VTT is mostly derived from discrete choice models used for mode or 

route choice simulation. It represents the traveller’s willingness-to-pay a monetary amount to reduce 

travel time (either in-vehicle, waiting, or walking) by one unit, e.g., an hour or minute. It represents 

the marginal rate of substitution between cost and time for a given level of utility. VTT is thus 

determined as the ratio of the trip time and trip cost utility attribute coefficients and represents what 

DeSerpa (1971) called the “value of saving time in an activity”. DeSerpa emphasised that there is no 

reason whatsoever to expect that this willingness-to-pay for a reduction in travel time to be equal to 

the marginal wage rate. He emphasised that an individual’s willingness to pay for travel time savings 

will exist if several effects are present, i.e., a reduction in travel time; the need to travel less; more of 

other (pleasurable) activities; changes in consumption patterns; and a change in activity schedule.  
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There are two VTT derivations, each with specific applications i.e., the perceived (or subjective) VTT 

used for modelling and forecasting, and the social (or equity) VTT used in project appraisal. The 

subjective VTT is derived from discrete choice models and is used in transport demand and 

forecasting models. The social VTT is used in the economic appraisal of transport schemes to 

determine the monetary values of time savings. The social VTT is premised on the fact that there is no 

reason that the value an individual is willing to pay for reduced travel times is equal to the value that 

society as a whole attaches to the reassignment of time of that individual (Mackie et al., 2001). Using 

the subjective VTT in an appraisal may lead to biased outcomes in favour of the higher income groups 

in society, especially in societies where there are high-income disparities such as South Africa. 

Mackie et al. (2001) point out that there are many examples of the subjective VTT being used in 

economic appraisals. In South Africa there are examples of where this mistake has been made ( 

Gauteng Province of South Africa, 2002). In other instances, significant road infrastructure projects 

such as the Gauteng Free Improvement Project (South Africa National Roads Agency Ltd, 2010) used 

VTT values based on World Bank appraisal guidelines (World Bank, 2005) for non-work purposes 

estimated as 30% of the average household income. Hensher and Goodwin (2004) highlighted the 

risks of using average VTT values, especially in the case of countries with high levels of income 

disparity such as South Africa.  

Travel times savings can make up a considerable proportion of total overall transport scheme benefits 

including in South Africa as highlighted in the UK by Mackie et al. (2001) and in South Africa by 

Hayes and Venter (2017). Table 1 shows the proportion of travel time benefits to total scheme 

benefits for several large road and public transport projects in Gauteng Province, South Africa, and 

the project benefit cost ratio (BCR). The highest portion was 66% for the Gautrain Rapid Rail project, 

followed by the 2014 Rea Vaya BRT appraisal. The value of 29% for the Gauteng Freeway 

Improvement Project (GFIP) is well below the upper range of 80% for road projects in the UK 

suggested by Mackie et al. (2001).  

The variation in proportions of time savings benefits occurred for three main reasons. Firstly, there 

was no consistency and transparency in the VTT used in the economic appraisals. The VTT used were 

either based on values derived from a proportion of the wage rate (GFIP Project), or from discrete 

choice models using SP data (Gautrain Rapid Rail System) or from unknown sources (both Rea Vaya 

BRT appraisals). For all the projects no account was taken of VTT heterogeneity amongst the target 

markets, for example resulting from income variation. Secondly the project target market themselves 

were different, for example the GFIP project vehicle market includes private, business and freight 

markets, while the target market for the Gautrain Rapid Rail and BRT projects was largely 

commuters. Thirdly, there was no consistency in the methodologies employed in the appraisal 

process. For example, accident cost savings were included in the GFIP and the BRT appraisals but not 

in the Gautrain appraisal. 
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Table 1: Proportion of Travel Time Saving Benefits for Gauteng Transport Projects  

Gauteng Transport Initiative Travel Time Savings as a Proportion 
of Total Economic Benefits (%) 

Scheme Benefit Cost Ratio 
(BCR) 

Gautrain Rapid Rail System 
2002 (Gauteng Province, 2002) 

66% 1.82 with travel time savings 
and 1.20 without. No wider 
economic benefits included  

Gauteng Freeway Improvement 
Project (GFIP) E-Toll System 
(South African National Roads 
Agency Ltd, 2010) 

29% 8.4 assuming a toll rate of 
R0.50 per km 

Johannesburg Rea Vaya BRT 
System (Phase 1a + 1b) (City of 
Johannesburg, 2012) 

32% 0.85 without wider economic 
benefits, 1.20 with wider 

economic benefits 
Johannesburg Rea Vaya BRT 
System (Phase 1a ) (EMBARQ, 
2014) 

37% 1.20 without wider economic 
benefits 

 

Several countries have official, standardised values of travel time for application in transport 

appraisals, such as the United Kingdom (Batley et al., 2019, Wardman et al., 2016). The 2019 UK 

study highlighted that research into VTT regularly reveals new insights, for example that the work-

related VTT derived from the employer’s willingness-to-pay for travel time savings resulted in 

significantly different to those used previously, especially when trip distance was considered. The 

Wardman investigation in 2016 provides a comparison of the official values of time for several 

European countries against those estimated using a meta-model derived from meta-data. The values 

are segmented by trip purpose and by mode.    

Of importance in the context of the route choice research presented in this report are the meta-

analyses of subjective VTT in the UK by Abrantes and Wardman (2011) and in Europe by Wardman 

et al. (2016). These analyses highlighted the growing trend in VTT investigations to distinguish 

between congested and free-flow time VTT for car users. In 2016 in the UK, 4% of all valuation 

estimates (i.e., 68 out of 1,862 estimates) distinguished between free flow and congested travel time. 

In Europe the equivalent proportion was 7.5% (i.e., 94 out 1,247 estimates). This travel time 

distinction is investigated in more detail by Wardman and Ibanez (2012) when assessing motorist’s 

valuations of travel time with traffic conditions. This investigation specifically investigated the 

concept of the congestion multiplier, i.e., the ratio of uncongested and congested utility attribute 

coefficient ratios, which is an important VTT consideration in this report.  

 

2.4 Choice Modelling and VTT in the South African Urban Transport Context 
 

Values of travel time are derived from mode and route choice models. Mode choice modelling has 

been performed by transport planners in South Africa since the 1970’s, when the first multi-modal 
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transportation models were developed in cities like Johannesburg (Stanway et al., 1980) and Cape 

Town (Behrens & Kane, 2002). These disaggregated models were based on the four-step modelling 

process, with simplified binary logit-based public versus private transport choice models based on 

generalised costs with assumptions made regarding the relative importance (i.e., weighting) of inter-

zonal trip time and cost. Choice between the available public modes was performed using the all-or-

nothing public transport assignment method, and vehicle route choice assignment was done using 

incremental assignment methods. The Masstran Study undertaken in 1990 to evaluate the feasibility 

of a rail-based underground mass transit system in Johannesburg (South African Department of 

Transport, 1991) used a simplified multi-modal choice model. It was the first model in South Africa 

to use the newly introduced EMME/2 transportation modelling platform. The generalised cost of a trip 

was estimated as the weighted average of the travel time and out-of-pocket costs and the mode shares 

estimated using a binary multinomial logit (MNL) model. The VTT was based on a proportion of the 

average wage rate. 

In the late 1990’s more sophisticated multi-modal choice models were introduced based on SP and RP 

survey methods. Both conjoint and discrete choice methods were used to estimate mode choice 

models from these data sets. The advantages of discrete choice models over conjoint analysis 

(Louviere et al., 2010) are well understood. In the early 2000’s, the first regional transportation model 

to introduce discrete choice models was the Gauteng Province for the Gautrain Rapid Rail system 

model that simulated the binary choice between car and the Gautrain Rapid Rail (Brocklebank et al., 

2001). The model was based on the Gauteng Province GTS2000 EMME model. Preference data from 

SP surveys were used for estimating the car and Gautrain trip utilities for both the general and airport 

passenger services. Commuting related values of travel time were estimated for each of these rail 

services that also segmented the market by income group. These values of travel time are discussed in 

the next section. 

Since 2010, several four-step transportation models have been developed in the Gauteng Province by 

the Tshwane, Johannesburg and Ekurhuleni metropolitan authorities that have incorporated more 

sophisticated multi-modal choice models using discrete choice methods (Stacey, 2010), 

(Johannesburg, 2014).  These models have been used to estimate the passenger demand for new bus 

rapid transit (BRT) systems that were planned and implemented at that time. Multinomial logit 

(MNL) models were used in Tshwane and Ekurhuleni and a random parameter logit (RPL) model 

(also known as the mixed logit model) was applied in Johannesburg. For all three of the models, 

commuter preference data from SP surveys were used to derive the modal utility equations based on a 

linear-in-parameters weighted average of attributes. An analysis of the SP experimental designs for 

these surveys was undertaken that demonstrated the designs all contained flaws that compromised the 

quality of the SP data sets (Hayes, 2021).  
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2.5 Historical Values of Travel Time in South Africa 
 

Non-market related willingness to pay measures such as the subjective VTT are perhaps the most 

important parameters used in the transportation demand modelling and appraisal processes. For 

commuters this is termed the subjective commuter related VTT, and is non-wage related. This micro-

economic measure is used in the formulation of transport policy such as public transport fare and toll 

road tariff strategies. The social VTT is used in the economic appraisals of transport schemes to 

quantify the non-work travel time savings benefits. As shown earlier, travel time savings make up to 

40% of the overall scheme benefits in South Africa (Hayes & Venter, 2017) and up to 80% of total 

benefits for road schemes in the UK (Mackie et al., 2001).  

The subjective VTT is also an input into transport demand models, specifically the trip assignment 

sub-models for public transport (or transit) assignment and vehicle assignment. These assignment 

models both require the quantification of trip cost in generalised time units and hence require the 

conversion of trip costs into equivalent time units. This is achieved by the conversion of monetary trip 

costs such as fares, petrol, parking, and tolls into equivalent time units using the subjective VTT. The 

willingness to pay for tolls based on travel time savings are thus a key input into urban toll and 

congestion pricing schemes.  

Up until the early 1990’s, the South African Central Economic Advisory Service provided estimates 

of the wage-related value of travel time. No estimates were provided for non-wage related VTT, 

including for commuters. The wage related VTT estimates were derived from average wage rates and 

were intended for use in the economic appraisal of transport schemes. In 1992, the estimates of wage 

related VTT were R24/hour for middle income workers (incomes between R9,500 to R38,000 per 

annum) and R69/hour for high income earners (incomes greater than R38,000 per annum) (van Zyl et 

al., 2001).   

In the South African context, motorist and public transport commuter subjective VTT since the turn of 

the century have in all instances been derived from data collected from stated and/or revealed 

preference surveys and discrete choice or conjoint models.  Figure 3 presents the commuter VTT 

(normalised to 2017 Rand values using the average consumer price index during the period) that have 

been derived over the last 20 years for several projects and modes (Hayes & Venter, 2017). The VTT 

estimates were used in transportation demand models, mainly for the estimation of traveller mode 

choice between various public modes and the private (car) mode. None of the estimates for car users 

were derived from route choice experiments, only from mode choice experiments.  
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It is noticeable that the commuter VTT shows a decreasing value trend toward 2014 when the last 

significant stated preference surveys were done in Johannesburg. The reasons for this trend are 

unclear, but improved SP/RP survey methods and the use of discrete choice models in place of 

conjoint models may account for some of this. For car users across all income groups, the Ekurhuleni 

surveys in 2013 estimated a commuter VTT of R18/hour. These values are significantly lower than 

the estimates for high income motorists (R110/hour) and low-middle income motorists (R62/hour) in 

Gauteng in the year 2000.   

 

Figure 3: Historical Non-Work Related Values of Travel Time (VTT) in South Africa  

The increases in wage rates are more likely to reflect increases in the VTT. However, there have been 

material differences in wage rate increases between low, middle and high income earners in the 

country, with low and middle income wage increases being lower than for high income earners. This 

has largely been due to the shortage of high-income skilled workers. The result has been high skill 

premiums raising wages at the top, leaving median wages stagnant (Mosomi & Wittenberg, 2020). 

Between 2000 and 2015 the overall real wage increase was 49.3%, or on average 2.3% per annum, 

while between 2000 and 2011 real median wages increased by 16.9%, or an average of 1.4% per 

annum, and have been on a downward trajectory since then. Normalising the VTT in terms of real 

income growth would thus indicate a widening inequality in values between low and high incomes.   

Several important points are evident from Figure 3. Firstly, the range of values between studies and 

within some studies is significant. The reason for this source of heterogeneity is mostly attributable to 

the high income inequality in South Africa. The Gini index, used to measure income inequality in a 

country, was 63 for South Africa in 2014, the highest in the world (World Bank, 2022). Comparative 

countries such as Brazil, Indonesia and Colombia had values of 53.4, 38.2 and 51.3 respectively in 
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2019. Secondly, the studies since 2005 have revealed lower values of time than the earlier studies - 

generally lower than R20 per hour. These lower values reflect the improved quality of the methods to 

collect traveller preference data as well as improved discrete choice modelling methods. As a 

benchmark, the minimum legal hourly wage in South Africa in January 2017 was R16.36 per hour, 

and in 2022 was increased to R23.19 per hour (South African Government, 2022). 

These lower values of travel time have profound implications for transport policy and the economic 

appraisal of transport initiatives in the South African urban context for both road projects (including 

urban road tolling and congestion pricing) and for the design and operation of urban public transport 

systems such as bus rapid transit (BRT). For example, the lower values raise questions about the high 

capital cost BRT systems that have been implemented in South Africa. Current taxi, bus and Metrorail 

public transport users are not willing to pay much for travel time savings but place a high importance 

on service accessibility, affordability, and reliability (Venter, 2018). So, implementing exclusive BRT 

bus lanes at a very high cost to save travel time may not be a sound policy. This approach is supported 

by an ex-post economic appraisal undertaken in 2012 for the Rea Vaya (Phases 1a and 1b) BRT 

system in Johannesburg that revealed benefit-cost ratios of less than 1.0 (Johannesburg, 2012). This 

outcome emphasised the need to re-evaluate the high capital cost model that has been implemented in 

several South African metros including Johannesburg, Pretoria, Ekurhuleni, Cape Town and Durban. 

The Gautrain access and egress VTT are significantly higher than for the other modes. These higher 

values are as a result of the much higher income levels of Gautrain users (in 2019 over 50% of 

Gautrain users previously used their private cars for their commute), and significantly higher Gautrain 

fare levels compared to other public transport modes. The 2020 values from the Soweto surveys that 

included the access and main mode VTT are also higher than the values derived between 2010 and 

2014. The access mode for Soweto public transport highlights the higher perceived value of travel 

time saving (by 34%) for a public transport trip access mode compared to the main mode.  

To further explore the VTT for South African commuters, revised mode choice models were 

estimated with a consolidated stated preference data set from the Pretoria and Ekurhuleni 

Metropolitan areas in Gauteng Province. Mean VTT estimates from this large data set using 

multinomial logit (MNL) and random parameter (mixed) logit (RPL) models for all trip purposes in 

the weekday morning peak period were R13.89 /hour and R9.18 per hour for the MNL and RPL 

models respectively. RPL models provide a distribution associated with the mean value of R9.19/hour 

and depending on the mixing distributions used for the time and cost coefficients, the mean VTT 

value can be significantly different from the median value. These values were for low to middle 

income groups (i.e., for households earning less than R7,000 per month). The values confirm the 

lower VTT estimates derived between 2010 and 2014 shown in Figure 3.  
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This analysis highlighted that transport planners and economists in South Africa do not have a full 

understanding of commuting trip preferences, the related VTT and its heterogeneity across different 

modes used for commuting.   

 

2.6 South African VTT Research since 2018: VTT is Not What We Thought It 
Was. 

 

No recent urban route choice research has been undertaken in South Africa, and hence recent 

estimates of VTT have not been derived for car users in a route choice circumstance. This has left 

significant gaps in the understanding of route choice behaviour in the urban context, especially in the 

context of urban toll roads and/or congestion pricing. Without filling these gaps it is not possible to 

develop policies for the procurement of urban road schemes based on the user-pay principle. Equally 

it will not be possible to determine the demand and toll revenues of these schemes without significant 

risk, and subsequently undertake robust economic and financial appraisals of the schemes.  

International research has meanwhile progressed rapidly, with the recognition that route utility is not 

simply the linear combination of the total trip time and cost components. For example, Hensher et al., 

(2016) highlighted that VTT can be materially affected when considered in the context of commuter 

transport budgets in urban cumulative toll systems. The research emphasised that toll affordability (or 

ability to pay) added a further layer of complexity to the estimation of VTT in these schemes. 

Additionally, while not within the scope of this research, factors such as real-time traffic information 

systems, road safety (or accident risk), driving comfort and route familiarity can also affect route 

choice behaviour (Harms, et al., 2021; Politis, et al., 2023). These factors are also in turn influenced 

by route conditions and geometric characteristics such as road surface quality, lane width and 

roadway lighting.        

Research efforts into various forms of discrete choice models since 2018 in South Africa have 

highlighted that travellers can exhibit complex VTT behaviour. Research into the access and egress 

mode choices of Gautrain Rapid Rail passengers in Pretoria and Johannesburg showed that passengers 

have different perceptions of VTT for these parts of their train trip (Watts, 2022). The access VTT 

was R40/hour while the egress VTT was R80/hour. A possible explanation for this is that commuters 

are more concerned about arriving at their final destination on time (i.e., at work) on their station 

egress trip stage and less concerned about getting to the station on time in the access trip stage.   

Research by the University of Pretoria into mode choice simulation for Soweto commuters in 2020 

took into consideration the access mode component of public transport trips i.e., trips requiring the 

use of more than one mode or service. Nested logit models derived from SP/RP data amongst current 

public transport users (i.e., taxi, bus and BRT users) highlighted different VTT values for different 
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stages of the commuting trip. For example, for middle and high-income earners (i.e., incomes more 

than R9,000 per month), the main mode VTT was R23.92 per hour, whilst for the access stage of the 

trip it was R35.46 per hour (Cheure et al., 2022) (to be published). This result is also shown in Figure 

3. 

Both these recent studies reveal the nuances in VTT that are not apparent from mode choice models 

that only consider the main travel mode when making a trip and emphasise the importance of the first 

and last mile considerations when planning public transport systems. They highlight that the 

commuter related VTT is not what we thought it was. The implications for transport demand models 

and economic appraisals of transport schemes are significant. 

 

2.7 A Review of Route Choice Modelling in South Africa 
 

Route choice SP and RP surveys in South Africa have largely been limited to three inter-urban 

freeway public private partnership (PPP) concession schemes that were undertaken during the 1990’s 

and early 2000’s by private concession companies, and the results are kept commercially in 

confidence. These PPP schemes require the concessionaires to design, finance, build/rehabilitate, 

maintain, operate and transfer the freeways over a 30 year period. The schemes are the N4 (east) 

freeway between Tshwane in South Africa and Maputo in Mozambique in 1997 (operated by TRAC 

Pty (Ltd)); the N3 freeway concession between Heidelberg (near Johannesburg) and Cedara (near 

Durban) in 1999 (operated by N3 Toll Concessions Pty (Ltd); and the N4 (west) freeway concession 

between Pretoria and the Botswana border signed in 2001 and operated by Bakwena Pty (Ltd). The 

N4 concessions carry a small proportion of urban commuter traffic on the freeway sections close to 

Pretoria. The three PPP concessions have been financially and operationally successful (Robert & 

Chan, 2015).  

The last route choice preference survey in an urban setting based on SP and RP preferences methods 

was undertaken in South African in 2001. The was done by van Zyl et al. (2001) who undertook the 

initial investigations into the tolling of the Gauteng provincial freeways based on an express toll lane 

strategy. While this project was not implemented, it was the prelude to the Gauteng Freeway 

Improvement Project (GFIP) e-toll scheme that was implemented 10 years later in 2011, in which all 

the freeway lanes were tolled equally. 

For the Gauteng freeway toll road investigation by van Zyl et al., both SP and RP surveys were 

conducted. For the SP survey component two hypothetical alternatives were defined in choice set 

format: a tolled freeway alternative without intersections, and an un-tolled arterial alternative with 

intersections. The SP trip utility was limited to 4 attributes, viz., toll fees, total trip time, stopped time 
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at intersections and the type of roadway (2 lanes for arterials and 4 lanes for freeways). The trip fuel 

cost and trip time reliability were not included in the utility expression. The stopped time at 

intersections represented the introduction of stopped travel time in the utility expression. However, its 

interpretation is uncertain as stopped time at intersections may not be due to congestion but simply 

due to the method of control at an intersection. How this attribute was described to survey participants 

is also uncertain.  

The RP survey was done on a face-to-face basis with a sample of tolled freeway users and parallel 

road users. The perceived values of two attributes on their current route were solicited from 

respondents, i.e., the current trip total travel time and toll cost, and the perceived values for the same 

attributes on the alternative route. The trip petrol cost was not included as an attribute. It was noted 

that respondents had difficulty estimating their perceived total trip time and toll costs for both their 

current and alternative routes. Multinomial logit models (MNL) were estimated with the SP and RP 

data sets. 

Several findings were made from the study. Firstly, the values of travel time (VTT) estimated from 

RP data were higher than the values from the SP models. This is in-line with findings from 

international studies as shown by Lavasani et al. (2017), Shires and de Jong (2009), and Abrantes and 

Wardman (2011). Secondly, there was strong aversion from the SP responses to paying any toll on the 

freeways. The value of stopped time at intersections was up to 70% higher than travel time on the 

non-tolled routes (i.e., a congestion multiplier of 1.4). The VTT estimated from the SP and RP models 

was higher than the average hourly wage rate at the time. The range of VTT estimated was between 

R20 and R70/hour (in 2000 Rands) for commuters.       

2.8 Lessons from the e-toll Gauteng Freeway Improvement Project (GFIP) 
 

As highlighted earlier, South African research into urban route choice behaviour has lagged behind its 

international peers resulting in significant gaps in transport planners and economists understanding of 

route choice behaviour and VTT in the urban context. It was emphasised that this lack of insight 

created risks for the reliable forecasting of traffic demand and revenues for urban user-pay road 

schemes.  

The project that best illustrated the urgent need to fill these research gaps is the Gauteng Freeway 

Improvement Project (GFIP). This freeway user-pay scheme was planned and operated as a state-

owned toll scheme with open tolling infrastructure and systems in the urbanised Johannesburg / 

Pretoria regions of Gauteng Province. Tolls would be cumulative on the freeway system in two ways, 

firstly on a toll per kilometre basis, and secondly cumulative over time. A large proportion of traffic 

on the freeways during the weekday morning and afternoon peak periods is commuter traffic, with 

high levels of congestion experienced on parts of the freeway system during these periods. 
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Construction of the carriageway and interchange upgrades was completed in 2010 (in time for the 

2010 FIFA World Cup held in South Africa) and the imposition of tolls was scheduled for early in 

2011.  

GFIP was implemented on 201 km of existing freeways after widening and upgrading the existing 

two-lane freeways in Gauteng Province to four lanes per direction as well as the upgrading of most of 

the interchanges on the freeway system. The estimated total capital cost was R19.6 bn (South African 

National Roads Agency Limited (SANRAL), 2010). The capital cost was financed by means of bonds 

issued by the South African National Roads Agency Ltd (SANRAL), that are guaranteed by the South 

African government. The project was the first area-wide implementation (and significant failure) of 

the South African Governments’ policy of the ‘user-pays principle’ for the use of urban road-based 

transport infrastructure.  

No route choice research was undertaken in the planning stage of the scheme, and there was hence no 

insight into motorist’s willingness to pay tolls (or ability to pay tolls) for travel time savings using 

econometric methods when the scheme was devised, planned and implemented. Legal challenges by 

consumer advocacy and civil action groups to the imposition of tolls on the basis of inadequate 

consumer consultation resulted in the implementation of tolls on the freeways being delayed to 

December 2013.  

From the onset, the GFIP e-toll system was met with strong resistance and negative sentiment from 

freeway users, and toll payment non-compliance has been consistent at levels of between 70% and 

80%. The strong public resistance to the scheme led the Gauteng Province to appoint an independent 

advisory panel of experts to review the project in 2014. The review panel highlighted the lack of 

insight into route choice preferences and business and commuter related VTT as a weakness in the 

planning of the e-toll system (Gauteng Provincial Government Advisory Panel, 2014).  In the context 

of this research the key issues raised by the review panel were: 

 The use of an average VTT for all car commuters in the planning process was inherently 

risky, as there was likely to be significant heterogeneity in the commuter related VTT. This 

issue is highlighted as a significant risk for toll road projects by Hensher and Goodwin 

(2004). 

 VTT was likely to vary according to the levels of congestion experienced by freeway users. 

For example, a motorist commuting in the off-peak direction on a freeway is likely to travel in 

mostly free-flow conditions. Even in the peak-direction, there is likely to be a mix of free-

flow and congested travel conditions. Based on international experience the willingness-to-

pay for travel time savings in free-flow conditions is lower than for congested conditions 

(Wardman, 1986; Wardman & Ibanez, 2012) and therefore it is unequitable to charge the 

same toll tariff for peak versus off-peak directions. 
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 A distinction needed to be made between commuters’ willingness to pay for travel time 

savings based on vehicle operating costs (i.e., petrol costs) and their willingness-to-pay tolls 

for travel time savings. A meta-analysis of the European value of time by Wardman et al. 

(2016) revealed that the monetary units in which the valuation is expressed result in 

significantly different valuations. This finding was confirmed by Hensher and Rose in 

Australia (The Hensher Group, 2005). 

 The consequence of motorists and especially commuters, paying cumulative tolls required 

investigation. Hensher (2016) found that when the commuters’ bi-weekly toll budget was 

introduced as a utility affordability attribute, the ability to pay tolls reduced when toll 

affordability saturation levels were reached. At this point the VTT was significantly reduced.    

Due to consistently high public resistance and a toll payment non-compliance level of approximately 

80% in 2019 (Organisation Undoing Tax Abuse (OUTA), 2019), the GFIP e-toll project was scrapped 

by the South African National Treasury in late 2022. The toll road de-proclamation process was 

underway at the time of writing. The estimated credit losses and other receivables resulting from the 

GFIP e-toll project alone were R9.8bn on 31st March 2020. As the project sponsor, the South African 

National Roads Agency Ltd (SANRAL), has incurred significant financial and reputational damage, 

and the case for urban tolls and congestion pricing in South Africa has been put back many years 

(South African National Roads Agency Ltd, 2020). The South African Auditor-General’s report in the 

SANRAL 2020 Annual report raises material concern that, due to the entities total debt of R14.85bn 

on 31 March 2020 which exceeds the entity’s assets, it faces a severe short-term liquidity risk and “a 

material uncertainty exists that may cast significant doubt on the public entity’s ability to continue as 

a going concern” (South African National Roads Agency Ltd, 2020). This uncertainty related to the 

collection of historical and future e-toll revenue, which now requires SANRAL to “consider both the 

ability and the intention of customers to pay the consideration due”. This refers to both the 

willingness to pay and the ability to pay e-tolls, which was not investigated by SANRAL prior to the 

implementation of the GFIP e-toll system. SANRAL has been unwilling to disclose the commuter 

related VTT used in the GFIP traffic demand models for the weekday morning, midday and afternoon 

peak hours.  

A similar urban freeway tolling system that was proposed by SANRAL for the Western Cape 

Province (Winelands N1/N2) was challenged in court by the City of Cape Town in 2016 and defeated 

on the basis that there was inadequate public consultation for the proposed tolling scheme (Polity, 

2016). In this case SANRAL also did not undertake any route choice research to determine freeway 

and non-freeway user trip preferences and behaviour including willingness to pay tolls for travel time 

and cost savings.  
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Despite the failure of the GFIP scheme, there are still references made by various South African 

transport authorities for the implementation of urban tolls and congestion pricing. The South African 

Department of Transport Green Transport Paper (South African Department of Transport, 2017) 

mentions congestion pricing as “an important part of a more comprehensive energy price 

rationalisation in the longer term”. The Gautrain Management Agency (GMA) has publicly stated 

that revenues for the expansion of the Gautrain Rapid Rail System will be partly funded through 

motorist congestion charges (Engineering News, 2020). There is significant risk associated with the 

implementation of congestion pricing schemes given the lack of insight into the various non-work 

(and work) related VTT’s and the failure of the GFIP e-toll scheme. 

The lessons learned from the GFIP scheme have emphasised the significant gaps in our understanding 

of route choice behaviour in South African urban areas. Firstly, transport planners have no quantified 

insights into motorist route choice behaviour. Historical efforts to understand this behaviour are no 

longer valid and, in any event, had significant shortcomings. The route choice models estimated by 

van Zyl and Raza (2006) excluded trip petrol costs.  

Secondly, the commuter related VTT is unknown, especially those derived from the disaggregated 

forms of travel time (i.e., free-flow versus congested travel times). More importantly there is no 

insight into the heterogeneity associated with an average value. The GFIP experience suggests that 

motorists are not willing-to-pay much for travel time savings, but this has never been quantified and 

there are likely to be other factors (e.g., the perceived lack of consultation on the GFIP project and 

general taxpayer frustration at perceived high levels of malfeasance in government project 

procurement and operation). This lack of insight into the willingness-to-pay tolls for travel time 

savings highlights the risk that the GFIP time savings benefits have been overstated in the scheme’s 

economic appraisal.   

Thirdly, South African transport planners have no insight into the other factors of utility that influence 

commuter route choice. An example is the value of travel time reliability that has been shown to be an 

important component on trip utility (de Jong & Bliemer, 2015; Batley et al., 2019). International 

evidence has shown that motorists have different values of travel time for different levels traffic 

congestion  (Hensher & Rose, 2004; Wardman & Ibanez, 2012).  

There are other route choice related issues that have received no attention in South Africa but are 

likely to have significant impacts on road planning, network modelling and economic appraisal. 

Empirical evidence provided in the UK by Batley et. al (2019) into the value of work-related travel 

time highlighted that the business-related VTT is not what it was thought to be. Economic theory 

suggests that the value of travel time savings is worth what the decision maker is willing-to-pay for it, 

so the business-related VTT should be based on what employers are willing to pay to save travel time. 

Based on extensive SP surveys undertaken amongst a sample of employers in the UK, the VTT’s 
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derived from the willingness to pay for travel time savings were significantly lower than the wage-

based estimates for shorter trips (less than 32 km), about the same for trips up to about 100 km, and 

higher for trips longer than 100 km’s.        

   

2.9 Summary of Findings into Mode and Route Choice Modelling in South 
Africa 

 

Based on the discussions in this chapter, several important findings were identified as follows: 

a) The focus of choice modelling in the urban passenger transport context in South Africa has 

been on mode choice modelling. Over the last 10 years several mode choice models have 

been developed at the provincial and metropolitan level. Since the early 2000’s there has been 

no research into urban route choice data collection and discrete choice modelling. 

b) The surveys done for the mode choice models were all stated preference surveys. A review of 

these surveys found that all the experimental designs were flawed, with the discrete choice 

MNL models all displaying the characteristics of poor SP experimental designs, e.g., 

coefficients with the wrong signs, counter-intuitive coefficient magnitudes and implausible 

VTT.   

c) The commuter related VTT is not what we thought it was. More recent studies by Hayes and 

Venter in South Africa (2017) indicate lower VTT values than earlier studies, with public 

transport user values generally less than R20/hour (except for Gautrain users for whom values 

are R40/hour and more). There is little insight into the heterogeneity associated with these 

lower values.  

d) There is a large gap in the understanding of urban motorist route choice behaviour and trip 

preferences. There is also the associated uncertainty of urban road commuter willingness to 

pay for commuter related VTT, with no definitive values recently derived from the mode 

choice models. The heterogeneity associated with the VTT is also unknown. This is despite 

the implementation of a significant urban toll road initiative in Gauteng in 2011. The basis for 

the establishing the feasibility of a user-pay scheme is understanding the user’s willingness to 

pay for travel time savings. 

e) There is no insight into car trip utility attributes that have been highlighted as significant in 

international research and applications, especially the value of trip time reliability. Associated 

with this is the variation in VTT corresponding to different levels of congestion on urban 

roads that have been highlighted as significant in international studies. These are the VTT’s 

associated with stop-start time, slowed-down time and free-flow time. 
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f) There has been no research into the effect of cumulative toll schemes on route choice 

behaviour in South Africa, i.e., the effect of distance-based tolls on linked toll roads; and tolls 

that accumulate over time, e.g., for a commuter this could be two tolled trips per day and 46 

trips per month. This is exactly the case for the GFIP e-toll scheme, even though the scheme 

has a toll payment cap. Hensher et. al. (2016) showed that the affordability of cumulative tolls 

had a significant impact on motorists VTT. A toll budget constraint affects motorist 

willingness-to-pay for travel time savings and results in significant decreases in VTT, with 

motorists then either choosing different routes or changing travel mode.            

2.10 The Complexity of Route Choice Modelling 
 

Several authors have provided evidence that the route choice data collection and modelling process is 

more complex and dynamic than other travel related decisions such as travel mode choice (Ramos, 

Frejinger et al., 2012; Ben-Akiva, Polydoropoulou et al., 1994; Ben-Akiva, de Palma et al., 1991). 

This complexity has perhaps contributed to the limited research and insight into motorist route choice 

preferences in South African urban areas.  

The complexity is created by the dynamic interaction of four factors. Firstly the drivers’ personal 

preferences, learning trends and personality traits that defines their perceived route utility (Tawfik & 

Rakha, 2012). Secondly the trip purpose/s and required waypoints (for example a trip from home to 

work may require that a particular bridge be used or that an intermediate stop for a drop-off at school 

is necessary and hence may constrain the number of potential alternative routes). Thirdly the dynamic 

nature of traffic conditions on the road network (including time-of-day and day-of-week conditions) 

that may influence the route and departure time choice investigated by Prato et al.  (2014). Finally the 

influence of advanced traffic information and route guidance systems (in-vehicle or smartphone-

based) that provide minimum time and cost route options and reduce travel time uncertainty and may 

influence the preferred route (Mahmassani & Yu-Hsin, 1999; van Essen, et al., 2019).  

Bekhor et. al. (2006) suggested that route choice modelling is a two-step process, i.e., firstly 

alternative routes are generated to form the choice sets, and secondly, the probability of a given route 

being chosen from a specified choice set is calculated. However, executing both steps is not 

straightforward. Prato (2009) suggests that there are two main challenges associated with route choice 

data collection and modelling. Firstly, the generation of alternative routes for the choice sets, and 

secondly, the estimation of discrete choice models, specifically to deal with the issue of route overlap 

and correlation. 

To this, Dhakar and Srinivasan (2014) added more complexity by highlighting that there are large 

number of independent variables affecting driver route choice on dense urban road networks, 

including the number of left and right turns, the number of intersections, and the proportion of local 
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roads, amongst others. Papinski et. al. (2009) also highlighted that behavioural factors of individual 

motorists also affect route choice, specifically the influence of route learning based on experience 

(i.e., habit), risk-taking behaviour (i.e., willingness to change routes) and the availability of traffic 

information.    

Hess et. al., (2020) and Krcal et. al., (2019) added further layers of complexity to the collection of 

route preference data by either SP and/or RP methods by considering the needing to balance the 

external validity (or realism) of the route traffic data with the control of the independent trip variables, 

i.e., the attributes and attribute levels of the experiment. While SP methods enable high levels of 

control over the utility attributes and levels, the external validity of the alternative routes can only be 

presented in a hypothetical manner. While RP experiments provide high levels of external validity on 

the observed route, they lack the flexibility to vary the attribute levels. Some attributes may not even 

be observable with RP data such as the perceived travel time reliability of the route. With RP methods 

the generation of alternative routes is not straightforward because of the number of potential 

alternative routes and the difficulty associated with collecting the traffic data for those routes.  These 

issues are discussed in detail in the next section. 
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3. THE DATA COLLECTION FRAMEWORK FOR ROUTE CHOICE SURVEYS 
 

3.1 Introduction 
 

Both RP and SP methods can be used to collect user preference data from travellers, and analysts are 

faced with choosing between these survey types, depending on the specific study objectives 

(including type of discrete choice model to be estimated), and the available resources (i.e., budget, 

technology, and timeframe). This chapter presents an analysis of these survey types in a route choice 

context. 

3.2 The Control - Validity Framework for Choice Surveys 
 

When selecting the appropriate survey type, an important consideration is the trade-off between the 

external validity of the survey (i.e., the degree to which the mode or route alternatives and their 

attributes and attribute levels reflect real-world conditions), and the degree of control over the survey 

attribute levels that the analyst has. The framework in Figure 4 has been suggested by Bliemer (2020) 

to describe the location of the data types for RP and SP surveys and the trade-off between the survey 

external validity and the degree of control that the analyst has over the experimental design. The 

survey types are grouped into field data types that consist of revealed preference types, and 

experimental data that consist of the driver simulator and stated preference methodologies. 

 

Figure 4: External Validity / Control Framework and the Types of Data Collection Methods for 

Mode & Route Choice Simulation (Bliemer, 2020)  

Data collection complexity for RP route choice surveys is due to several factors,  including the large 

number of possible alternative routes between origins and destinations; the potentially large number 
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of observable and unobservable trip utility attributes affecting route choice; the dynamic nature and 

variability of traffic levels of service on congested networks including time-of-day and day-of-week 

effects; the availability of real-time traffic information to motorists that may affect route choice; and 

the high likelihood of alternative route overlap that violate the independent and irrelevant alternatives 

(IIA) constraint of standard multinomial logit models (MNL) (Prato, 2009).  

3.3 The Evolution of SP and RP Methods 
 

One of the advantages of SP over RP experiments is the level of control the analyst has over the 

definition of the attributes in the trip utility expression and the attribute levels used in the choice sets. 

More than this SP experimental designs have evolved and improved over time. The use of efficient 

designs over traditional orthogonal fractional factorial designs has improved the efficacy of SP 

surveys and the discrete choice models estimated from the data (Rose & Bliemer, 2009; Rose & 

Collins, 2015; Hayes, 2021). The application of efficient designs requires a prior knowledge of the 

utility attribute coefficients through previous local or international surveys and models. There are no 

applications of route choice SP surveys based on efficient designs in South Africa.  

The historical limitations of RP data (prior to the wide availability of GPS devices and smartphones) 

to estimate discrete route choice models shifted the focus to improved SP methods of data collection. 

The outcome has been that the estimation of key non-market related willingness-to-pay measures such 

as the VTT and the value of trip time reliability (VOR) have mostly been done with data derived from 

SP surveys (Fayyaz, et al., 2021). Since the turn of the century route and mode choice SP surveys 

have mostly been done by means of computer aided personal interviews (CAPI) based on fractional 

orthogonal experimental designs, but more recently using efficient experimental designs. Multinomial 

logit (MNL) and random parameter logit models (RPL), also known as mixed logit models (ML), 

were commonly used to simulate route choice. Examples of these model types derived from SP data 

are found in Hensher (2001), and in Hensher and Rose (2005). 

For route choice SP experiments the choice sets are based on hypothetical routes with pre-defined 

attributes and levels. This approach assumes the routes are unique with no overlap, which obviates the 

problem of route correlation that could occur in practice. SP surveys have also evolved to include an 

RP component. The external validity of hypothetical routes in SP surveys can be improved by using 

pivot experimental designs that calculate the alternative route attribute levels from the respondent’s 

current (perceived) RP route attribute levels by pre-specified amounts (Choicemetrics, 2018). Thus 

the SP part of the experiment is pivoted from a RP trip, reducing the risk of hypothetical bias.  

An alternative approach to combing RP and SP data in experiments was proposed by Train and 

Wilson (2009; 2008). The methodology, termed SP-off-RP, requires respondents to not only reveal 

their preferred mode or route and the typical levels of the attributes, but also to specify the limits of 
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the levels, i.e., the observed range of attribute levels for each mode. The SP choice sets are derived 

from the RP attribute levels and the observed (RP) level range. MNL and ML models were estimated 

(assuming normal distributions for the attribute coefficients), with both models providing significant 

results, but the ML model providing a better goodness of fit as reflected by its lower log-likelihood 

value. 

3.4 Recent Approaches to Collecting Combined SP and RP Data 
 

Recently, driver simulation methods have been used to improve the external validity of route 

alternatives with combined SP and RP experiments. Driver simulation systems have long been used in 

road safety research but have been adapted for route choice research. These systems contain actual car 

dashboards, steering wheels and pedal controls linked to video screens to display the driving 

experience on the roadway, through intersections and with the effect of other traffic. Urban driving 

conditions can thus be realistically replicated and controlled with driving simulation systems. One 

such example is the Travel Choice Simulation Laboratory at the University of Sydney (TRACSLab, 

2021). The TRACSLab simulator system is unique in that the driving simulators (10 in total at the 

Universities of Sydney and New South Wales) can be linked, enabling all driver participants to 

interact with one another on the virtual road network.  

The TRACSLab simulators enable combined SP and RP route choice experiments to be performed 

iteratively (Fayyaz, Bliemer et al., 2021). The experiment requires participants to initially choose 

between two routes in an SP setting. An RP component is then introduced with the participants having 

to drive their chosen route using the simulator. This is not a “pure” RP method (i.e. the survey 

participants do not physically drive their chosen route in the field) – it is an “experimental” RP. This 

process can be iterated several times with varying route attribute levels to observe the change in driver 

choice behaviour. Route choice consequence can be introduced into the experiment through the 

introduction of a real toll cost for participants. This economic experiment is executed by providing a 

toll account to each participant with a starting balance. When a tolled route is chosen, the toll fee is 

debited from the account. At the end of the experiment, the participants are paid out their toll account 

balance.   

The technological advantages of driving simulator systems are constrained by the high capital cost of 

implementation; limited sample sizes; and relatively short simulator driving times (up to 12 minutes 

to avoid driver simulator fatigue is reported by Fayyaz et. al (2021)). With breaks of three minutes 

between stated choice and simulator iterations, this allowed each participant to complete five 

iterations in about 90 minutes. The focus of the route choice research by Fayyaz et. al. (2021) using 

the driving simulators has focussed on the estimation of the value of travel time and the value of 

travel time reliability.  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



46 
 

46 
 

MyTrips (Rudloff & Straub, 2021) is a multi-modal mode and route choice survey instrument that 

uses RP trip data derived from participant trip diaries to estimate an SP survey off the observed RP 

data (SP-off-RP). Although not specifically designed for smartphone applications or the use of 

smartphone GPS systems, it uses modal or route trip data (derived from travel diaries) to generate 

alternative mode and routes superimposed on realistic map-based backgrounds presented to 

participants on-line.  The usefulness of MyTrips is its ability to generate respondent specific 

multimodal public transport or route choice SP surveys based on the participant’s observed RP trip 

data. The SP surveys are designed using D-efficient methods with an initial SP survey being used to 

generate the prior estimate of the attribute coefficients.  The alternative trips are generated by a 

bespoke routing algorithm called Ariadne (Pranstetter, Straub et al., 2013), that uses several rules to 

eliminate unlikely alternative trips (e.g., alternative trip travel time cannot be longer than twice the RP 

route). The surveys are done online in five steps after recruitment of the sample: 

i. Step 1: Introductory questionnaire to obtain participant socio-demographic and trip data. 

ii. Step 2: Collection of RP trip data by means of on-line trip diaries.  

iii. Step 3: Generation of alternative trips (for public transport surveys) or routes (for route choice 

surveys) and choice set calculation. 

iv. Step 4: Main questionnaire to obtain detailed mobility preferences and an introduction to the 

survey methodology and the hypothetical nature of the scenario being tested. 

v. Step 5: Generation of personalised SP-off-RP choice sets. 

Latent class multinomial logit models were successfully developed for two multi-modal trip case 

studies. The first for the extension of the Vienna metro-rail system, and the second for replacement of 

existing bus services with the introduction of self-drive rural micro-transit vehicles (maximum 3 

passengers).     

3.5 RP Methods and the Advent of GPS Devices and Smartphones for Route 
Tracking  

 

RP survey methods are essentially field-data methods where the actual behaviour and choice of 

participants is observed. For route choice surveys, RP methods originally focussed on self-

administered travel diaries and self-reported questionnaires as a means to collect actual route paths 

and preference data. These methods rely on respondents recording their travel movements, including 

their routes descriptions on a daily basis over a period of time using either paper or electronic diaries. 

For route choice surveys, the main drawback of travel diary methods is the accuracy associated with 

the description of the routes used and the risk of trips not being recorded, i.e., non-reporting. These 

drawbacks, together with the high cost and efforts required to recruit and manage survey participants 

now limits their application. In 2016 the State University of New York’s report into innovative 
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methods for transport data collection (State University of New York (SUNY), 2016) indicated that 

travel diary methods were still used in in the state, but with increasing validation using transport 

smartphone applications for route tracking and trip information. In fact, as far back as 2001 efforts 

were made to replace travel diaries with GPS tracker devices that provided more accurate and 

complete data sets Wolf, Guensler et al., (2001). The use of smartphone-based travel diary 

applications is now more common, with examples provided by Berger and Platzer (2015) and by 

Allstrom, Kristoffersen et al., (2017).   

The introduction of GPS specific tracking devices in the early 2000’s considerably improved the ease 

with which to collect RP route choice and other travel behaviour data. These original devices were 

either attached to vehicles or had to be carried by fieldworkers or participants making the trip. The 

introduction of smartphones with embedded GPS devices has dramatically improved the ease with 

which to collect RP survey data especially because survey specific applications can be developed and 

used on these devices (Shen & Stopher, 2014; Wang, He et al., 2018). Smartphone GPS devices have 

overcome the original obstacles associated with GPS specific devices, i.e., being fixed to vehicles 

(and not individuals), the burden for survey participants to carry the mobile devices, and potentially 

forgetting to activate or carry them thereby increasing the risk of non-reported trips (Vlassenroot, 

Gillis et al., 2014). Furthermore, the ability to run bespoke survey applications on smartphones has 

significantly increased the potential for collecting additional multi-modal trip data by allowing 

specific trip questionnaires to be completed by respondents on their smartphones. The applications 

can passively record trip data by running in the background when the smartphone is switched on or 

can actively log trip data by means of a specific interface built as a front-end application.      

GPS enabled smartphones have the ability to accurately measure a range of RP trip attributes such as 

trip travel times (including trip start and end times), route alignments, route lengths and speeds. Route 

topology can also be derived, e.g., the classification of roadways making up the routes. Out-of-pocket 

trip costs such as petrol and tolls can be derived from the observed paths, e.g., trip fuel costs can be 

estimated from trip distances assuming average fuel consumptions and the current price of fuel, and 

toll charges can be derived from plaza or gantry locations and their associated toll tariffs.  

3.6 GPS and GSM Communication and Location Accuracy 
 

A fundamental requirement of the research presented in this thesis is the ability to quickly determine 

survey participant locations; generate alternative routes and their attribute levels based on real-time 

traffic conditions and communicate these efficiently and clearly to participants; and then to track the 

participants using the GPS their devices in smartphones. It is only recently that this could be done 

with adequate accuracy and speed using smartphones. The early limitations of GPS devices and 

smartphone-based GPS devices were mainly related to the accuracy of location coordinates and the 
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need to use map matching software to correct the traveller paths (Bierlaire, et al., 2010; Venter & 

Joubert, 2013). Smartphone tracking requires the use of Global Positioning System (GPS) satellite 

tracking to identify the location coordinates and time stamp of the smartphone signal, and GSM 

(Global System for Mobile Communication) technology using terrestrial cell phone towers to transmit 

the location data to a central data centre or a bespoke cloud-based remote database as shown in the 

following illustration. 

 

Figure 5: Illustration of GPS Satellite Communications with Smartphone and GSM 
Communication with Cell Tower and Remote Database  

GSM location tracking via cell phone towers can be undertaken in combination with GPS satellite 

tracking when the GPS device in the smartphone is blocked by buildings, is under a bridge or in a 

tunnel. GSM tracking is not as accurate as GPS tracking. GPS locations are usually to within 5 meters 

accuracy, while GSM locations are within 30 meters accuracy in urban areas where there is a high 

density of closely spaced cell towers to perform the triangulation. To provide location and elevation 

locations, GPS requires access to at least three satellites to perform the location triangulation process 

and four satellites for the elevation location.       

New smartphone technology, the introduction of 4G and 5G data transmission technology and the 

increasing number of orbiting satellites and cell phone towers in urban areas has significantly 

improved the speed of mobile communication and path tracking accuracy without the need for map-

matching processes. The Institute of Navigation (ION) undertook a worldwide GNSS (Global Satellite 

Navigation System) exercise in 2015 with over 1,000 participants in 100 countries (Van Diggelan & 

Enge, 2015). The study determined that the global mean accuracy of smartphone GPS devices was 4.9 

m in “open-sky” urban conditions. The study confirmed the ION “rule of thumb” figure of 5 m 

location accuracy. However, this accuracy deteriorated when the smartphones were in urban areas 

with high buildings, under bridges and within buildings. These conditions affect both GPS devices 

and smartphone GPS systems.  
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While a minimum of four satellites are required to accurately fix longitude, latitude and altitude, there 

are commonly many more than this observable from a location. The number of satellites available 

from a location can be determined using an application such as GPSTest that can be downloaded from 

the Google Play Store® or iPhone App Store®. While the number of observable satellites varies over a 

particular location, this application revealed that on average there are 16 satellites observable from the 

Johannesburg / Pretoria region at any one time. These are a combination of GPS (USA), Galileo 

(European), Glonass (Russian) and Beidou/BDS (Chinese) satellites in approximately equal numbers. 

Not all cell phones can receive signals from all these satellites. For example a Samsung A205F 

smartphone (2019 model) that has been used as part of this research located in Johannesburg can 

receive signals from GPS-A (advanced GPS), Glonass and BDS. The website 

https://www.gsmarena.com/ can be used to check the GPS capability of a particular smartphone 

model. This limitation was one of the reasons that survey participants were required to have a recent 

model Android smartphone. 

Martin et. al. (2019) highlight that location and mobility tracking using smartphone-based GPS 

devices is becoming an important component of traffic data collection for Smart Cities to enable real-

time traffic monitoring and management. For the derivation and analysis of traffic-related information 

the key data components are location identification (by means of location coordinates), path tracking 

(sequences of coordinates) and time stamping (time of coordinate generation).  

An important consideration when using smartphone applications for transport surveys is the issue of 

participant data privacy. Ethics approval, informed participant consent, data anonymity and 

safeguarded data storage are all necessary requirements. Participation in transport surveys by 

smartphone users was investigated by Assemi et. al., (2018), highlighting the willingness to 

participate. The ease of use of smartphone survey applications was an important positive aspect for 

participants, but the perceived data privacy risk was a concern. However, this concern did not affect 

the participants willingness to participate in the survey when reassurance was given in regard to data 

safety and privacy. 

3.7 Vehicle Tracking Technology for the Collection of RP Route Data 
 

The rapid development of vehicle tracking technology, especially via GPS devices in smartphones, 

has made the collection of RP data easier. There are examples of the application of transport surveys 

using GPS devices and smartphone GPS devices for the collection of vehicle (Geyer, Ellis et al., 

2019; Vaca & Meloni, 2013), pedestrian (Vlassenroot, Gillis et al., 2014; Alvarez & Leeson, 2015) 

and public transport passenger tracking surveys (Xiao, et al., 2012; Joseph, et al., 2020).  Paths and 

path distances can be accurately determined using coordinate data; departure, arrival and total travel 

times can be accurately determined; and trip origins and destination locations identified within a few 
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metres of accuracy. Trip costs such as petrol costs can be deduced with assumptions about average 

vehicle fuel consumption, and toll costs (if any) are also now available from platforms such as Google 

Maps®.  

Transport survey smartphone applications (apps) are now commonly used to collect trip data. Most of 

these are passive data collection tools, i.e., they do not require any intervention by the participant 

other than to download the app onto their smartphone, and to activate it during their trip. While many 

of these apps are developed by researchers, platforms such as Itinerum provide app-based survey 

frameworks of various types of surveys that allow for customisation for specific project applications 

that collect data passively and actively (Patterson, Fitzsimmons et al.,  

2019). These apps can be used in place of traditional household travel surveys, travel diary surveys, 

trip satisfaction surveys and origin-destination surveys. Survey participants are required to download 

the app onto their smartphones and activate the app before starting their trip. They may be required to 

input trip related data such as mode, fares, tolls, parking cost and trip purpose after they have finished 

their trip, amongst others. Flocktracker is another smartphone-based trip survey instrument developed 

by the Massachusetts Institute of Technology (MIT) (MIT , 2021).   

3.8 Testing the Location Accuracy of Smartphone GPS Devices in Gauteng 

Province, South Africa 

 

Extensive testing of route tracking for this research using a Samsung A205F smartphone showed that 

path tracking accuracy is now well within the requirements of the route determination without the 

need for correction with map matching (i.e., coordinate snapping). A key determinant of location 

identification is the smartphone pulse rate, i.e., the frequency at which signal pulses are sent from the 

phone to overhead satellites. A five second pulse frequency was used for this research and has been 

shown to provide high accuracy levels – within the accuracy limits of 5 m determined by the ION. 

Examples of route plots for this research are shown in Figure 6 and Figure 7. Figure 6 shows the 

accuracy achievable for a path through the suburb of Rosebank, Johannesburg. Location errors vary 

with vehicle speed, with larger errors at higher speeds, i.e., when the distance between pulses 

increases. However higher speeds usually occur when there is less horizontal road curvature that 

reduces the magnitude of errors. Generally, error limits within 5 meters are achievable in the study 

area for this research. 
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Figure 6: Route Plotting in Google Maps® and Google Earth® through Rosebank in 

Johannesburg 

Figure 7 shows the path error through an intersection in Randburg, Johannesburg. The smartphone 

five second pulse locations are shown together with the estimated straight-line path between them. 

The maximum path error is estimated to be 5 m. This level of error does not materially affect the 

identification of the path or its total length. 

 

Figure 7: Path Error Illustration in Google Earth® through Randburg in Johannesburg 

Figure 8 shows the path error on a high-speed peri-urban roadway in Centurion, Pretoria, with a 

gradual left turn horizontal curve and a speed limit of 100 kph. The distance between the five second 
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smartphone pulses is about 130 m when travelling at the speed limit. The maximum alignment error is 

approximately 3 m. 

 

Figure 8: Path Error Illustration on a Motorway in Centurion, Pretoria 
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4. GENERATING ROUTES ON CONGESTED URBAN ROAD NETWORKS 
 

4.1 Introduction 
 

Wang, He et. al., (2018) describe the nature of RP data derived from smartphone-based tracking 

devices as the contradiction of being data-rich but information-poor. This is because the revealed 

preference route only provides the revealed route alignment, origin & destination location, and route 

speeds and times. Petrol and toll costs (if any) must be inferred. The revealed route does not provide 

insights into personal preferences relating to travel time reliability, departure and arrival time 

flexibility and other attributes that constitute route utility. Most importantly the RP approach provides 

no insights into possible alternative routes.      

The alternative products or services included in the set of alternatives is a key consideration in choice 

experiments. Implicit in the use of discrete choice models is the assumption that the analyst can 

correctly specify the relevant set of alternatives available to a specific individual, i.e., the ‘choice set’ 

of alternatives. In SP route choice experiments the specification of alternative routes is relatively 

straightforward as the routes can be hypothetical and the choice set is defined by the analyst through 

the experimental design. 

Most route choice models are derived from revealed choice behaviour (Prato & Bekhor, 2007) and are 

estimated by adding alternative paths to an observed one to constitute the choice set. In RP surveys 

the route choice set is unobserved, and its relevance and realism are unknown, requiring the analyst to 

make assumptions regarding its composition at the modelling stage. DeShazo, Cameron et al., (2009) 

argue that it is thus possible that the choice set specified by the analyst excludes relevant alternatives 

or includes irrelevant alternatives. The risks associated with misspecification of the choice set in 

RUM-based choice models can result in the estimation of biased parameters estimates and model 

forecasts (Lianhua, Adamowicz et al., 2015). Bliemer and Bovy (2008) showed that including 

irrelevant alternatives in the choice set could lead to unexpected choice probabilities, especially when 

accounting for route overlap using C-Logit or PS-Logit models. 

Various approaches have been adopted to generate realistic alternative routes for inclusion in the 

choice set as described in the next section.   

4.2 Approaches to Generating Alternative Paths for RP Route Choice Experiments 
 

The two-step process for route choice model estimation is shown in Figure 9, together with the 

various methods that have been applied for the generation of the route choice set. The various route 

choice model types that can be applied are also shown.  
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GPS devices are widely used to accurately observe revealed route preferences. However, to estimate 

route choice models alternative routes must be identified and included in the route choice set. This is 

an important limitation of RP methods, as the estimation of realistic alternatives routes in a dense road 

network is a non-trivial task (Fayyaz et al., 2021). This problem has focussed research into methods 

for generating alternative routes to complement the observed RP route and generate the choice set of 

realistic routes.  

Area-wide (macro) transportation demand 

models have been used to generate alternative 

least cost routes and compared to the 

observed RP routes derived from 

smartphone-based GPS data (Vacca & 

Meloni, 2013; Bekhor, et al., 2006). This 

deterministic approach requires the transport 

model to provide accurate trip path lengths, 

travel times and costs within the time period 

being simulated (e.g., the morning peak 

hour).  

 

Figure 9: Two-Step Route Choice Model Estimation Process Showing Route Generation 
Methods and Types of Models  

Prato & Bekhor (2007) highlight several shortest-path methods to derive alternative paths from the 

digitised road network in the model but also identify two issues of concern. Firstly this approach relies 

ex-ante on the identification of the attributes that determine route choice behaviour, and secondly the 

accuracy of these attribute values derived from aggregated transportation models that typically 

simulate the average demand in the modelled period. There can be significant variation in demand and 

hence travel times around this mean demand value. For example, Sampson highlights the significant 

variations in monthly, daily and peak hour flows in South African urban areas (Sampson, 2017). 

To address the demand accuracy obtained from transportation demand models, alternative route traffic 

data have been obtained from historical road network travel time data from sources such as Google 

Maps®, TomTom®, Waze® and MapBox®. These historical data sets have been used to determine 

shortest time paths for comparison with observed RP routes determined using GPS devices (Tang & 

Cheng, 2016). An important advantage of this approach is that route overlaps can be quantified 

irrespective of the source of alternative route data. This allows the effect of route correlation to be 

allowed for in discrete choice models such as C-Logit and PS-Logit.  
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Prato and Bekhor (2007) identify three deterministic and a constrained enumeration methods for route 

choice set determination from either transportation models or historical network traffic data. These 

methods are appealing due to the efficiency of shortest-path algorithms. The deterministic methods 

are firstly, a link penalty approach that incrementally increases the link impedance (defined by a 

generalised cost function) of all links on the shortest route by fixed amounts, thereby identifying 

alternative shortest routes. Secondly, an iterative link elimination approach that removes the shortest 

routes in successive iterations. Thirdly, a stochastic simulation method that derives shortest route 

alternatives by drawing the link impedances from distributions defined by the analyst. Finally, a 

constrained enumerative method termed the branch and bound method constructs shortest routes by 

processing sequences of links according to a branching rule that accounts for behavioural constraints 

formulated to increase route likelihood and heterogeneity. 

Frejinger, Bierlaire et al., (2009) proposed a corrected route sampling approach from the universal 

choice set of route alternatives for the estimation of the choice set. The sampling approach also 

requires the specification of a digitised road network, for example from a transportation model, and a 

route generation algorithm. The route sampling algorithm identifies the shortest route (based on the 

definition of link generalised costs). It then allocates weights to the links in the universal choice set of 

routes, based on the distance of the route from the shortest path route. The weights are used to 

generate link probabilities. A biased random walk process is then applied to the network and routes 

are generated using the link probabilities. Fosgerau, Frejinger et al., (2013) refined the unrestricted 

choice set approach using a recursive logit model. The path generation process is derived from link 

utilities using Bellman equations. The methodology was successfully applied to develop a path-size 

logit (PS-Logit) model to a road network with 3,077 nodes and 7,459 links. 

An innovative approach to the generation of route choice sets for RP experiments was developed by 

Bierlaire & Kazagli (2016). This approach, called Mental Representation Item (MRI), removes the 

need for choice set generation. The MRI approach trades off complexity with realism based on the 

availability of data and the needs of the application. The novelty of the approach lies in its potential to 

break down the combinatorial complexity of the route choice models (i.e., choice set generation) by 

replacing the current (observed) route representation and associated correlation complexities, (which 

consists of a sequence of links on the network), with a simplified, aggregate and more abstract 

representation, viz. the MRI. The MRI behavioural approach argues that car commuters, when asked 

for their route (or path) to work, do not provide the description as a sequence of links, but rather as a 

series of geo-referenced landmarks. The landmarks could be roads, junctions, geographic features 

such as a shopping mall, an intersection, bridge, tunnel or a destination such as the city centre. So, the 

car commuter’s behaviour is far more likely to be a sequence of geo-referenced landmarks than a 

detailed route (link by link) path description. These geo-referenced landmarks are the MRI’s. Paths 

can then be built between the MRI’s. The MRI approach therefore suggests starting at the aggregate 
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strategic level using network based geo-referenced landmarks, working downwards to the 

disaggregate path level. Bierlaire & Kazagli (2016) successfully applied this approach with a cross 

nested and recursive logit model to a road network (defined with nodes and links) in the Canadian 

City of Quebec. The city is divided by a river and has two bridges, favouring it for the application of 

MRI method as the bridges are key waypoints for most trips.  

Lastly, stochastic methods for generating route alternatives have also been developed by Bovy and 

Fiorenzo-Catalano (2007). This approach is meant for establishing choice sets prior to the choice 

modelling step. Based on its stochastic principle, a property of the route generation approach is that 

the size and composition of the generated choice sets are stochastic variables. The method can be 

applied to the generation of choice sets for multi-modal networks. 

In summary, various methods can be used to generate the choice set of routes in an RP setting. The 

use of smartphone GPS tracking device can accurately determine the survey participants current (or 

observed) route and it’s time and distance attributes. However, the generation of the alternative routes 

in the choice sets can be challenging. The process requires a digitised road network used with either a 

relevant transportation demand model or with historical link travel time and length data obtained from 

service providers such as Google Maps® or TomTom®. The restrictions with these approaches are that 

an appropriate transportation demand model may not be available. The use of the network and 

historical traffic data requires the use a route generation process be adopted, and several have been 

successfully developed. Historic traffic data may not always be appropriate for this purpose, 

especially if there have been changes in the road network itself associated with or independent of 

changes in traffic demand.     

4.3 Using Route Guidance Platforms to Generate Alternative Routes and Route Attribute 
Levels 

 

This section briefly summarises the route generation process used by in-vehicle and smartphone route 

guidance platforms. Motorist route guidance platforms such as Google Maps® and TomTom® 

generate alternative routes between a user specified origin and destination using real-time traffic data. 

The data is near real-time due to the delays in the collection and processing of the traffic data, and the 

presentation of the alternative routes to the motorist. Also, in congested conditions the traffic data can 

change relatively quickly, so a driver making a 30-minute trip only has near real-time data for part of 

the trip (i.e., at the point in time when the route is generated). Traffic data updates and re-routing is 

required when traffic conditions change. 

For route guidance services the alternative routes are generated based on minimum travel times, but 

the platforms have the capability to include the route cost. This requires the user to subscribe to the 

guidance service and provided details of their motor vehicle including the engine size and current fuel 
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price. This service is used mainly by owners of vehicle and truck fleets. Toll costs can also be 

determined for the route. Motorist can specify route preferences that influence the route generation 

process such as avoidance of certain road types and the need to pass waypoints on the trip. 

The route generation process requires two sets of data, the road digitised road network (i.e., supply-

side data) and the real-time traffic demand data (demand-side). The digitised road networks are 

obtained from platforms such as OpenStreetMap® and MapBox®. The digitised road network consists 

of road segments (or legs) defined by a node and b node coordinates (normally defined at 

intersections but also on roadways to define curvature or to disaggregated long sections of roadway). 

The road typology for each road segment is also defined (e.g., freeway, arterial; distributor), as well as 

the speed limit and number of lanes, amongst others.     

Traffic data is continuously streamed (by means of cell phone tracking) from cell phone companies 

and guidance service providers on the road network. An extensive set of standardised traffic data is 

defined for each segment (or leg) on the road network including speeds and travel times. Free-flow 

(i.e., determined from the speed limit), slowed down and stop-start travel times can be quantified for 

each road segment. This data set can be accessed by application developers for commercial and 

research applications. The road network and traffic data are provided in a standard format that is 

discussed in the next section. 

Figure 10 illustrates the basis on which the traffic conditions for a road segment (or leg) are 

generated. Note that the traffic data on a segment (e.g., the segment travel time and speed) is based on 

the (historical) previous 5 minutes travel time and speed prior to the route guidance request being 

made. If traffic data for the previous 5 minutes is not available, then either a longer period is used 

(e.g., 15 minutes) or use is made of historical traffic data for the segment that corresponds to the time 

period before in which the guidance request is made. 

 

 Figure 10: Definition of a Road Segment and Associated Traffic Data 
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The minimum time (optimal) route and a realistic alternative route/s are generated using a path 

building algorithm based on Dijkstra’s tree building algorithm (Dijkstra, 1959), but modified to 

reduce the processing time and presentation to the user. A route is defined as a sequential set of road 

segments. The minimum time (optimal) route is generated first. Three criteria are then used to 

generate the alternative route, viz. the extent of overlap of the alternative and optimal route; secondly 

local optimality that considers the number of unnecessary detours on the alternative route; and thirdly 

the stretch, being defined as the ratio between the length of an alternative route and the length of the 

optimal route. These routes are then presented to the user graphically with route guidance instructions.  

The following figure shows the optimal route and two alternative routes for a trip in Johannesburg 

during the weekday morning peak hour generated from Google Maps®. The optimal route is shown in 

blue, and the alternative routes in grey. The travel times and distances for each route are shown. Some 

points to note are as follows: there is some overlap between the optimal route and one alternative 

route; the range of travel times between the three routes is relatively narrow (i.e., 46 minutes 

minimum and 52 minutes maximum); the range of trave distances is also narrow (minimum 31.3 km 

and maximum 35.9 km); the routes are geographically separated; and the optimal route partly uses a 

tolled freeway but the toll cost is not shown. Users can specify their preferred route topology, e.g., not 

to use freeways. If these routes were presented in a choice set format the range of trip times, costs and 

distances would be relatively narrow. This feature is an important one and reflects the reality of travel 

on congested, dense urban road networks, i.e., while the alternative routes might be geographically 

spread, the range of attribute levels is narrow.   

   

Figure 11: Optimal and Alternative Routes based on Minimum Travel Times (Google Maps®) 
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For a particular route, the route guidance driving aid also indicates sections along the route where 

traffic speeds are less than the speed limit (to varying degrees), indicating congested driving 

conditions or congestion due to an incident or obstruction in the roadway. An example of the 

congested sections of a route is shown in Figure 12. The route is shaded in different colours, each 

colour indicating different levels of service. Free-flow conditions on the route are shown in the blue 

shade (levels of service a and B); orange indicates slowed down conditions (levels of service C and 

D); and red and crimson indicate stop-start conditions (levels of service E and F). These level of 

service definitions are applied by segment, and when summed can be used to indicate the number of 

minutes in free-flow, slowed-down and stop-start time.   

 

 

 

  

 

 

 

 

 

Figure 12: Example of Route with Congested Sections (Google Maps®) 
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5. INTRODUCTION TO RAPP-UP: AN INNOVATIVE SMARTPHONE BASED 
ROUTE CHOICE APPLICATION FOR COLLECTING SP AND RP DATA  

 

5.1 Background to RAPP-UP 
 

Given the challenge of balancing analyst control and external validity in route choice experiments, the 

focus of this research is on the development and application of a unique approach to route preference 

data collection using a smartphone application using a combination of SP and RP methods. The 

application has been given the acronym RAPP-UP (Route choice APPlication – University of 

Pretoria). To improve the external validity of the experiment the method is based on using near real-

time traffic data to generate alternative routes, each with their unique real-time values of trip time, 

cost and trip time reliability. These route attributes and levels are presented to survey participants in a 

choice set format on their smartphone but supported with road map backgrounds showing each route.  

A goal of this research was to develop a survey methodology that would place it in the upper right 

hand quadrant of the framework shown in Figure 4, and in so doing would require a combination of 

SP and RP methods using the strengths from each. The SP component provides more control of the 

experiment in the hand of the analyst by defining the utility equation attributes ex-ante and allowing 

some attributes levels to be varied according to a fractional factorial design. The RP component 

emphasises route choice consequences by physically driving the chosen route and experiencing a 

monetary impact if tolled freeways are chosen. RAPP-UP thus combines field and experimental data 

into a single survey methodology with more analyst control of the experimental design; the generation 

of realistic and accurate routes; the automation of survey data collection using a cloud-based database; 

and with a high level of external validity, i.e., with route attribute levels based on real-time traffic 

conditions. 

The five-step process when using RAPP-UP is summarised in Figure 13. The two main inputs into 

the process are the TomTom® traffic data, and the game rules that have been established to calculate 

the attribute levels for some route attributes. The RAPP-UP outputs and data downloads to the remote 

database are completed after step 5, i.e., the transmission of the choice sets and tracked route data to 

the remote database. The SP component corresponds to step 4, and the RP component to step 5. 

The game rule inputs are defined by the attributes and levels that are calculated from the TomTom® 

traffic data. For example, the attribute defining the probability of on-time arrival (Pota) is calculated 

from the routes free-flow, slowed-down and stop-start trip time components. The factoring of this 

value for input into the choice sets is also done independently from look-up tables built into the app.   

It is important to note that all interaction with the survey participant is done on their smartphone. 

There is no requirement for any manual or paper-based intervention. 
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Figure 13: The RAPP-UP Five Step Implementation Process 

 

5.2 Definition of Trip Utility 
 

The design of RAPP-UP required the early definition of route trip utility. The details of the utility 

definition and the derivation of the attribute levels are discussed in subsequent chapters. A brief 

overview is provided here to provide the background of the development of RAPP-UP. 

Trip utility for route choice experiments has most commonly been defined as a weighted linear 

combination of trip time, cost and trip time reliability attributes. Moreover in urban areas, trip time 

has been disaggregated into free-flow, slowed-down and stop-start time as demonstrated by Wardman 

(1986; 2016; 2012) and Hensher (2005; 2004; 2016) who have shown that motorists perception of 

VTT varies between these levels of congestion. Trip cost has most commonly been defined as the 

petrol cost (i.e., operating cost) of the trip, as well as toll and parking costs (if any). Trip time 

reliability has also been shown to be a significant portion of trip utility (Brownstone & Small, 2005; 

Carrion & Levinson, 2012).  

Hence the definition of trip utility for RAPP-UP has been defined as the weighted linear combination 

of free-flow time; slowed-down time; stop-start time; petrol cost; toll cost; and trip time reliability.   
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5.3 Combining SP and RP Data in RAPP-UP into a Self-Validating Method 
 

The SP component of the experiment required the participants to choose from two alternative routes 

presented to them on their smartphones by RAPP-UP. Survey participants were required to trade-off 

the various trip time and cost attribute levels and select their preferred alternative.  While this was the 

SP component of the survey it is important to highlight that the routes and their associated attribute 

levels were not hypothetical. The route attribute levels (times, costs, and trip time reliability) were 

based on real-time network operating conditions obtained from the TomTom® traffic data set used for 

route guidance as a driving aid. 

The total trip time was disaggregated into free-flow, slowed-down and stop-start travel times 

categories. Hypothetical bias was addressed by introducing an RP component to the experiment - the 

participant was required to physically drive their chosen route and they were tracked to determine 

route compliance. An economic experiment was introduced to reduce the no-consequence drawback 

of SP experiments by means of a survey toll account. At the start of the experiment each participant 

was given a survey toll account with a positive balance of R300.00. Choosing a tolled route reduced 

the survey toll account balance by the toll fee amount. The balance of the survey toll account was paid 

out to participants at the end of the survey. Analyst control over the attribute levels has been 

implemented by introducing attribute factors for the toll cost and trip time reliability factors. 

5.4 RAPP-UP Smartphone Application for Route Choice Surveys 
 

The route choice experimental process adopted by RAPP-UP is shown in more detail in Figure 14. 

The figure highlights the key activities in the process required from the driver and the application. The 

driver initiated the survey process by activating RAPP-UP on their smartphone prior to starting their 

trip and entering their trip origin and destination locations as well as any waypoints if required. These 

locations can be determined with accuracy by typing in the suburb name and by manually adjusting 

the background map to the exact location. A green pin was inserted at the origin location and a red 

one at the destination location to provide orientation to the user. RAPP-UP then generated and 

displayed on-screen two alternative routes between the origin and destination (and through waypoints) 

based on real-time travel time data and presented the route attributes (i.e., the various travel times, 

costs and trip time reliability) in the form of choice sets to the survey participant. The route path 

coordinates, speeds, times, attributes levels and other route data were stored in the remote database. 
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Figure 14: Motorist and App Activities in Smartphone-Based Route Choice Application 
RAPP-UP 

 

The driver was then required to choose their preferred route and this choice was recorded in the 

remote database. The driver was required to drive their chosen route and the route was tracked. This 

route data was also recorded in the remote database, i.e., segment co-ordinates, segment lengths, time 
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stamps and travel times. This data could then be used to plot the route and allow the analysis of the 

speeds, travel times, departure and arrival times and the time of arrival at the destination.  

A key part of the RAPP-UP methodology was the transmission and storage of the route data on a 

remote cloud-based database. The RAPP-UP data collection, storage, processing, and analysis 

framework is shown in Figure 15. The process started with the data collection activity via the 

participants smartphone as per the flow chart in Figure 14. The route data was then downloaded from 

the smartphone to a secure, cloud-based remote database using the MongoDB® platform. MongoDB® 

is a cloud-based open-source document-oriented database. It is used to store large amounts of data 

and has data processing features. MongoDB® is not based on the table-like relational database 

structure but provides an altogether different mechanism for storage and retrieval of data, known as 

a NoSQL database, i.e., non-relational structure query language. The format of the data storage files 

is called BSON which is similar to the JSON format (Java Script Object Notation). The data was 

extracted from the database into JSON text format files (Java Script Object Notation) using 

executable command files in Windows. The JSON text files can be converted into CSV (comma 

separated variable) files that are editable in Microsoft Excel. After editing, the CSV route data files 

with longitude and latitude coordinates and other data can be converted to GPX and KML files 

formats for use with Google Maps®, Google Earth®, OpenStreetMap®, ArcGIS® and other GIS 

software for plotting and analysing spatial data. The conversion of the edited CSV files to GPX or 

KML formats was done with an online converter GPS Visualizer (https://www.gpsvisualizer.com/). 

The edited CSV files can be saved in Excel (.xlsx) format to undertake the analysis of the data and 

graph plotting. The route choice sets were prepared in the format required for the econometric 

software platform NLOGIT for discrete choice model estimation.       

 

Figure 15: RAPP-UP Route Choice Survey Data Capturing, Storage and Analysis Process 

 

Figure 16 shows the RAPP-UP screen with two alternative routes. RAPP-UP has a MapBox® road 

map background to assist users to identify their origin (O) location and destination (D). The network 

orientation can be changed by using two figures to drag the screen, and the north orientation restored 
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by tapping twice on the screen. Zooming in and out the network is done in the same way. Two 

alternative routes between origin and destination were generated using the TomTom® route 

generation algorithm, i.e., an optimal minimum time route and an alternative route. The routes are not 

given names or numbers and are hence generic in nature and the experiment is classified as unlabeled. 

The methodology for the generation of these routes is discussed in the next chapter. In short, 

TomTom® propriety patented algorithms are used to generate an optimal route (based on the shortest 

travel time between origin and destination), and an alternative route based on several factors including 

route overlap, route lengths and the number of detours.  

  

Figure 16 shows a RAPP-UP 

screenshot with two alternative routes 

between an origin in Rosebank in 

Johannesburg (green pin) and a 

destination in Sunninghill (red pin). 

One route outline is shown in light blue 

(western route) and the other in grey 

(eastern route). The map background is 

obtained from Mapbox 

(www.mapbox.com) and clearly 

orientates the driver by showing suburb 

names and roadways. Orientation is to 

the north. By using two fingers, the 

screen can be zoomed in and out and 

rotated in order to obtain more detail of 

the route alignments and the origin and 

destination suburbs. 

Figure 17 shows the route attribute 

table, i.e., choice set for the western route that is highlighted as blue in colour.  

 

Figure 16: Smartphone Screen Shot of RAPP-UP Road Background and Two Alternative 
Routes 
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Choice sets based on near real-time 

attribute levels for the travel times, 

costs and probability of on-time arrival 

at the destination are generated by 

RAPP-UP based on near real-time 

traffic data and presented to the 

participants on their smartphones in 

the form of choice tables using 

representative icons. An example of a 

choice set table for a route is shown in 

Figure 17. To clearly define the routes 

with their associated attributes and 

levels they are presented graphically 

on the map background. The traffic 

light icon represents the three trip time 

categories on the route, i.e., the green 

(free-flow), yellow (slowed-down 

time) and red (stop-start) times are 

shown as well as the total travel time 

(stop-watch icon). The target icon is 

the probability of arriving at the 

destination on time (in percent); the 

barrier icon is the toll fee for the route 

(in Rand); the ruler icon is the route 

length (in km); and the petrol nozzle 

icon is the petrol cost of the route (in 

Rands). Drivers then select their 

preferred route by tapping on the USE 

THIS ROUTE text.  

 

Figure 17: Example of Route (Outline in Light Blue) with Choice Set Table Attributes and 
Levels 

The RP component of the experiment requires drivers to physically drive on their preferred route 

between origin and destination. By driving their preferred route, the consequences of choice are 

embedded in the experiment. To further emphasise the consequence of route choice, an economic 

experiment was introduced. For this a toll account was established for each participant with a given, 
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fixed balance at the start of the experiment. If a participant chose a tolled route for a trip, then the cost 

of the toll was deducted from their toll account. At the end of the survey, the toll account balance was 

paid to the participant in the form of an on-line shopping voucher.  

When the survey participants travelled on their chosen route their path was tracked. Several data sets 

were generated for each trip and stored in the remote database. Firstly, the route coordinates for the 

alternative routes were stored. The route choice set tables were also stored together with the choice of 

preferred route. The coordinates of the tracked path of the driven route were also stored together with 

the associated time stamps. The extent of route overlap of the alternative routes was calculated and 

stored. This was measured by the length of overlap for each route.     

   

5.5 Route Tracking between Trip Origin and Destination with RAPP-UP 
 

Accurate location identification, route display and route tracking were important requirements for 

RAPP-UP. Location identification was important to accurately display the user’s origin, destination, 

and any waypoint locations on a road map background. The ability to accurately display the routes on 

the map background to users was important to ensure route realism and accuracy and to provide 

accurate route guidance when making this trip. Plotting and analysing the actual routes driven by the 

participants after they have chosen their preferred route is important for several reasons. Firstly, it 

provides a record of the level of compliance between chosen and driven routes used and its associated 

driving distances and times for comparison against the route data presented in the choice sets. The 

time gap between the driver’s selection of their preferred route and the traffic conditions actually 

experienced on the preferred route will cause travel time variation. It also provides a record of 

whether the driver adhered to the rules of the survey, i.e., to drive their chosen path. Drivers were 

informed beforehand that they would be tracked allowing their adherence to the survey rules to be 

monitored.    

The location accuracy of the route tracking is important to ensure that the correct route alignment is 

used to quantify the actual trip times and distances. Route tracking accuracy has been seen as a 

potential problem for RP route surveys (Berger & Platzer, 2015; Tang & Cheng, 2016). When this 

occurs it is necessary to use route snapping software that “snaps” the route coordinates back onto the 

road centre line. 

5.6 Route Tracking Accuracy for RAPP-UP 
 

It was found that the RAPP-UP route tracking facility tracked the routes sufficiently accurately to 

avoid having to use snapping software. The following series of plots show a route that was tracked 
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between Killarney and Randburg in Johannesburg between 07:29:08 and 07:51:46 on Friday 27th 

August 2021 and on 31 August 2021.  

On 27th August the route length was 10.77 kms and 10.69 km on 31st August. The first series of 

figures shows the route on a Google Maps® road map background for both days. The second series of 

figures show the route plotted in Google Earth® with aerial photograph backgrounds. The figures are 

shown in different scales in order to provide insight into the accuracy of the paths. The Google Maps® 

plots were created by converting the route coordinates into a GPX file for Google Maps®, and a KMZ 

file for Google Earth®. There are numerous websites that provide file conversion services (e.g., CSV 

to GPX). The GPS Visualizer website was used for the conversion of CSV to KML and GPX formats 

in the figures shown. 

 

Figure 18: Route Plot 27 August 2021 Killarney (Origin) to Randburg (Destination), 
Johannesburg (Google Maps®) 
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Figure 19: Route Plot 31 August 2021 Killarney (Origin) to Randburg (Destination), 
Johannesburg (Google Maps®) 

Figure 20 shows a smaller scale plot of part of the route through Rosebank. 

 

Figure 20: Smaller Scale Plot of Killarney (Origin) to Randburg (Destination) Route (27th 
August 2021) (Google Maps®) 

Figure 21 and Figure 22 show small-scale plots of part of the route on a map background. The route 

path lies on the roadways used for the trip. 
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Figure 21: Small Scale Plot of Part of Killarney (Origin) to Randburg (Destination) Route (27 
August 2021) (Google Maps®) 

 

 

 

Figure 22: Small Scale Plot of Part of Killarney (Origin) to Randburg (Destination) Route (31 
August 2021) (Google Maps®) 

The following sequence of figures shows the same route with an aerial photograph background using 

a KML file with Google Earth®. Figure 23 shows the full route from Killarney in the south to 

Randburg in the north via Rosebank and Hyde Park. 
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Figure 23: Plot of Killarney (Origin) to Randburg (Destination) Route 27th August 2021 (Google 
Earth®) 

Figure 24 shows two smaller scale plots of parts of the route. In both figures it can be clearly seen 

that the plotted path lies on the roadway used for the trip.  

 

Figure 24: Smaller Scale Plots of Killarney to Randburg Route (Google Earth®) 

The following figures show further plots of the route on different sections. Once again it be seen that 

the path accuracy is adequate for accurate route plotting and analysis purposes.  
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Figure 25: Smaller Scale Plots of Killarney to Randburg Route 27th August (Google Earth®) 

 

Figure 26: Smaller Scale Plots of Killarney to Randburg Route 31st August (Google Earth®) 

The following figures show the travel speed and elevation profiles for the Killarney to Randburg route 

shown in the previous figures. The speed profile in Figure 27 shows a widely fluctuating range of 

speeds during the trip on 27th August 2021. With a total travel time of 22 minutes and 38 seconds and 

a route length of 10.77 kms, the average travel speed was 29.4 kph. The maximum speed was 

approximately 85 kph, speeds of less than 10 kph occurred a total of 15 times. 
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Figure 27: Speed Profile for Killarney to Randburg Trip (27th August 2021) (kph)  

 

The speed profile for another trip on 31 August 2021 is shown below in Figure 28. The overall 

average speed was 31.4 kph, with a total driving time of 20 minutes and 24 seconds and a total trip 

length of 10.69 km. The maximum speed was 80 kph and the speeds dropped below 10 kph on 10 

occasions during the trip. 

 

Figure 28: Speed Profile for Killarney to Randburg Trip (31st August 2021) (kph)  

The altitude of the trip made on 27th August 2021 is shown in Figure 29. There was an overall loss of 

altitude on the trip, from about 1,723 metres above sea level to 1,626 meters above sea level. The 

minimum altitude was 1,550 m.  
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Figure 29: Altitude Variation on Killarney to Randburg Tracked Route August 2021 (m) 

The conclusion drawn from the tracking of routes and collection of trip related co-ordinates and time, 

distance and speed data are sufficiently accurate and reliable for the execution of the route choice 

experiment. 

 

5.7 RAPP-UP Route Generation Process 
 

The route generation process is a core component of RAPP-UP and requires a detailed explanation. 

The route generation processes developed by TomTom® has been used without significant 

modification. Software platforms such as Google Maps® and TomTom® generate routes for users as 

route guidance driving aids. Given specified origin and destination locations (as well as any required 

waypoints), the platforms generate at least two alternative routes between the origin and destination 

with current driving times. The generation of these routes is a complex process, especially when real-

time traffic data is used in the generation process and alternative routes are required. The route 

generation processes are patented, for example by Google in United States patents (Abraham, et al., 

2010; Gesiberger, 2014).  

Platforms such as TomTom® provide traffic condition data to researchers and application developers. 

International naming and data standards are used to define the various road, traffic operations, traffic 

events, lane closures or other driving hazards and other driver information. The most commonly used 

is the International Standards Organisation (ISO) for Intelligent Transport Systems (International 

Organization for Standardization (ISO), 2020).  These standards were used in the development of 

RAPP-UP, particularly to quantify the route utility attribute levels.  

While the algorithms used for route planning by Google Maps® and TomTom® are patented, they 

nevertheless use route building methodologies that are well established and widely used for various 

applications. For example, they make use of Dijkstra’s tree building algorithm (Dijkstra, 1959) that is 
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used extensively in transportation planning software to build minimum cost, distance or time trees for 

complex road and public transport networks. The process is known as network skimming, and the 

outputs are matrices of zone-to-zone times, costs, etc. Use is also made of the A* algorithm to speed 

up the route generation process. This algorithm uses a pre-defined set of optimal routes (for example 

based on historical data) to speed up the route generation process. 

The following terminology and concepts are discussed in the context of route planning: trip origin and 

destination; traffic data; real-time traffic data; near real-time traffic data; historical traffic data; the 

road network database; optimal routes; alternative routes; and trip durations. Each of these is 

discussed in the following sections. Note that the terms route and path are interchangeable, and both 

are widely used in the literature. This thesis uses the term route. 

 

5.8 Trip Origin, Destination and Waypoints 
 

A route is defined as the patch between an origin and destination location. Each location is identified 

with a set of co-ordinates, i.e., latitude (lat) and longitude (lon). The location can be relatively coarse, 

e.g., a location that represents the centre of a suburb, or more accurately by using, for example, a 

street within a suburb, or even a dwelling on a street. For the RAPP-UP application, the origin and 

destination locations are accurate to the location of a specific dwelling or building. 

In some instances, it may be necessary to define a waypoint on a journey. A waypoint is a location 

(also defined with coordinates) that must be passed between the trip origin and destination. For 

RAPP-UP the location is also accurate to a specific dwelling, school or intersection. For example, a 

motorist may need to drop their children at school when making their trip from home to work. The 

school location would define the waypoint. More than one waypoint may be specified, but this must 

be done in consecutive order. When waypoints are specified the route building process is broken up 

into determining optimal and alternative routes between waypoints.  

5.9 Digitised Road Network Definition 
 

The road network database of a suburb, city, province or country represents the supply side of the 

transport system, i.e., the supply of roadway capacity. Digitized road networks are provided by 

platforms such as OpenStreetMap® and Google Maps®, who have digitized the road networks of most 

countries and cities in the world to a fine level of detail. The digitized road network is made up of 

individual straight-line road segments (also known as legs or arcs) between sets of coordinates. Each 

segment is defined by an A-node, B-node and an interpolated straight-line length between the two 

nodes in metres as shown in Figure 10. The segments can represent the section of roadway between 
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intersections or at points where the road conditions change, e.g., road narrowing or roadworks. 

Horizontal road curvature is defined with shorter segments to minimise the curve length error.  

A route is therefore defined as the ordered sequence of segments, legs or arcs, and the total route 

length is the sum of the individual segment lengths. Road networks are also usually digitized in 

layers, with each layer representing a different road class, for example freeways, arterials and minor 

roads. This allows for refinement in the route generation process, for example a user may not want to 

use freeways on their trip. 

Each segment in the road network is defined by its length, speed limit and number of traffic lanes. 

Additional segment parameters can also be defined such as its gradient and curvature (if this is 

available) as well as roadway features such as toll plaza locations and the toll tariffs for different 

vehicle classes.  

The digitized road networks are provided to users in geodatabase map “tiles”. The tiles are layered to 

define different road types as indicated earlier. Tile scales vary to accommodate different geographic 

areas. For example, a tile for the network of a whole country has a larger scale than a tile that only 

covers a metropolitan area. Geodata tiles have been created for a wide variety of GIS data mapping 

applications, for example for layered mapping of data onto land use, geology and environmental 

maps.     

5.10 Traffic Data  
 

A definition of “traffic data” was required as this term is widely used in route-guidance literature 

without defining exactly what the traffic data consists of. For route determination, traffic data means 

the observed vehicular speeds and travel times on the segments making up a road network. If the 

speed on a road segment is at or close to the speed limit, then the travel time is at or close to a 

minimum on that segment.  

Real-time traffic data is a somewhat misleading term when applied to route determination. A more 

accurate term is near real-time data. It is not possible to generate accurate real-time route data as there 

is a time lag between the actual measurement (or observation) of the traffic data on the road segments; 

its transmission to a central data centre; its compilation and processing for the estimation of 

alternative routes; and the transmission and display of the route and traffic data to motorist. Near real-

time data is derived from observed traffic data that is not more than 5 minutes old and is calculated 

and updated on a five-minute rolling average basis. The assumption is made that the traffic data for 

the last five minutes is still representative of current conditions and is sufficiently accurate to provide 

route guidance and other traffic information to users. In normal circumstances this is a fairly safe 

assumption.  
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Historical traffic data is the typical traffic data for a road segment based on the average for the 

previous month for the day and time period under consideration. For example, historical traffic data at 

16:30 on a Monday would be estimated from the average previous month’s Monday values for the 

segment between 16:25 and 16:30.     

An important factor that must be taken into consideration when generating routes is whether a route is 

representative after it has been generated. For example, the near real-time speeds and travel times at 

8:00 am when a route was generated for a 45-minute trip may no longer be accurate at any time after 

the generation of the route, but especially toward the latter stages of the trip. This can be addressed by 

using more advanced dynamic route guidance systems that update the route travel times and provide 

re-routing options when the trip is being made.  

The near real-time data is provided from a passive feed of trip co-ordinates from cell phones and 

smartphones of motorists either obtained from cellular service providers or driving aid service 

providers such as TomTom®, as well as from crowd-sourced applications like Waze®. TomTom® 

use a variety of traffic data sources including from GPS devices, mobile phone signals, and embedded 

roadway sensors. The data is anonymous, allaying any privacy concerns. Smartphone ownership in 

South Africa is relatively high, with approximately 26 m people owning these devices (O'Dea, 2022). 

This is about one third of the country’s population. 95% of South Africans have either a basic cell 

phone or a smartphone, indicating that some owners have more than one phone. This penetration of 

mobile phone users provides a significant database from which the traffic data is drawn. This is not to 

say that data is always available for all the roads making up a network, and when not available use is 

made of historical traffic data to generate routes.   

Platforms such as Google Maps® and TomTom® also provide an indication of the level of congestion 

on route segments using a congestion level coding system. The traffic flow description is the Traffic 

Effect Code 001. The ISO intelligent transport systems standard for traffic congestion coding 

(International Organization for Standardization (ISO), 2020) enumerates the possible values for type 

tec001:EffectCode that is shown in Table 2. The route travel time classifications used for this 

research are free-flow time (fft), slowed-down time (sdt) and stop-start time (sst). The classification of 

these three categories for the ISO TEC001 descriptions of traffic flows are also shown in Table 2. 

The traffic effects codes TEC 001 are used to colour code route maps according to delay severity.  
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Table 2: Traffic Effects Code (TEC001) for Traffic Flow Descriptions  

TEC 

Code 

TISA English 

“Word” 

Comment Travel Time 

Classification 

1 Traffic flow 

unknown 

Shall be used if traffic flow is unknown. 
Note: This is often the case for local 
hazard warnings. 

Slowed-down time (sdt) 

2 Free flow traffic Traffic flow is not restricted Free-flow time (fft) 

3 Heavy traffic Traffic flow is restricted due to a large 
number of vehicles 

Stop-start time (sst) 

4 Slow traffic Traffic is slower than normal Slowed-down time (sdt) 

5 Queueing traffic Traffic is in queues, but is still moving 
slowly 

Slowed-down time (sdt) 

6 Stationary traffic Traffic is stationary or barely moving Stop-start time (sst) 

7 No flow Traffic is completely stopped or there is 
no flow due to the road being closed 
/blocked; the cause-component may give 
more information about the reason for 
“no traffic flow”. For roads with at-
grade junctions, how the 
closure/blockage affects cross-road 
traffic maybe further specified with the 
attribute atGradeJunctionClosure. 

Stop-start time (sst) 

 

The traffic delay colour coding is provided on platforms such as Google Maps® and TomTom®. 

Typically, when a segment has blue shading, the segment speeds and travel times are close to free 

flow conditions and delay is low. For blue routes the near real-time speed is within 90% of the 

segment speed limit. This would correspond to levels of service A and B. When shaded in orange, the 

travel times reflect slowed-down times, i.e., the effect of increasing congestion and associated delays. 

Slowed-down time occurs when the near real-time speed is between 60% and 90% of the speed limit 

and would correspond to levels of service C and D. When the speed on the segment is less than 60% 

of the speed limit, it is classified as stop-start conditions and shaded in red and reflects levels of 

service E and F. The darker the shade of red, the slower the speed on the link.  

Historical speed and travel time data is also used in the route generation process. When near real-time 

data is not available for all routes in a network, use is made of historical data to fill the gaps. The 

historical data is derived from the traffic data of the previous month. It is refined by the day of the 

week and the time-of-day and is generated in five-minute increments that are based on averages for 

the previous month. For example, if historical traffic data is required on a Monday at 16:30, then the 

previous month’s average data for Monday between 16:25 and 16:30 is provided. There may be 

drawbacks to using this data, chief amongst them is the inability to identify current roadway 

bottlenecks (for example caused by an accident or by road works). Also, in the time of COVID, a 
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previous month’s data may represent a locked-down period with reduced demand that will hence have 

higher average speeds and lower travel times than for a “normal” month.   

5.11 Generating Optimal and Alternative Routes between Origins & 
Destinations 

 

Two steps are required in the route generation process. The first is to generate the optimal route 

followed by the generation of alternative routes. For RAPP-UP only one alternative route has been 

generated. The routes generated by TomTom use the A* algorithm. As described earlier, this 

algorithm is a modification to Dijkstra’s algorithm that builds the trees from the origin and destination 

simultaneously, i.e., toward one another. To accelerate the tree building process it also uses a pre-

defined set of optimal routes (for example based on historical data) to speed up the route generation 

process. If the pre-estimated optimal path is known, then the determination of the optimal route at the 

time of travel using near real-time traffic data can be accelerated.  

These routes are defined by the TomTom® route generation algorithm based on the route 

characteristics as follows. An optimal route is defined as the route that provides the minimum trip 

time, trip distance or trip cost between a specified trip origin and destination and any associated 

waypoints. For RAPP-UP the minimum time criteria has been used. Hayes and Venter (2017) 

determined that trip time was the most important trip attribute for car commuters in Johannesburg and 

Pretoria in mode choice experiments where the alternative mode was bus rapid transit (BRT). 

Platforms such as TomTom® can generate optimal routes based on trip cost which is defined as the 

fuel consumption for the trip. This can be useful for truck fleet owners who wish to minimise the cost 

of their transport operations. The estimation of fuel consumption requires the user to input details 

about their vehicle so that a typical fuel consumption estimate can be made. Together with trip 

distance and the current cost of fuel, the segment-based trip fuel cost can be calculated. 

Alternative routes generated by TomTom® are realistic alternatives to the optimal route, also 

estimated using the A* algorithm which is based on Dijkstra’s algorithm. Alternative routes are 

generated by considering three key criteria: firstly, the extent of overlap of the alternative and optimal 

route (which is minimised); secondly local optimality that considers the number of unnecessary 

detours on the alternative route; and thirdly the stretch, being defined as the ratio between the length 

of an alternative route and the length of the optimal route. The number of alternative routes between 

an origin and destination in a dense road network can be substantial. The A* algorithm sorts the 

routes according to an objective function to reduce the number of routes and speed up the processing 

time. For example, alternative routes with overlaps of more than 80%, stretches of more than 1.2 and 

two unnecessary detours will eliminate most alternatives. 
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The purpose of the research was not to investigate alternative route generation methodologies, rather 

to use well tried and tested methods that could be relied upon to produce consistently relevant routes. 

The implications of using the TomTom® route generation methodology in RAPP-UP raises several 

important issues.   

a) It ensured experimental consistency and replicability both between survey participants and for 

each participant in the context of repeated observations (i.e., for several trips) 

b) The approach ensured portability - RAPP-UP can be used in most city across the world 

providing that TomTom® offers route guidance services based on historical and/or real time 

traffic data in those cities. In the pilot testing stage of the development process RAPP-UP was 

tested in Cape Town as well as in the Johannesburg / Pretoria area  

c) It enabled the use of real-time traffic data to generate the choice sets attribute levels. This 

approach ensures that day-to-day variations in traffic conditions (including traffic incidents 

and accidents) are accounted for in the route generation process   

d) It introduced the opportunity for further research to be done for consideration of alternatives 

to minimum time based optimal and alternative routes, for example, minimum distance or 

cost routes. 

5.12 The Effect of Route Generation on Experimental Design 
 

Stated preference experimental design requires three steps. Firstly, the form of the utility expression 

and the definition of the utility attributes is required for the identified alternatives; secondly the 

attribute levels must be specified to define the attribute level range; and thirdly the associated 

experimental design, e.g., orthogonal fractional factorial or an efficient design is generated from 

which the choice sets are defined. (For an efficient design there are additional inputs required, 

specifically the prior attribute coefficient values and the specification of the type of discrete choice 

model to be estimated). The orthogonal and efficient designs can ensure that attribute level balance 

can be achieved in the choice sets, i.e., each attribute level appears an equal number of times for each 

attribute. Attribute level balance ensures that the attribute coefficients can be estimated on the whole 

range of levels, instead of just a few levels.  

For the RAPP-UP application the first step is also required, i.e., the form of the utility definition and 

the attributes to be included, but in the second step the attribute levels were defined in two ways, viz.: 

a) Some attribute levels were determined by the use of the real-time time and cost levels derived 

from the route generation process. It was thus not possible to determine a priori what the 

number of attribute levels would be nor the attribute level range as these would be determined 

from real-time traffic conditions at the time of the trip and experienced by the survey 

participant. 
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b) Some real-time attribute levels were factored before inclusion into the choice sets. Hence the 

attribute levels, even though factored, still incorporated the randomness of day-to-day traffic 

conditions at the time of the trip. The factored attribute levels did however ensure variation in 

day-to-day levels and hence extended the range of the levels. Orthogonal fractional factorial 

designs were used to determine the number of choice sets required based on the number of 

attributes that were factored, the number of route alternatives and the number of factor levels. 

The factoring of the attribute levels provides more analyst control by widening the attribute 

level range but does not remove the underlying randomness in the real-time attribute level.    

The experimental design process for RAPP-UP highlights two weaknesses of using the minimum time 

(or the trip distance or cost) criteria in the route generation process: 

a) Even within the context of the day-to-day variations in traffic conditions, the same (or 

similar) routes in the choice sets could be generated on several occasions. This is a 

fundamental feature of route determination in a dense urban road network using minimum 

time or cost criteria to generate optimal and alternative routes. While there are a large 

number of possible alternative routes, there are few routes that would be considered suitable 

by motorists. The routes generated by route guidance platforms such as TomTom® use 

proven criteria (e.g., travel time minimization) to generate routes using practical criteria to 

generate independent routes (i.e., extent of route overlap, stretch (i.e., route length) and local 

optimality (i.e., avoidance of unnecessary detours on the alternative route). 

b) Thus, the analyst has no control over the attribute levels derived from real-time traffic data. 

Potentially the attribute level range could be narrow, and while realistic for the survey 

participants, this may limit the range of attribute levels that can be tested in the SP setting 

and subsequently used to estimate the discrete choice models. In SP experiments it is 

preferable to use a wider range of attribute levels than a narrow range while ensuring that the 

levels are still within realistic limits (Bliemer & Rose, 2009; Choicemetrics, 2018). So, while 

the attribute levels range may be narrow, they compensate for this by displaying a high level 

of external validity. 

c) The variation in the real-time trip attribute levels (especially the trip times) on a day-to-day 

have is somewhat random depending on factors such as traffic demand, time of travel, traffic 

incidents or accidents, road conditions (e.g., road works), and even the weather. This 

variation in attribute levels results in the inability to achieve attribute level balance in the 

choice sets. However, this was not considered a drawback of the approach. It was considered 

appropriate to more accurately represent typical and more realistic day to day travel 

conditions experienced by motorists on urban road networks than to artificially ensure 

attribute level balance.   
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5.13 Trip Duration Effect on Route Generation 
 

For route guidance driving aids, the estimated duration of the trip between origin and destination is an 

important consideration when generating optimal and alternative routes. The accuracy of the real-time 

traffic data generated at the start of the trip for the duration of the whole trip must be considered. For 

example, for a 60-minute trip, the real time data may only be appropriate for the initial part of the trip 

as the downstream traffic data will be constantly changing. Strictly speaking real-time traffic data 

should be updated every five minutes to define the remaining trip time more accurately and possibly 

to adjust the route, i.e., dynamic routing. However, changes to the optimum route for the user while 

driving can cause confusion and frustration to the driver, so most guidance systems use a static 

optimal route approach.  

To take the time delay effect into account as well as to speed up the route generation process real-time 

traffic data is used for the initial part of the trip, and historical data for the balance of the trip. The cut-

off point between the two data sources is set by the provider and is typically about 30 minutes. Trips 

with a travel time of less than 30 minutes thus use near real-time data for the whole trip (if it is 

available for all segments), and those longer than 30 minutes only have the first 30 minutes 

determined from near real-time data and the balance with historical data. 

For RAPP-UP, it was necessary to use static routes when generating the routes and offering route 

guidance to survey participants. For trips longer than 30 minutes it is likely that a portion of the routes 

are generated from historical traffic data. 

5.14 Dijkstra’s Path Building Algorithm and the A* Enhancement 
 

In the context of the route generation process it was appropriate to provide insight into Dijkstra’s tree 

building algorithm (Dijkstra, 1959) that is widely used for generating minimum time, distance or cost 

paths between a defined origin and destination in a network. Originally developed for determining 

minimum time distance paths between telecommunication exchanges, it was published in 1959. The 

original algorithm and modifications to it are extensively applied in the context of road networks and 

is used in most transportation demand models to ‘skim’ minimum time, distance, or cost matrices for 

application in the trip distribution, mode choice and trip assignment stages. The benefit of Dijkstra’s 

algorithm is that it is computationally very efficient and optimal route determination on complex road 

networks can be done very quickly. The application of Dijkstra’s algorithm for route generation 

requires the origin and destination locations to be identified by the user. Then the road segment real-

time and/or historical traffic data, i.e., speeds and times, are used to build the optimal paths and 

alternative paths with the A* algorithm modifications to accelerate the path building process. The A* 

search algorithm uses a pre-defined set of optimal routes (for example based on historical data) to 
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speed up the route generation process. If the pre-estimated optimal path is known, then the optimal 

path using near real-time traffic data can be speeded-up. This algorithm can speed up route 

determination between origins and destinations located far from each other on dense road networks 

where the number of possible paths can be substantial. The A* search algorithm is also applied when 

travel times are longer than 30 minutes. Tree building can be done from the origin to the near real-

time cut of point and also backwards from the destination to the cut-off point using pre-determined 

paths based on historical data.  

The Google Maps® and TomTom® route guidance systems have adopted the use of the A* algorithm. 

The bespoke modifications to the algorithm made by each company are confidential. 

  

5.15 Examples of Optimal and Alternative Route Generation 
 

Optimal and alternative routes were generated for a trip using Google Maps® between the location 

Home (in Dunkeld West, Johannesburg) and the Jabulani Theatre in Soweto on Monday 23rd August 

2021 at 4:50 pm, i.e., in the afternoon peak hour. The optimal route has been generated on a minimum 

journey time basis, and two alternative routes options have been provided. In 2021 the traffic demand 

in South African urban areas had reduced significantly due to the COVID pandemic. 

The (optimal) shortest travel time route is shown in  Figure 30. The alternative routes are shaded in 

grey. The minimum travel time is 46 minutes, and the route length is 35.9 km. This implies an overall 

average speed of 51 kilometers per hour. There is very little slowed-down and stop-start time on the 

route (i.e., no orange or red shaded segments) reflecting the reduced demand caused by the COVID 

pandemic. Because this route has a travel time in excess of 30 minutes, the latter part of the route 

would have been defined using historical traffic data. 

This route appears to travel north and west before turning southwards on the N1 freeway. There are 

tolls on the N1 freeway, but these are not shown on the route as Google Maps® did not yet have a toll 

calculator facility. 
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  Figure 30: Optimal and Alternative Routes based on Minimum Travel Time. 

The first alternative route is shown 

in Figure 31. It has a travel time of 

52 minutes, i.e., 6 minutes longer 

than the optimal route. It has a 

route length of 31.3 km, so is 4.6 

km shorter than the optimal route. 

The average speed is 36 kilometers 

per hour, considerably lower than 

the optimal route. There is an 

overlap with the optimal route on 

the latter part of the route in 

Soweto. Red and orange segments 

also occur.  

Figure 31: First Alternative Route   

through the Johannesburg CBD area on the M1 motorway indicating slowed-down and stop-start 

traffic conditions on these segments. There are no freeway tolls on this route. 
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The second alternative route is shown in 

Figure 32. It has a travel time of 52 

minutes, i.e., the same time as the first 

alternative and its length is 34.9 km, 3.6 

km longer than the first alternative but 

only 1 km longer than the optimal route. 

The overall average speed is 40 kph. It 

shares part of its length with the first 

alternative, and so also has orange and red 

segments through the Johannesburg CBD 

indicating slowed-down and stop-start 

time. There are no freeway tolls on this 

route.  

Figure 32: Second Alternative Route 

These routes illustrate the following features of the optimal and second quickest route: 

 Relatively narrow differences in attribute levels between the alternative routes (6 minutes in 

travel time or 13%, and 15% in route length). 

 A wide geographic spread of routes. 

 Varying levels of congestion on the routes reflecting different proportions of free-flow, 

slowed down and stop-start travel time.  

    

 

 

 

 

 

 

 

 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



86 
 

86 
 

6. SPECIFICATION OF THE ROUTE CHOICE APPLICATION: RAPP-UP 
 

6.1 Definition of Route Utility 
 

The development of the RAPP-UP application initially required the definition of the route utility for a 

road-based trip. The attributes included in the utility must be defined or derived from the traffic data 

that defines the routes such as travel time and route length at a particular time t. Trip cost and the 

reliability of on time arrival are calculated separately based on the trip times and lengths. The form of 

utility expression that was adopted was a linear-in-parameters form as follows for individual i using 

route alternative j out of J routes with attributes k and at time t: 

Uijt =  Vijkt  +  εijt  =  ∑ 𝛽 𝑋    +   εijt    

Equation 1: Linear in Parameters form of Trip Utility 

Where: 

 Uijt is the utility of individual i using route j at time t.  

 Vijkt is the representative component of utility. 

 βk are the attribute coefficients to be estimated.  

 Xijkt are the utility attributes for route j and attribute k at time t. 

 εijt is the utility error term for individual i using route j at time t. The observed utility Vijkt  is 

also known as the deterministic or representative component of utility. 

The number of attributes k to be included in the utility expression for RAPP-UP was determined 

practically and theoretically. Practically, the number was determined by what attributes could be fitted 

into the smartphone screen in the form of a choice set and still be legible. Based on several trial screen 

layouts, it was determined to be not more than eight. The route alignment on a MapBox® map 

background was also to be shown together with the choice set for each route.   

From a theoretical viewpoint, the arguments for and against simple time-money trade-offs versus 

more complex utility expressions are described by Abrantes and Wardman (2011) and Hess et. al 

(2020). Simple time-money trade-offs are more commonly used in European countries for large 

national studies to determine national values of travel time for use in economic appraisals. The 

European view is held that SP exercises in these contexts should be kept simple. A meta-analysis of 

the values of time by Abrantes and Wardman (2011) revealed that 80% of European SP studies had 4 

or less attributes. Hensher (2006) argues that it is the attribute relevance and not complexity that is 

important, and the focus in Australia and Latin America has been on more complex utility expressions 

typically developed for more localized studies where the application is in transportation demand 

models as well as estimating VTT for economic appraisals. Since 2010 South Africa has tended to 
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follow the Australian approach with more complex time-money trade-offs, but for application in 

localised mode choice studies. In the limited number of urban route choice studies in South Africa the 

approach has been on more simple utility definitions, for example, there has been no investigation of 

travel time reliability or the effect on route choice and VTT of different proportions of travel time in 

congested and uncongested conditions.  

For this research a more complex form of the utility expression was adopted for several reasons. 

Firstly, there was an objective to test more complex forms of utility expressions to ascertain whether 

the attribute coefficients were significant in the South African context. The second objective was to 

apply various forms of route choice models based on more complex forms of the utility expression. 

Thirdly the determination of the VTT was to be made for different amounts of travel time at different 

levels of service in a localised geographical area, namely the Johannesburg – Pretoria region of the 

Gauteng Province. Lastly, the inclusion of motorway tolls in the study area was necessary as a way of 

determining the motorist’s willingness-to-pay for time and cost savings of the motorways in the light 

of the failure of the SANRAL GFIP e-toll scheme. The other important consideration, as highlighted 

by Wardman and Ibanez (2012) was to overcome the potential drawback of SP methods by 

realistically quantifying (in minutes) the actual categories of travel time using real-time traffic data for 

each route. This would also partially address the issue of how these travel times should be presented 

to participants in SP exercises.   

Based on the forms of utility used by Wardman (1986), Wardman and Ibanez (2012), Hensher (2001), 

Hensher and Rose (2004), Vrtic et al., (2009) and Prato et al., (2014), the attributes included in the 

utility expression included three categories of travel time related to the levels of service, viz. free-flow 

time (fft), slowed-down time (sdt) and stop-start time (sst); two trip costs, viz. tolls (if applicable) and 

petrol cost; and the route travel time reliability. Tolls were only included for routes that included 

currently tolled freeways in Gauteng.  

Wardman and Ibanez (2012) attribute the initial investigation into the value of congested and 

uncongested time using revealed preference methods to Train (1976). The first evidence of this 

disaggregated travel time approach using stated preference methods in the literature was Wardman 

(1986) followed by Hensher (2001). In 1986 Wardman confirmed statistically significant differences 

in the values of time for delayed and free flow time. In 2001 Hensher determined that, from a study in 

New Zealand, motorists valued travel time in congested conditions significantly higher than in free-

flow conditions. The same study determined that trip time reliability was a significant attribute in 

overall trip utility. 

For this experiment the utility expression was defined as the linear-in-parameters sum of six trip time, 

cost and reliability attributes between origin i and destination j on route k at time t as follows: 
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Uijkt = b1*fftimeijkt + b2*sdtimeijkt + b3*sstimeijkt + b4*petcostijkt + b5*tollcostijkt + b6*potaijkt + εijkt   

Equation 2: Form of Trip Utility Expression in RAPP-UP 

Where: 

 Uijkt is trip utility between origin i and destination j on route k at time t. 

 b1, b2 …b6 are coefficients to be determined.  

 fftimeijkt is the free flow time on route k in minutes at time t. 

 sdtimeijkt is the slowed-down time on route k in minutes at time t. 

 sstimeijkt is the stop-start time on route k in minutes at time t. 

 petcostijkt is the petrol cost for route k in Rands at time t. 

 tollcostijkt is the toll cost of route k in Rands at time t. 

 potaijkt is the probability of on-time arrival using route k in percent at time t. 

 εijk is the error term for route k.  

Note that as the experiment is unlabelled, there is no alternative specific constant (ASC). However, 

Hensher et al., (2015), indicate the inclusion of an ASC in an unlabelled route choice experiment can 

have behavioural meaning, such as the left to right (or first then second alternative) choice set 

response bias. This inclusion of an ASC is investigated when estimating the discrete choice models. 

This form of utility expression enabled the confirmation of whether there were different values of 

travel time for stop-start, slowed-down and free-flow conditions in Gauteng Province. International 

evidence (Hensher & Rose, 2005; Wardman & Ibanez, 2012) has shown that stop-start VTT’s are 

higher than slowed-down and free-flow values. Wardman and Ibanez (2012) refer to the ratios of 

attribute coefficients for free-flow, slowed-down and stop-start-time as congestion multipliers. This 

form of the utility expression filled in several gaps in the understanding of motorists’ route choice 

behaviour in Gauteng Province. Firstly, the congestion multiplier ratios have never been evaluated in 

South African urban conditions. Secondly the VTT’s derived from the ratios of the travel time and 

petrol and toll cost attribute coefficients fill a gap in the knowledge of motorists’ willingness-to-pay 

for travel time savings in urban areas. The VTT was not quantified for the GFIP e-toll scheme and 

was identified as a shortcoming in the GFIP planning and traffic modelling process by the Gauteng 

Provincial E-Toll Advisory Panel (2014). Thirdly, the importance of trip time reliability has been 

highlighted as an important motorist trip attribute in route choice contexts (Asensio & Matas, 2007; 

Fayyaz et al., 2021; Brownstone & Small, 2005). This was included as an attribute in the utility 

expression using the probability of on-time arrival (pota) in percentage terms for each route. A 

percentage quantification was used instead of the more common measure of travel time standard 

deviation, as no measure of standard deviation was available. Further, it was intended that the 

unreliability should be measured as a function of all three travel time categories, i.e., the free-flow, 
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slowed down and stop-start time. The disadvantage of this approach is the inability to quantify the 

value of trip time unreliability.     

6.2 RAPP-UP Specification and Use 
 

The detailed specification of RAPP-UP and its outputs are described in Annexure A. The Annexure 

contains the specification of the various RAPP-UP database outputs as well as the method for 

extracting the data for conversion to CSV, GPX, and KML format for analysis and plotting the route 

data.   

RAPP-UP was developed to carry out unlabelled route choice experiments on congested urban road 

networks. While the application can be executed in any urban environment globally, the experiment 

was conducted on a sample of motorists in the Gauteng Province of South Africa. This includes the 

metropolitan areas of Johannesburg and Pretoria. This region is the economic heart of South Africa, 

making up 34% of the South African gross domestic product (GDP) (Department of Statistics South 

Africa (Stats SA), 2021).   

RAPP-UP was developed for use on smartphones using the Android operating system and was 

downloadable from the Google Play Store®. Survey participants required a Google email account that 

was used as a password to enable them to download the application and install it on their smartphone. 

RAPP-UP consists of two components. Firstly, it has a route tracking component that uses the GPS 

device in the smartphone to identify the users trip origin and destination and track the route of the 

smartphone and provide route guidance. The route tracking app provides detailed and accurate routes 

using five second pulses, i.e., a set of location co-ordinates is estimated, recorded and time stamped 

every five seconds during the trip. The route tracking facility provides the calculated distance and 

actual travel time between sets of co-ordinates, as well as the elevation of the coordinates. The space 

mean speed between sets of co-ordinates is calculated from the segment length and travel time. The 

output from the route tracking component of the App is stored on a remote database from which the 

data can be downloaded in JSON format for plotting and analysing.     

The second component of RAPP-UP is the stated choice experiment. When RAPP-UP is activated by 

a user before the start of their trip the GPS device in the smartphone triangulates the users’ position. 

The accuracy of the trip origin can be improved, if necessary, by moving the screen roadmap 

background with two fingers. Alternatively, users can type their positions into the app using the drop-

down keyboard. When satisfied that their location was accurate, the trip origin was fixed, and a green 

pin was inserted into the roadmap background. This progression of steps is shown in the following 

sequence of screen grabs from RAPP-UP. Figure 33 shows the welcome RAPP-UP screen and the 

search for a GPX location fix. The location search takes between 5 and 10 seconds.  The next screen 
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requests that the participants enter an origin suburb against a blank blue screen with the red flag 

locator shown in the middle of the screen. When the suburb is entered, the next screen is shown. This 

screen has a road background with road names and main landmarks. The participant can use their 

fingers on the screen to accurately locate their position on a specific street and dwelling. It is possible 

to zoom in and out of the map for better location accuracy.   

 

Figure 33: Initiating RAPP-UP and Setting Origin Location   

 

Figure 34: Waypoints, Destination Suburb and Day-of-Week Specification 
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Figure 34 shows the specification of waypoints on the trip. These are defined as locations that the 

participant must pass through on their trip between origin and destination. The waypoints are located 

in the same way as the origin suburb, i.e., with a suburb description and use of the map to make a 

more accurate location. Up to three waypoints can be defined. The destination suburb is then defined 

by the participant. This is done in the same way as the definition of the origin suburb and waypoints. 

The destination suburb is typed into the destination field and then searched for and accurately located 

on the screen map. Once the destination suburb has been defined a red pin is inserted into the roadmap 

background. RAPP-UP then asks for the day of the week that the trip is being made on, and the 

preferred time of arrival. This information is used to estimate the required departure time and to send 

a reminder to the participant to leave on time. Figure 35 presents the screen showing the confirmation 

of the origin and destination, connected by sequence of arrows. Thereafter the two alternative routes 

are generated between origin and destination (via waypoints if there are any) and are displayed on the 

smartphone screen.   

 

Figure 35: Confirmation of O-D and Display of Alternative Routes 

The trip attributes and levels are shown for each route at the bottom of the screen. The participant can 

move between the routes by tapping on the route outline on the screen map. When a route is tapped, it 

is highlighted in a bright blue colour and the trip attributes and levels are shown in the choice table, 

while the other route is shaded in grey.  

The route attributes shown are the total trip time in minutes (stopwatch icon); probability of on-time 

arrival in percent (pota) (target icon); toll fee for the route in Rands if a tolled freeway is included in 

(the toll barrier icon); the total trip distance (in km); and the estimated fuel consumption in Rands 

(fuel dispenser nozzle icon). Also shown adjacent to the traffic signal icon are the red (stop-start travel 
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time), orange (slowed-down trave time) and green (free-flow travel time) traffic signal icons. In the 

examples shown, there is no stop-start or slowed-down time, so the free-flow time is the same as the 

total travel time, i.e., 20 minutes for the eastern route and 22 minutes for the western route. The 

calculation of the toll fee, the probability of on-time arrival and fuel consumption are discussed in the 

next section. 

The western route was chosen as the preferred route and is selected by tapping on the USE THIS 

ROUTE script at the bottom of the screen.  When the route choice is made, the attribute levels for 

each route and an indication of the chosen route are sent to the remote database. As well as this data, 

the proportion of route overlap is also calculated and stored in the database (this is not displayed to 

the participant). 

Figure 36 shows the driver guidance provided for the chosen route (i.e., the western route). Driver 

guidance is provided on the smartphone screen once the route has been selected. During the trip the 

path is tracked, and the co-ordinate and trip time data transmitted to the remote database.  When the 

trip is completed, the driver participant taps on the Finish Commute text shaded in red at the bottom of 

the screen and RAPP-UP is terminated and closed. When the app is used again, the process is 

repeated. 

 

Figure 36:  Driving the Preferred Route and Closing RAPP-UP 

RAPP-UP route data is transmitted via the GSM network to the remote database. If the smartphone 

does not have 4G data available, then the route data is stored on the smartphone until internet 

connectivity is restored either by 4G or 5G GSM, or when a wi-fi or wireless connection becomes 
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available. This feature enables users to download their trip data after their trip when they have an 

internet connection, so avoiding the cost of GSM 4G or 5G transmission. 

6.3 RAPP-UP Data Structure and Definitions 

 
The data output by RAPP-UP is structured around trips, routes, and routines. The structure is shown 

in Figure 37. The figure shows that a trip between an origin and destination (O-D) consists of two 

routes, each with its own attribute levels. A routine is defined as a set of trips for a particular day. 

Each route has its own shape files (containing the segments with co-ordinates and segment data such 

as lengths, speeds, travel times, etc.). The routes are presented to the user on a smartphone screen in 

the form of a choice set. The selected route is the preferred route chosen by the user, which they must 

drive between O-D. The driven route data is generated by tracking the smartphone and its shape and 

segment data is also stored in the remote database. 

Identifiers (id’s) are allocated to each trip, route, selected route, routine, and choice set. These id’s are 

presented in the various output tables shown in Annexure C.   

 

Figure 37: Structure of RAPP-UP Trips, Routes, Routines and Choice Sets  

The detailed contents and definitions of the RAPP-UP database are shown figuratively in Figure 38. 

The figure is a pictorial representation showing the full data sets for two routes, viz, two alternative 

routes and the preferred route driven (or chosen) by the user. The highlights of the figure are: 

a) The trip is for user G Hayes, with an email address (u16401868@tuks.co.za) and user id 

ANRRVmCk46. This user id is used throughout the survey, i.e., for all trips made by G Hayes 
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b) There are two alternative routes with route identifiers, i.e., route SCzVhhKrAF (shown in 

black) and route L1wd3YxS4X (shown in red). These two routes make up a routine (i.e., the 

set of route alternatives) with the identifier BZO6ecyZGa.   

c) For each route (with identifier) there is a sequence of route segments that contains the 

segment latitude and longitude co-ordinates (for the a-node); the segment sequence number 

(the sequence is ascending from 0); the date; and the time stamp.  

d) For each route there is an attribute data set that includes the total trip time; total distance; 

probability of on-time arrival (pota); fuel cost, toll cost, free-flow time (fft); slowed-down 

time (sdt) and stop-start-time (sst). These data constitute the choice set attributes and levels 

for each route. 

e) The preferred route chosen by the user is also shown as given by the route identifier (in this 

case route L1wd3YxS4X shown in red)  

f) The driven route is shown with a shapefile that contains the user identifier; the route identifier 

(L5E1HnBezP); segment identifiers (e.g., YApvq3A6Le); the shape sequence number 

(ascending in order); the a-node of the segment (lat and lon); segment altitude; segment 

bearing; and average speed on the segment. 
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Figure 38: RAPP-UP Route Data Coding Definitions 
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6.4 RAPP-UP Export Scripts and Outputs 
 

Export scripts were written to transfer data from the remote database onto a computer for processing 

and analysis. The detailed format of the data sets produced by RAPP-UP from the remote database are 

in Annexure A. Command script files executed from the Windows Command prompt were written to 

download the data onto a computer or laptop. There were twelve sets of outputs generated by each of 

the 12 command files. The following table summarises each of the data sets produced by the 

command script files. The output files are in JavaScript Object Notation (JSON) format. These are 

text files that can be imported into Excel and saved as both Excel and comma separated variable 

(CSV) files. The CSV file format is required for conversion of files to GPX and KML format.  

Table 3: RAPP-UP Database Export Script & Output Filenames and Contents 

Contents of Data Files Name of Command Script File Output File Name 

1. User dashboard containing 

user ID code and name & 

date & time of creation 

Export_user_collection_json.sh User_collection.json 

2. Trip dashboard containing 

the trip code; trip start time; 

user id code; trip duration & 

distance 

Export_trip_collection_json.sh Trip_collection.json 

3. Shape dashboard containing 

the shape id; shape sequence 

no.; altitude; speed; user id; 

creation ate & time stamp; 

etc. 

Export_shape_collection_json.sh Shape_collection.json 

4. Choice set dashboard 

containing choice set id; date 

& time stamp; route no.; toll 

cost factor; pota factor; etc. 

Export_choiceset_collection_json.sh Choiceset_collection.json 

5. Route collection dashboard 

containing the route id; fuel 

cost; routine id; travel time; 

toll cost; pota; date and time 

stamp; distance, choice set 

applied, etc.  

Export_route_collection_json.sh Route_collection.json 

6. Route segment shape 

collection dashboard 

containing the segment id; 

length; date & time stamp; 

Export_routeshape_collection_json.sh Routeshape_collection.json 
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sequence no.; location (lat 

and lon) 

7. Routine collection dashboard 

containing routine id; date & 

time stamp; user id 

Export_routine_collection_json.sh Routine_collection.json 

8. Shape collection dashboard 

containing the segment id; 

shape sequence no.; altitude; 

trip id; speed; user id; date & 

time stamp; bearing; location 

(long & lat)  

Export_shape_collection_json.sh Shape_collection.json 

9. Traffic segment dashboard 

containing the segment id; 

date & time stamp; TEC 

object code; shape segment 

start sequence no.; shape end 

sequence no. ; route id 

Export_trafficsegment_collection_json.sh Trafficsegment_collection.json 

10. Trip collection dashboard 

containing trip data for the 

trip driven including trip id; 

departure time; arrival time; 

date & time stamp; user id; 

selected route id; duration; 

distance 

Export_trip_collection_json.sh Trip_collection.json 

11. Waypoint collection 

dashboard containing the 

waypoint id; date & time 

stamp; waypoint name; 

location (lat & lon)  

Export_waypoint_collection_json.sh Waypoint_collection.sh 
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7. GENERATION OF CHOICE SET ATTRIBUTE LEVELS FOR ALTERNATIVES 
 

7.1 Introduction 
 

The route attributes and value derivation are summarised in Table 4. These were the total trip time; 

the free-flow time (fftime); slowed-down time (sdtime); stop-start time (sstime); route length; route 

petrol cost; probability of on-time arrival (pota) and the toll cost (if any). The travel time attributes 

were based on real-time values as previously described. For a given route, the segments with the same 

travel time category (e.g., free-flow time) are summed to give a total route free-flow time in minutes. 

The probability of on-time arrival (pota) is calculated from the fftime, sdtime and sstime travel time 

categories, and is expressed as a percentage, i.e., the probability of arriving at the destination on time. 

The petrol cost was calculated from the route length using an average vehicle fuel consumption rate 

and the current pump price of fuel per litre, and the toll cost was the actual toll cost for the use of 

Gauteng freeways that are included in the GFIP e-toll system. For reasons previously described the 

toll cost and pota levels were also factored by a factor in accordance with an orthogonal fractional 

factorial design. The derivation of the fuel consumption, toll values and pota are now discussed.  

Table 4: RAPP-UP Attributes and Source of Attribute Values for each Route 

Utility Attribute Source of Attribute Value for Route i 

Free flow time (fftime) (minutes) Real-time value 

Slowed down time (sdtime) (minutes) Real-time value 

Stop Start time (sstime) (minutes) Real-time value 

Trip petrol cost1 (petcost) (Rand) Calculated value based on route length 

Probability of on-time arrival (pota) % Calculated value * look-up factor 

Toll cost (tollcost)2 (Rand) Actual value * look-up factor 

Notes 

1. Petrol cost calculated using route length and assuming current price of unleaded 95 petrol and average 

vehicle fuel consumption of 8 liters per 100 km 

2. Tolls only applied to routes that utilise the Gauteng freeway sections of GFIP 

 

7.2 Trip Petrol Cost (Rands) 
 

The trip petrol cost for each alternative route was calculated from the route length (in km) multiplied 

by the current inland cost of 95 octane unleaded fuel which was approximately R11/km at the time of 
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the survey. An average vehicle fuel consumption rate for peak period driving of 10 litres per 100 km 

was assumed. Thus, for example, the petrol cost for a 20 km trip was R22.00.  

7.3 Probability of On Time Arrival (pota) (%) 
  

Trip time reliability is often expressed as the time that the respondent will arrive early or late at the 

destination. A different approach was adopted in RAPP-UP as the real-time travel times were known 

at the time of the generation of the attribute levels in the choice sets. Using this trip time data allowed 

the probability of on-time arrival to be estimated and expressed as a percentage in the choice sets.  

The trip total trip time, based on real-time traffic data, was determined for each route alternative as 

part of the route generation process. The total trip time is the quickest possible travel time on the route 

and hence provides the most optimistic arrival time at the destination. For the purposes of the 

experiment, it was assumed that there is a randomness associated with the optimistic arrival time that 

can be expressed as a probability of on-time arrival which will be less than 1.0. It was further assumed 

that this probability will decrease as the proportion of slowed-down and stop-start travel time increase 

on the route, as these travel times reflect increasing travel times.        

An equation for calculating the probability of on-time arrival using the free-flow, slowed-down and 

stop-start times for a route was developed. The relationship was not calibrated as it was only used to 

give an indication of the probability of on-time arrival and hence does not require accurate estimation. 

The relationship indicates lower levels of on-time arrival probability with increasing proportions of 

slowed-down and stop-start time. The expression that has been adopted is linear in form as follows: 

Probability of On Time Arrival (%) Pota = factor * [1- 
( . ∗ . ∗ . ∗ )

  
] %     

Equation 3: Probability of On Time Arrival 

Where: 

 factor = a two-level factor to widen the range of the attribute levels. Values of 0.9 and 1.1 

were applied using an orthogonal fractional factorial design (note these levels can be altered 

by the analyst to widen or narrow the range). 

 sstime = real-time total stop-start travel time on the route in minutes. 

 sdtime = real-time total slowed-down travel time on the route in minutes. 

 fftime = real-time free-flow travel time on the route in minutes. 

 Total travel time is the total route travel time in minutes (=sstime + sdtime + fftime).   

The definition of pota introduced possible correlation between the values of trip time and the pota 

value. Because the uncertainty in trip time is caused by variations in the categories of trip time (and 

especially by sdtime and sstime), it was thought worthwhile to test this approach and verify whether 
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this correlation actually occurs. The pota level is calculated for each route when the alternative routes 

have been identified and the various travel time proportions have been determined. The pota value is 

reduced by higher levels of stop-start and slowed-down time (weights of 0.8 and 0.6 respectively were 

applied) and much less by free-flow time (weight of 0.1). Thus, if a route had no stop-start of slowed-

down time the pota value would only be determined by free-flow time with a weighting of 0.1. The 

factor applied to the pota value was either 0.9 or 1.1 depending on the sequence of choice sets for 

each observation.  

Figure 39 shows the effect on increasing stop-start time as a proportion of total travel time on the 

pota value.  The total travel time has been set at 100 minutes, the slowed-down time has been fixed at 

20 minutes and the free-flow time adjusted to balance with the total travel time. The pota value 

decreases from 73% for a sstime value of 10 minutes, to 10% for a sstime value of 100 minutes. 

Figure 40 shows the effect of increasing proportions of slowed down time on the pota value. The total 

travel time has been set at 100 minutes, the stop-start time has been fixed at 10 minutes and the free-

flow time adjusted to balance with the total travel time. The pota value decreases from 80% for an 

sdtime value of 10 minutes, to 30% for a sdtime value of 100 minutes. 

 

Figure 39: Effect of Increasing Stop-Start Time on the Probability of Arriving On-Time (pota) % 

 

Figure 40:  Effect of Increasing Slowed-Down Time on the Probability of Arriving On-Time 
(pota) %  
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7.4 Route Toll Cost (Rands)  
 

The toll cost was only applied if a freeway that is currently tolled as part of the GFIP e-toll system 

was included as part of the overall route. Whether the survey participant actually paid e-tolls is not 

relevant in this experiment, and this was highlighted to survey participants. The issue of e-tolls in the 

Gauteng Province is very sensitive, and no reference to the actual payment of tolls by participants was 

deliberately made to avoid any bias that this may introduce to the experiment. (As an aside, the 

current level of toll payment non-compliance is more than 80%, so it is unlikely that survey 

participants actually paid tolls). 

The 2021 discounted toll tariff for Class 2 vehicles (i.e., private motor vehicles) was R0.40/km. This 

rate was applied to the length of freeway for which tolls are levied to obtain a trip total trip toll 

charge. A factor was applied to the calculated toll level as shown in the utility expression. A two-level 

factor regime was also applied to the toll cost viz. 0.8, and 1.2. This range was considered practical as 

it provided a realistic range of toll cost attribute levels that was confirmed in the pilot survey stage of 

testing RAPP-UP. 

7.5 Experimental Designs for Toll Cost and Probability of On Time Arrival 
Attributes 

 

Given that the trip time categories (i.e., sstime, sdtime and fftime), petrol cost and trip distance are 

fixed for each route alternative based on real-time data, the experimental design for factors applied to 

the pota and toll charges was estimated using an unlabeled orthogonal fractional factorial design with 

two alternative routes, two attributes, each with two levels. A total of eight choice sets were required. 

The NGENE® experimental design software was used to generate the design. The choice set designs 

are shown in Table 5. The attribute level factors applied were 0.9 and 1.1 for pota the toll cost. These 

factors were considered adequate to provide a sufficiently wide range of levels for model estimation. 

The pota factors defined a narrower level range due to the experimental nature of using this attribute 

in this form the utility expression. The factors can be easily changed in the RAPP-UP lookup tables. 

However, if the number of levels is changed, the RAPP-UP lookup tables require modification. 

The factors were applied to pota and toll costs in the choice sets on each survey day, i.e., choice set 1 

is applied on survey day 1, choice set 2 on survey day 2 etc. to all 8 days. The factors were placed into 

a look-up table in RAPP-UP. Note that it was not necessary for survey participants to make trips on 

successive weekdays, but it was required that they completed all eight trips over a period of three 

weeks, i.e., 15 working days. 
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Table 5: Experimental Design for POTA and Toll Cost (TC) (2 Attributes with 2 Levels)  

Choice Set No. route_1.pota route_1.tc route_2.pota route_2.tc 

1 0.9 0.8 0.9 0.8 

2 1.1 0.8 0.9 1.2 

3 1.1 0.8 1.1 0.8 

4 0.9 1.2 0.9 0.8 

5 0.9 0.8 1.1 1.2 

6 1.1 1.2 0.9 1.2 

7 1.1 1.2 1.1 0.8 

8 0.9 1.2 1.1 1.2 

 
7.6 The Quantification of Route Overlap 

 

A consideration for the estimation of discrete choice models for route choice was the extent of the 

route overlap. The overlap of alternative routes in dense urban road networks is a possibility given 

that routes are likely to use common roads, especially higher order roads that offer reduced travel 

times (i.e., with higher capacity and higher speeds). However, as described earlier, the TomTom® 

route generation process deliberately limits the extent of route overlap. The importance of this 

parameter would only be assessed after the completion of the main survey.    

The measurement of the route overlap by distance was calculated post-survey from the data presented 

in the database from the alternative route segments. The proportion of route overlap was determined 

by identifying the common route segments in the routes. For example, if two routes have a common 

section (or sections) totaling 2 km, and Route A has a total length of 10 km and Route B has a total 

length of 12 km, then the overlaps for each route are Route A = 2/10 = 20% and Route B = 2/12= 

16.6%. 

The route segment data contained in the RouteShape database can be used to identify and quantify the 

route overlap. In this database the route segments for each alternative are listed. These were exported 

to an Excel spreadsheet and a LOOKUP command used to identify common segments. The lengths of 

the overlapping segments were provided, that together with the total route lengths enable the 

computation of the common length proportions for each route.  

Figure 41 shows an example of two routes with a short overlap for a trip from Rosebank in 

Johannesburg to Hatfield in Pretoria on a Monday afternoon during the afternoon peak period at 15:53 

pm.  The choice sets for each alternative route are shown in the following figures. Route A is the 

western route and Route B the eastern route.  The RouteShape database segment numbers and 

sequences in an overlap analysis showed that there was a total of 74 route segments that overlapped 

totalling 1.74 km. Route A (58 km) has a total of 844 segments and Route B (51 km) a total of 703. 
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The proportion of overlap for Route A (total length 58 km) was 1.74/58 = 2.94% and for Route B 

(total length 51 km) was 1.74/51 = 3.37%.  

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: An Example of Route Overlap 

 

7.7 An Example of RAPP-UP Use for a Route Choice Survey 
 

The data sets generated by RAPP-UP are shown in Table 6. The details of the user, alternative routes, 

choice set, and actual route driven are shown. The trip took place on 17 November 2021 at 04:50:08 

UTC (i.e., at 6:50 AM South African time). Table 6 summarises the key data sets and the tables from 

which it was extracted in the remote database. The data was extracted from the database using the 

command files and downloaded into Excel files. 
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Table 6: Example of Data Sets Provided by RAPP-UP Remote Database 

Data Item Code Table Data Source (Excel) 

Trip and Route Data   

User id SUqlnwt7FA Trip_collection.xls 

Trip id VCOIYJ92XZ Trip_collection.xls 

Route 1 id 4JbeHmflgn Trip_collection.xls 

Route 2 id (* selected route) Sm704dUW9s Trip_collection.xls 

   

Alternative Route Details   

Routine id 9msWz1DP9s Route_collection.xls 

Route 1 4JbeHmflgn Route_collection.xls 

Route 2 Sm704dUW9s Route_collection.xls 

For each route:   

Route length Length in metres Route_collection.xls 

Route total travel time Total travel time in minutes Route_collection.xls 

Choice set applied No. of choice set Route_collection.xls 

Pota factor Pota factor from look-up table Route_collection.xls 

Toll cost factor Toll factor from look-up table Route_collection.xls 

Pota value Pota value in % Route_collection.xls 

Toll cost (if any) Toll value in Rand Route_collection.xls 

Fuel cost Fuel cost in Rand Route_collection.xls 

Slowed down time sdtime in minutes Route_collection.xls 

Stop-start time sstime in minutes Route_collection.xls 

Free-flow time fftime in minutes Route_collection.xls 

   

Route segment shape data for 

alternative routes 

  

Route id The unique route id code Routeshape_collection.xls 

Segment id The unique segment id code Routeshape_collection.xls 

Segment sequence  The segment sequence number 

(ascending order) 

Routeshape_collection.xls 

Segment length Segment length in metres Routeshape_collection.xls 

Segment a-node Segment a-node latitude and 

longitude (lat & lon) 

Routeshape_collection.xls 

Date & time stamp Date and time of segment creation Routeshape_collection.xls 

   

Shape Data for Actual Route 

Driven 

 Shape_collection.xls 

User id SUqlnwt7FA Shape_collection.xls 
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Trip id VCOIYJ92XZ Shape_collection.xls 

Segment id The unique segment code Shape_collection.xls 

Segment sequence id The sequence of the segment 

(ascending order) 

Shape_collection.xls 

Segment a-node Segment a-node latitude and 

longitude (lat & lon) 

Shape_collection.xls 

Segment length Segment length in metres Shape_collection.xls 

Segment time stamp Date and time of segment creation Shape_collection.xls 

 

Figure 42 shows two alternative routes derived from RAPP-UP. The routes have been plotted by 

converting the segment co-ordinate files in CSV format to KMZ format. The figure shows the two 

alternative routes plotted in Google Earth®. The selected route is the northern route, i.e., route 2. The 

routes were generated at 06:50 am on 17th November 2021. Note that this was during the COVID 

pandemic when traffic demand was reduced. The choice sets for these trip alternatives is shown in 

Table 7.  

Table 7: Choice Set for Alternative Routes 

Route Attribute  Route 1 Attribute Levels Route 2 Attribute Levels 

Toll Cost (Rands) R0.00 R0.00 

Fuel Cost (Rands) R12.98 R13.37 

Length of Route (km) 11.80 12.15 

Total Travel Time (mins) 25.5 22.9 

Stop-Start Time (mins) 2.3 0.0 

Slowed-Down Time (mins) 0.0 0.0 

Free-Flow Time (mins) 23.1 22.9 

Probability of On-Time Arrival (pota) % 75% 81% 

 

When the selected route was driven it had a total driving time of 28.0 minutes and the route adherence 

compliance was 100%. 
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Figure 42: Alternative Routes for Trip from Garsfontein to Waterkloof in Pretoria East 

Several important issues are highlighted from this example. Firstly, even though the routes are 

distinctly different and are geographically separated, the route lengths are very similar, and this gives 

rise to the similar levels of fuel consumption and cost. Secondly, the travel times are also similar and 

had a difference of only 2.5 minutes. Route 1 had a stop-start time component of 2.3 minutes and 

route 2 had none. Thirdly, the probability of on-time arrival was 75% for route 1 and 81% for route 2. 

Fourthly, as neither of the routes use the N1 Freeway shown in Figure 42 they do not have a toll 

charge. As neither route had a toll charge there would be no deduction of a toll charge from the 

participants survey account as part of the economic experiment. The toll fee loss aversion would 

therefore not constitute part of the behavioural factors influencing the choice of route in this choice 

set.  

Finally, there is a very small section of route overlap at the origin of the trip. This example 

demonstrates an important characteristic of route alternative options on a dense urban road network, 

i.e., that even though the routes may be spatially separated, they may have similar route lengths and 

total travel times.      

 

 

 

 

 

 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



107 
 

107 
 

8. FORMS OF DISCRETE CHOICE MODELS FOR ROUTE CHOICE SIMULATION 
 

8.1 Introduction 
 

This section describes the various forms of discrete choice modelling appropriate for route choice 

simulation using random utility theory. The models are described in the context of the route utility 

defined used in RAPP-UP, i.e., the total utility is the linear-in-coefficients form as follows for user i 

using route j at time t: 

Uijt = b1*fftimeijt + b2*sdtimeitj + b3*sstimeijt + b4*petcostitj + b5*tollcostiijt + b6*potaijt + εijt                   

Where: 

 Uijt is the total utility for user i using route j at time t. 

 b1, b2 …b6 are coefficients to be determined. 

 fftimeij is the free flow time on route j in minutes at time t. 

 sdtimeij is the slowed-down time on route j in minutes at time t. 

 sstimeij is the stop-start time on route j in minutes at time t. 

 petcostij is the petrol cost for route j in Rands at time t. 

 tollcostij is the toll cost of route j in Rands at time t. 

 potaij is the probability of on-time arrival using route j in percentage at time t. 

 εijt is the stochastic (random) unobserved term for route k and captures the factors that affect 

utility but are unobserved by the analyst. 

The specification of the random component term εij is a key consideration in the application of 

different forms of discrete choice model.    

8.2 Multinomial Logit Model (MNL) 
 

The MNL is considered the workhorse of discrete choice models. It is a closed form model that is 

efficiently estimated due to simple structure and its closed form. However, it must be applied within 

the constraints of the independence of irrelevant alternatives (IIA) that prohibits the estimation of 

MNL models with correlated alternatives. If this is the case another form of discrete choice model is 

suitable, for example the nested logit model.  

MNL models are those class of random utility models that are derived under the assumption that the 

unobserved effects in εij (i.e., the residuals) are drawn from a multivariate generalized extreme value 

type 1 (Gumbel) distribution (also termed the EV1 distribution). This requisite that the residuals are 

independent and identically distributed (IID) essentially means that the alternatives should be 

independent and not correlated (Ortuzar & Willumsen, 2011).   
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In the route choice context, if the alternatives in the route choice set have overlapping or common 

road sections, then the IIA and IID constraints may be contravened and the use of the MNL is not 

appropriate. Nevertheless, Hensher et al.  (2015) recommend the MNL as a good starting point in the 

discrete choice model estimation process. 

The form of the MNL model is as follows for individual i using route j with k attributes.  

 

Equation 4: Multinomial Logit Model (MNL) 

Where: 

 Pij is the probability of individual i choosing route j from a total of J routes. 

 Vjk is a vector of utility attributes for route j for attribute k also known as the representative 

(observed) utility. 

  βk is a vector of attribute coefficients to be estimated. 

  εij is the stochastic (i.e., random) term associated with individual i using route j and captures 

the factors that affect utility but are not measured within Vjk or observed by the analyst. 

 

8.3 Random Parameters Logit (RPL) Model (also known as Mixed Logit Model) 
 

The RPL model was considered to be the “model for the new millennium” by Ortuzar and Willumsen 

(2011). This is because the RPL is a highly flexible model that can approximate any random utility 

model (McFadden & Train, 2000). It overcomes the three limitations of the closed form of MNL’s by 

firstly allowing for random taste variation thereby relaxing the IID constraint; secondly it allows 

unrestricted substitution patterns and relaxes the IIA constraint; and thirdly it considers the correlation 

of unobserved factors over time, i.e., panel effects that take into account the variation in choice by 

individual decision makers making repeated choices. The MNL model constraints are overcome by 

means of the simulation of the choice probabilities. The simulation of the choice probabilities requires 

use of the user defined distribution functions (i.e., mixing distributions) for each of the non-random 

attribute coefficients in the utility expression.  RPL models yield estimates of the first and second 

moments (e.g., mean and standard deviation) of the distribution of tastes across the population of 

interest. The coefficient mean and standard deviations are reported in the RPL outputs.  

However, caution should be exercised when using RPL models and several authors have warned 

about the potential pitfalls of the models (Hensher & Greene, 2002), and the UK Department for 

Transport warn that “issues of model identification are highly complex and it should not be presumed 
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that a convergent MXL (mixed logit) is necessarily a valid MXL (mixed logit)”. (UK Department for 

Transport, 2014). 

The issues with model identification relate to: 

a) The definitions of the mixing functions for the attribute coefficients. A wide variety can be 

specified, but often these are convenient statistical constructs that may not bear 

resemblance to actual behaviour heterogeneity, for example specification of distributions to 

ensure that willingness-to-pay measures are positive. Train (2009) warns that each 

behavioural specification provides a particular interpretation of the model  

b) Which attribute coefficients to randomise and which to fix. This decision has an important 

effect on the estimation of willingness-to-pay based on the ratio of the time and cost 

attribute coefficients. The ratio of two distributions can lead to counterintuitive estimates of 

values of travel time, including negative VTT’s. To overcome the estimation of an average 

value from the ratio of two distributions, Train (2009) recommends fixing the price 

coefficient (denominator) so that the willingness-to-pay measures are estimated from a 

single (time) distribution in the numerator.   

RPL probabilities are the integrals of the standard MNL probability over the specified density 

function of the coefficients. An RPL model is any model whose choice probability for individual i 

using route j with k attributes can be specified in the form:  

Pij = ∫ 𝐿 (𝛽𝑘)𝑓(𝛽𝑘)𝑑𝛽     

Equation 5: Form of RPL Model 

Where: 

 Pij is the probability of individual i using route j.  

 Lij(βk) is the logit probability at coefficient βk and f(βk) is a density function specified by the 

user and the logit probability at coefficient βk is as follows:   

Lij(β) =  
( )

       

Equation 6: Logit Probability Function 

Where: 

 Vijk(βk) is the representative portion of the utility for attribute k which is depends on the 

coefficient βk. 

 Xijk are the observed attributes k for individual i using route j.  
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The solution to the RPL model can only be estimated using simulation where random draws of the 

coefficients β are made from the defined distribution. Various methods have been estimated for 

ensuring random and quasi-random draws of β, with a widely used method being Halton Draws that 

generates quasi-random draws. Hensher et al., (2015) recommend a minimum of 500 Halton Draws 

in a simulation.  

The RPL model is thus a mixture of the logit function evaluated at different values of the coefficient β 

with f(β) as the mixing distribution. In most applications f(β) is a continuous distribution of the 

normal, uniform, log-normal or triangular distribution. The log-normal and (one-sided) triangular 

distributions will ensure only positive willingness-to-pay measures but should be used with caution. 

The log-normal distribution has a “thick” tail and can itself lead to distorted values of willingness-to-

pay (Hensher, et al., 2015). Ortuzar and Willumsen (2011) recommend estimation of RPL models 

with different mixing functions to determine whether there is actually heterogeneity in tastes. 

 

8.4 Commonality Logit Model (C-LOGIT) 
 

Recognising the IIA constraint of MNL models in a route choice context and the unrealistic choice 

probabilities for routes with common sections, Cascetta et al. (1996) suggested the Commonality-

Logit model normally termed the C-Logit model. This model is a modified form of the MNL that 

draws on the benefits of efficient estimation from the closed logit form and the relatively simple 

mathematical structure. The behavioural basis of the C-Logit model is the adjustment of the observed 

or representative part of utility for routes between and origin and destination that overlap, i.e., have 

common roadway sections that introduces route correlation.         

C-Logit models introduce a commonality factor for route j, i.e., CFj that is estimated for each route in 

the choice set based on the extent of overlap of the routes in the choice set. Route overlap can be 

defined as a common distance, time or cost for the routes in the choice set. The route commonality 

factor CFj  is included in the utility expression as an additional attribute with its own coefficient (βCF) 

and is used to proportionally adjust the representative utility of a route and hence account for 

correlation between routes.  

The C-logit expression for the probability of individual i choosing route j from L routes and k 

attributes in choice set C, i.e., (Pij) is as follows (Prato, 2009): 
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Equation 7: C-Logit Model Expression 

Where: 

 Vkj and Vkl are the representative components of the utility functions for routes j and l with k 

attributes. 

 C is the choice set of all routes. 

 CFj and CFl are the commonality factor attributes for routes j and l respectively. 

 βCF is the commonality attribute coefficient to be estimated. 

The sign of βCF should be negative, as substantially overlapping paths will be more correlated and 

hence should have large commonality factors resulting in smaller representative utilities when 

compared to similar but independent paths. For two paths with similar Vk and a high degree of overlap 

i.e., if CFk and CFL were approaching a value of 1, then the exp(Vk) and exp(VL) expressions would be 

close to exp(0) = 1, and the Pik would then be 0.5, i.e., equal proportions of trips on each path. 

Conversely, for two paths with very little overlap, the CFk and CFL values will approach zero and the 

effect of the correction factor will be marginal. The C-Logit model then collapses back to the MNL 

form.   

Several forms of the commonality factor CFK have been proposed as follows (Prato, 2009): 

 

 

Equation 8: First Form of Commonality Factor CFk 

 

 

Equation 9: Second Form of Commonality Factor CFk 

 

 

Equation 10: Third Form of Commonality Factor CFk 

 

 

 

Equation 11: Fourth Form of Commonality Factor CFk 
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Where Lk and Ll are the total lengths of routes k and l respectively; C is the choice set of all routes; La 

is the length of link a with a being the total length of overlapping links in k;  Γk is the set of links in 

route k; Lkl is the common length between routes k and l; δal is a link-path incidence dummy, equal to 

one if route l uses links a, and zero otherwise; and γCF is a parameter to be estimated. 

Each equation provides an estimation of CFk based on a degree of route similarity between routes k 

and l. Equation 8 describes the commonality only in terms of route length overlap i.e., Lkl; Equation 9 

and Equation 10 consider each link in paths k and l, and weigh the common links in proportion to the 

ratio between the link and route lengths i.e., La / Lk. Equation 11 introduces the lengths of the non-

shared links (i.e., through the (Lk – Lkl) and (Ll – Lkl) terms) and implies that ratio of the commonality 

factor between two routes should increase when the when the overlapping of the two routes increases. 

The estimation of the factor δal in equations 9 and 10 is complex and requires an iterative approach for 

solution. For this reason, equations 7 and 8 have not been used to estimate the commonality factor and 

equations 6 and 9 have been used.     

The advantage of the C-Logit model is the consistency of the estimation of the utility value. The 

disadvantage of the C-Logit model is that the commonality factor only captures part of the similarity 

of the routes based only on overlapping lengths. Other trip attributes are excluded, e.g., travel cost and 

time. Also, no guidance is given as to which equation for CFk is most suitable. 

It was anticipated that the route generation process employed in RAPP-UP, i.e., to minimise route 

overlaps may limit the successful estimation of C-Logit models.  

8.5 Path Size Logit Model (PS-LOGIT) 
 

The Path-sized Logit (PS-Logit) model was suggested by Ben-Akiva and Ramming (1998). The C-

Logit and PS-Logit models are structurally similar, but with C-Logit considering the length of path 

overlap, and PSL considering the proportion of path overlap. The PS-Logit proposes an adjustment to 

the representative utility through the introduction of a utility attribute called the path size factor (PS) 

with its own attribute coefficient βPS. The form of PSL model is as follows for individual i and routes j 

and l, with attributes k. 

    

Equation 12: Path-Size Logit (PSL) Model Expression 

Where: 

 Pij is the probability of individual i choosing route j. 
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 C is the choice set of alternative routes. 

 Vjk is the representative utility of route j with attributes k. 

 βPsc is the path size attribute coefficient. 

 PSj is the path size attribute for route j. 

 PSl is the path size attribute for route l.  

The path size is defined as the proportion of a route that constitutes a “full” alternative. A fully unique 

route has a path size equal to one and less than one if it has common segments with another path. If 

there are N duplicate (common) paths, then the path size is 1/N. Two other forms for the estimation of 

the path size overlap for route k and route l have been proposed as shown in the following equations. 

  

 

 

 

Equation 13: Expressions for Calculation of Path Size Parameters 

Where: 

 The Lk, La, and Ll are the route length definitions as for the commonality factor 

 δal is a link-path incidence dummy, equal to one if route L uses link a, and zero otherwise 

 γPS is a parameter to be estimated.  

The first path size formulation estimates the weighting based on the proportion of the path coming 

from a specific link as the ratio between the link length and route length, i.e., La/Lk. The δal term is 

based on the number of paths using a specific link and is therefore equal to one for links used by only 

one path. Note that the impedance of paths using a specific link is not affected by δal term, and hence 

the formulation can account for different size contributions due to routes with different lengths. 

The intention of the second formulation for PSK is to reduce the influence of long paths on the utility 

of short paths in the choice set. High values of γPS tend to improve the goodness of fit of the PS-L 

model in several case studies. The estimation of the γPS is computationally demanding, and it is mostly 

estimated its value by iterating the PS-L model to obtain the best goodness-of-fit.  

The weakness of the PS-Logit, (and the C-Logit model) is that the correlation of alternatives is only 

captured by the path size proportions in the representative component of utility, and not in the random 

error (stochastic) component of utility.  

The nature of the route generation process employed in RAPP-UP, i.e., to minimise route overlaps 

may limit the successful estimation of PS-Logit models.  
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9. RAPP-UP SURVEY PARTICIPANT AND CHOICE SET DESCRIPTIONS 
   

This chapter describes the implementation of a car commuter route choice survey using RAPP-UP. 

The survey was implemented after the completion of a pilot survey amongst a small group of car 

commuters in the Pretoria and Johannesburg area of Gauteng Province in South Africa.  

9.1 Recruitment of Survey Participant Sample 
 

To demonstrate proof-of-concept for RAPP-UP a small sample of 51 participants were recruited for 

the survey. A market research company provided a sample of participants from their Gauteng panel of 

consumers who were required to meet four criteria, viz: 

i. Ownership of a recent model Android smartphone 

ii. Ownership of their own vehicle 

iii. Make regular commute trips to work using their vehicle in the weekday morning peak period 

iv. Commute to work in the Johannesburg / Pretoria and Ekurhuleni urban regions of the 

Gauteng Province. 

Three participants withdrew early from the survey citing their unsuitability (too few trips and irregular 

O-D patterns); a lack of financial motivation (i.e., the R300.00 survey inducement was inadequate); 

and hence their unwillingness to participate. The RAPP-UP data sets for 48 participants were used for 

the estimation of the route choice models. Participants were required to complete eight trips, and 

while most completed this number, five participants completed only four trips. Thus, a total of 364 

observations (choice sets) were used to estimate the various discrete route choice models. For the 

panel based RPL models 344 observations were used i.e., the participants who completed all eight 

trips.  

9.2 Survey Context 
 

It is important to highlight the issue of the timing of the surveys. All the trips were completed between 

April and July 2022. This period corresponded to the recovery of private vehicle and public transport 

commuting patterns and traffic demand in Gauteng after the COVID-19 pandemic. Vehicle traffic and 

public transport demand at this time had not yet fully recovered to pre-COVID levels, resulting in 

lower than pre-COVID congestion levels. In addition, COVID-19 legacy issues such as working from 

home (WFH) have suppressed travel demand and hence congestion levels. Anecdotal evidence from a 

South African insurance company suggest that car commuters have adopted a hybrid work regime and 

are working from home for two days per week and at the office for three days per week (Business 
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Insider, 2022). Unpublished passenger demand data provided by the Gautrain Management Agency 

for the Gauteng Rapid Rail system serving commuters in Pretoria, Johannesburg and Ekurhuleni 

showed that in August 2022 the weekday passenger demand was at 60% of pre-COVID levels. The 

lower levels of traffic were reflected by lower than anticipated proportions of slowed-down and stop-

start travel times on the routes generated by RAPP-UP.  

The non-compliance levels of toll payment of the GFIP e-toll system at the time of the survey was 

approximately 80%. The survey participants were not asked if they paid e-tolls but were instructed to 

not take this into consideration when choosing their preferred routes from RAPP-UP and when 

driving their chosen route. The proportion of the 728 routes generated by RAPP-UP that were tolled 

was 56%, i.e., just over half. The minimum toll fee applied for a route in the choice sets was R0.83 

and the maximum value was R26.20.     

9.3 Socio-Demographic Characteristics of Participants 

 
Before starting the survey, each participant completed a socio-demographic survey where the 

following information was solicited. The questionnaire is in Annexure A. 

a) Communication details (email and smartphone number). 

b) Age bracket. 

c) Gender. 

d) Personal income bracket. 

e) Home and work suburbs. 

f) Typical commute trip start and end times. 

g) Whether they used a route guidance service for their trip to work. 

h) Trip times and costs for typical route for commute to work. 

i) Employment status. 

Of the 48 participants, 60% were female and 40% were male. All the participants were employed on a 

full-time basis, and RAPP-UP was deployed for their morning commute to work. Only 10% of the 

participants indicated that they used a route guidance system for their trip to work, with 90% 

indicating they used the same route every day. The following series of figures describe the 

characteristics of the sample as determined from the socio-demographic questionnaire. 

The majority of participants (80%) were between 26 and 

40 years age. 48% of participants were in the 31 to 40 

year age band. There was only one participant who was 

over 50 years of age and four in the 18 to 25 band.  
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Figure 43: Survey Participant Age Distribution 

The majority of participants (56%) had a 

personal gross monthly income of between 

R20,000 and R40,000. 23% earned less than 

R20,000 per month and 21% earned more 

than R40,000 per month. Most participants 

fell into the high-income level as defined by 

Statistics South Africa (Stastitics South 

Africa, 2015). 

Figure 44: Participant Gross Monthly Income Distribution 

The survey participants can be categorised as belonging to high income households. These households 

are defined as those earning more than R307k per annum (2011 values). The 2011 national census 

determined that only 7.3% of South Africa households fall into the high-income category. The high 

personal income levels of the survey participants are largely reflective of the recruitment requirements 

for the survey, i.e., ownership of their own car for commuting to work and ownership of a recent 

model smartphone. 

Most of the participants indicated 

that they start their commute trip 

between 06:30 and 08:00, with the 

majority starting their commute 

between 07:00 and 07:30. Only 2 

participants normally start their 

commute before 06:30 and after 

08:00. 

 Figure 45: Distribution of Typical Commute Trip Start Times 

The participant perceived commute 

travel time is shown in the following 

figure. The majority of participants 

perceive their commute time is 

between 20 and 50 minutes (90%), 

with most perceiving a travel time of 

between 30 and 40 minutes (46%).  

 Figure 46: Participant Perceived Commute Trip Cost (Rand) 
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The participant perception of their commute trip petrol cost is shown in Figure 47. Most participants 

perceived their trip cost to be between R20 and R30 (44%). Only 7 of the participants (14%) indicated 

they incurred a trip toll cost. It is uncertain whether other participants used the GFIP e-toll system but 

did not pay the toll. 

 

Figure 47: Participant Perceived Commute Trip Cost (Rand) 

In summary, the sample of survey participants are not representative of the wider car commuting 

public in Gauteng. While they may have similar commuting patterns, e.g., times of departure, trip 

costs and commuting times, they are high income individuals within a relatively narrow income 

range. The route choice behaviour of this sample of car commuters cannot therefore be assumed to be 

representative of the wider car commuting population in Gauteng province. The purpose of the RAPP-

UP route choice survey was to illustrate proof-of-concept. A significantly larger and representative 

sample of car commuters is required to fully explore and explain route choice behaviour.   

The characteristics of the routes generated by RAPP-UP are discussed in the following sections. 

 

9.4 RAPP-UP Route Trip Time and Cost Data   
 

This section provides an insight into the nature of the route alternatives generated by RAPP-UP.  The 

intention is to describe the characteristics of the routes. A series of distributions is shown for the 

various trip travel times and costs. The distributions were generated using all 738 observations. 
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The total travel time distribution shows that 90% 

of the generated routes fell between 11 minutes 

and 53 minutes. The average trip time was 31.5 

minutes, with a minimum time of 7 minutes and 

a maximum of 78 minutes.  

 

 

 

 

 

 

Figure 48: Distribution of Total Travel Time (Minutes) 

 

 

The free flow travel time distribution shows that 

90% of the generated routes fell between 0 

minutes and 46 minutes. The average free flow 

trip time was 27.6 minutes, with a minimum 

time of 0 minutes and a maximum of 62 

minutes. Free-flow time made up 88% of the 

total travel time for all observations.  

 

 

 

 

Figure 49: Distribution of Free Flow Travel Time (Minutes) 
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The slowed-down travel time distribution is 

exponential in shape and shows that 90% of the 

generated routes fell between 0 minutes and 12 

minutes. The average slowed-down trip time 

was 2.6 minutes, with a minimum time of 0 

minutes and a maximum of 46 minutes. The 

slowed-down travel time as a proportion of 

total travel time is considerably lower than for 

the free flow time, i.e., 8% compared to 88%.  

 

 

 

Figure 50: Distribution of Slowed-Down Travel Time (Minutes) 

The stop-start travel time distribution is 

exponential in shape and shows that 90% of 

the generated routes fell between 0 minutes 

and 25 minutes. The average stop-start trip 

time was 1.1 minutes, with a minimum time of 

0 minutes and a maximum of 25 minutes. 

Stop-start time made up only 4% of the total 

travel time. The low proportions of slowed-

down and stop-start time were also caused by 

travel in off-peak directions for all or part of 

the trips.  

 

 

Figure 51: Distribution of Stop-Start Travel Time (Minutes 
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The route toll cost distribution is exponential 

in shape and shows that 90% of the generated 

routes had toll costs between R0.0 and R12.71.  

The average toll cost was R3.43 with a 

minimum value of R0.0 and a maximum value 

of R26.20. Approximately 56% of all the 

routes generated by RAPP-UP were tolled.   

 

 

 

 

Figure 52: Distribution of Route Toll Costs (Rand) 

 

The route petrol cost distribution shows that 

90% of the generated routes had petrol costs 

between R5.8 and R45.6.  The average petrol 

cost was R24.03 with a minimum value of 

R4.74 and a maximum value of R81.32. It is 

important to note that the average route petrol 

cost: toll cost ratio is 7.0, i.e., on average 

petrol costs make up 85% of the trip cost and 

the toll cost 15%. 

 

 

 

Figure 53: Distribution of Route Petrol Costs (Rand) 
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The route length distribution shows that 

90% of the generated routes had a 

length   between 5 and 41 kilometers. 

95% of the trips were shorter than 41 

km. The average route length was 21.4 

km’s, with a minimum length of 4.0 km 

and maximum length of 74 km. Based 

on the average trip length of 21.4 km 

and the average total trip time of 31.5 

minutes, the average trip speed was 42 

kph. 

 

 

 

Figure 54: Distribution of Route Lengths (Km) 

 

The probability of on time arrival 

(pota) distribution shows that 90% of 

the generated routes had a value 

between 0.64 and 0.99. The average 

value was 0.86 and the minimum and 

maximum values were 0.35 and 0.99 

respectively. The spikes in the 

distribution are due to the high 

proportion of pota values of 0.81. This 

was caused by a high number of pre-

factored pota values of 0.9 determined 

from trips with no observed values of 

slowed-down and stop-start trip time.  

 

Figure 55: Distribution of Probability of on Time Arrival (pota)  

When these values are multiplied by the pota factor of 0.9, produce the result of 0.81. The high 

proportion of values of 1.0 has also occurred for this reason, viz., pre-factored values of 0.81 

multiplied by the pota factor of 1.2.          
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The following table summarises the total travel times and petrol and toll costs in the choice sets on the 

tolled routes only, the un-tolled routes, all the routes, the chosen routes and the unchosen routes. The 

table highlights that the tolled routes in the choice sets reflected higher petrol costs (and were hence 

longer routes); had higher average total travel times; and higher toll values. The chosen routes had 

lower toll costs, lower petrol costs, and lower total travel times. The high ratios of petrol to toll costs 

is an important consideration when interpreting the willingness-to-pay for travel time savings as petrol 

trip costs dominate the total trip cost.  

Table 8: Route Choice Set Average Travel Time, Petrol Costs and Toll Costs 

Average Attribute 

Values 

Routes with a 

Tolled Section 

Routes without 

a Tolled Section 

All Routes Chosen 

Routes 

Unchosen 

Routes 

Toll cost (Rands) R6.05 - R3.41 R2.71 R4.10 

Petrol cost (Rands) R30.13 R16.17 R24.03 R22.06 R26.00 

Total travel time 

(minutes) 

35 27 32 30 34 

Petrol: toll cost ratio  6.3 - 7.1 8.1 6.3 

 

The results in Table 8 demonstrate rational choice behaviour amongst the individual participants as 

follows: 

a) Longer trips (in kilometers and in minutes) are being made using freeways to benefit from the 

higher speeds and increased travel time savings even though there is a toll payment 

requirement, demonstrating a willingness-to-pay tolls for time savings. 

b) This observation is reinforced by the petrol cost on routes without a tolled section being 

substantially lower than on routes with tolled sections. 

c) The toll costs on the routes that were chosen were lower than on the routes that were not 

chosen indicating that, when possible, routes without a tolled section were chosen before 

those with tolled sections.  

9.5 Route Choice Set Examples and Overlap Characteristics 
 

The extent of the route overlaps is an important consideration when estimating route choice discrete 

models, as increasing degrees of overlap is likely to increase the correlation between routes. The route 

generation process employed by RAPP-UP is the algorithm used by TomTom® and as described, the 

algorithm generates alternative routes by considering three key criteria: the extent of overlap of the 

alternative and optimal route; the local optimality that considers the number of unnecessary detours 

on the alternative route; and the stretch, being defined as the ratio between the length of an alternative 

route and the length of the optimal route. It could thus be anticipated that the overlap criteria that seek 
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to minimise the overlap would result in few generated routes that overlap, and for those that do 

overlap, a relatively short section of the optimal and alternative routes would overlap. For the 364 

choice sets generated by RAPP-UP, only 10% had routes that overlapped. The maximum extent of 

overlap was 15% of the optimal and alternative route. It could thus be anticipated that the discrete 

choice models that specifically account for route correlation would not produce significantly 

improved models over those models that did not specifically account for route overlap.   

The following figures and choice set tables show examples of routes generated by RAPP-UP and used 

in the C-Logit and PS-Logit models. Figure 56 shows two routes generated between Roodepoort in 

the West Rand to the Randburg CBD. The trip was started at 06:50 on Wednesday 13th July 2022. The 

figure shows the two routes in the choice set generated by RAPP-UP, with the blue route being 

chosen by the survey participant. The two routes are unique with no overlap. The blue route uses the 

N1 freeway (and hence incurs a toll) while the red route runs through several suburbs between origin 

and destination. The blue route was 21.03 km and the red route 17.73 km long. 

 

Figure 56: Route Example Roodepoort to Randburg 

The choice set associated with these routes is shown in Table 9. The routes have similar travel times 

and no slowed-down or stop-start trip time. The petrol cost of the blue route is R3.63 more expensive 

than the red route and has a toll fee of R3.23. The total cost of the blue route is R6.86 higher than the 

red route. The blue route offers higher probability of arriving at the destination on time. 
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Table 9: Choice Set for Trip Between Roodepoort and Randburg 

Route Free-Flow 
Time (mins) 

Slowed-Down 
Time (mins) 

Stop-Start 
Time (mins) 

Petrol 
Cost 

(Rand) 

Toll Cost 
(Rand) 

Pota % 

Route 1 (Red) 29 0 0 19.50 0 81 

Route 2 (Blue) 27 0 0 23.10 3.23 99 

 

The next example in Figure 57 shows two routes generated by RAPP-UP between a trip origin in 

Soweto and the destination in the Sandton CBD. The blue route was chosen by the survey participant. 

It can be that the red route uses the N1 (tolled) freeway for part of the trip and the blue route the M1 

(un-tolled) motorway through the centre of Johannesburg. The red route length was 33.7 km and the 

blue route 29.6 km. The route overlap at the start of the route was 3.2 km. 

 

Figure 57: Route Example Soweto to Sandton 

The choice set for this trip is shown in Table 10. While the blue route has slightly lower travel time, it 

has a lower petrol cost and no toll. It has a lower probability of on-time arrival.   

Table 10: Choice Set for Trip Between Soweto and Sandton 

Route Free-Flow 
Time (mins) 

Slowed-Down 
Time (mins) 

Stop-Start 
Time (mins) 

Petrol Cost 
(Rand) 

Toll Cost 
(Rand) 

Pota % 

Route 1 (Red) 27 0 0 37.10 5.33 99 

Route 2 (Blue) 25 0 0 32.60 0 82 
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Figure 58 shows a choice set of routes between Bedfordview to the east of Johannesburg and 

Sandton. The red route uses the N3 (tolled) freeway while the blue route runs through suburbs to 

Sandton. The blue route was chosen by the respondent. The blue route is 14 km long and the red route 

19 km. There is no overlap between routes. The choice set for this set of routes is shown in Table 10. 

 

Figure 58: Route Example Bedfordview to Sandton 

In Table 11 the chosen blue route has significantly longer travel time (10 minutes) but has no slowed-

down time. It also has a lower petrol cost and no toll. It’s pota value is also significantly higher than 

the alternative red route. 

Table 11: Choice Set for Trip Between Bedfordview and Sandton 

Route Free-Flow 
Time (mins) 

Slowed-Down 
Time (mins) 

Stop-Start 
Time (mins) 

Petrol 
Cost 

(Rand) 

Toll Cost 
(Rand) 

Pota % 

Route 1 (Red) 23 7 0 20.90 3.09 70 

Route 2 (Blue) 33 0 0 15.40 0 90 

 

Figure 59 shows a route pair generated by RAPP-UP between Rosebank in Johannesburg and 

Midrand. The blue route runs along the M1 and N1 (tolled) freeway while the red route runs on roads 

alongside the freeways and through suburbs. The choice set for these routes is shown in Table 12. 

The survey participant chose the blue route for which a toll was payable but offered a significantly 

lower travel time (by 11 minutes) and higher pota value. The blue and red routes were of similar 

length, i.e., about 22 km long and hence have similar petrol costs. There is a very short route overlap 

of 0.9 km in Midrand.  
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Figure 59: Route Example Rosebank and Midrand 

Table 12: Choice Set for Trip Between Rosebank and Midrand 

Route Free-Flow 
Time (mins) 

Slowed-Down 
Time (mins) 

Stop-Start 
Time (mins) 

Petrol 
Cost 

(Rand) 

Toll Cost 
(Rand) 

Pota % 

Route 1 (Red) 34 2 0 24.89 0 81 

Route 2 (Blue) 23 0 0 24.28 5.39 96 

 

Figure 60 illustrates a set of long routes between the origin in Florida on the West Rand and Menlyn 

in eastern Pretoria. The blue route runs along the N1 freeway for which a toll is payable. The red route 

runs along the N14 and N1 freeways and overlaps with the blue route for its length along the northern 

part of the N1 freeway for a distance of 15.95 km. A toll is also payable for the red route. The survey 

participant chose to use the blue route. The red route is 74 km in length and the red route is 63 km 

long, so the length difference is significant at 11 km, the difference in petrol cost is significant as is 

the trip duration of 13 minutes. The blue route has 5 minutes of slowed down time and a lower pota 

value. The choice set for these routes is shown in Table 13.  

 Table 13: Choice Set for Trip Between Florida and Menlyn 

Route Free-Flow 
Time (mins) 

Slowed-Down 
Time (mins) 

Stop-Start 
Time (mins) 

Petrol 
Cost 

(Rand) 

Toll Cost 
(Rand) 

Pota % 

Route 1 (Red) 58 0 0 81.40 24.18 99 

Route 2 (Blue) 45 5 0 69.30 21.44 76 
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Figure 60: Route Example Florida and Menlyn 

The final example of route choice set is for a trip between Midrand the Pretoria CBD. The route 

alternatives are shown in Figure 61. The blue route (30 km) runs along the N1 freeway for which a 

toll is payable. The red route is considerably longer and more circuitous (41 km) and hence has a 

higher petrol cost and because it also user the N1 freeway a toll is payable. The blue route has a 

higher pota value. The participant chose to use the blue route. The choice set is shown in Table 14. 

 

Figure 61: Route Example Midrand to Pretoria CBD 
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Table 14: Choice Set for Trip Between Midrand and Pretoria CBD 

Route Free-Flow 
Time (mins) 

Slowed-Down 
Time (mins) 

Stop-Start 
Time (mins) 

Petrol 
Cost 

(Rand) 

Toll Cost 
(Rand) 

Pota % 

Route 1 (Red) 42 1 0 45.27 8.08 80 

Route 2 (Blue) 30 0 0 33.56 9.11 97 

 

The choice set examples illustrated several points: 

a) There can be significant differences in the attribute levels between alternatives ensuring that 

the attribute level ranges are adequate. 

b) The attribute levels presented in the choice set require the respondent to trade-off the various 

time, cost and pota attributes before a route choice is made. 

c) The toll costs can be significant for longer trips, ensuring that the participant carefully 

considers the impact of the toll cost deduction from their survey account. 

Lastly, the variation in the attribute levels for a sample of long and short route O-D’s is shown in 

Table 15.  The table shows that, as expected, there is more variation in the attribute level ranges of 

the longer routes than shorter routes. The range of total travel time levels when measured as the 

percentage difference between maximum and minimum values for this sample is between 30% and 

110%, and for the petrol costs is between 17% and 66%. This level range is considered adequate for 

modelling purposes. The shorter routes do not incur toll costs. 

Table 15: Comparison of Maximum, Minimum and Mean Values of Total Travel Time (ttt), Toll 

Cost (tc), Petrol Cost (pc) for a Sample of O-D’s  

Origin & Destination 
Suburb 

ttt 
(max) 

ttt 
(min) 

ttt 
mean 

tc 
max 

tc 
min 

tc 
mean 

pc 
max 

pc 
min 

pc 
mean 

Florida - Menlyn: 66 49 57 26 19 23 81 70 74 

Roodepoort - Randburg 41 27 32 4 0 1 23 19 20 

Midrand-Pretoria 46 22 35 11 0 8 54 33 40 

Lombardy East - Wynberg 13 10 11 0 0 0 8 5 6 

Northcliff - Linden 10 7 9 0 0 0 6 5 6 

Note: Total travel time (ttt) measured in minutes; toll cost (tc) measured in Rands; petrol cost (pc) 
measured in Rands 

 

To further illustrate the range of attribute levels generated by RAPP-UP, the choice set variation of 

three survey participants is shown in the following sequence of figures. The figures illustrate the 

attribute levels differences for all eight choice sets for participants who undertook short (participant 

number 41), medium (participant number 2) and long (participant number 1) total trip durations.  

Figure 62 shows the free-flow time and petrol cost variation for a short duration trip (on average, the 

mean total trip duration was less than 10 minutes). There was no toll payment for this trip and there 
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was little variation on in the slowed-down, stop-start and pota attribute levels and these are not shown. 

The variation in free-flow trip time was a maximum of 2 minutes (or 20% variation), and zero for 

choice set number 1. On average, the difference in choice set attribute levels was 17%. While there 

was some petrol cost variation between choice sets, within the choice sets there was little variation. 

This is to be expected for short trips when petrol costs are low. The petrol cost mean difference in 

attribute levels within choice sets was 4%. 

 

  Figure 62: Choice Set Variation for Short Trip Duration (Participant No. 41)   

Figure 63 shows the variation in attribute levels by choice set for a medium duration trip (the average 

trip duration was 25 minutes). There was a higher level of attribute level variation for more attributes, 

including the free-flow time, petrol cost, toll cost and pota. There was little variation in attribute level 

for the slowed-down and stop-start times. The free-flow times varied between and within choice sets 

(except for choice set no. 2 when they were the same). The mean variation in free-flow time within 

choice sets was 11%, with a minimum difference of zero and a maximum difference of 19%.      

 

Figure 63: Choice Set Variation for Medium Trip Duration (Participant No. 1) 
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There was little variation in route petrol cost between choice sets, but within the choice sets the 

variation was on average 25%, with a maximum difference of 27%. Because one route was always 

tolled and the other un-tolled, the toll variation in percentage terms is significant. On the tolled route 

the highest toll fee was R5.10 and lowest was R3.00. There was significant variation in pota within 

the choice sets, with a minimum difference of zero and maximum difference of 32%.  

The long duration trip (average total trip time exceeds sixty minutes) attribute level variations are 
shown in Figure 64.   

 

Figure 64: Choice Set Variation for Long Trip Duration (Participant No. 2) 

There was attribute level variation within choice sets for more attributes for the long duration trip. The 

variation was noticeable for the free-flow and slowed-down trip times, as well as the petrol and toll 

costs and the pota values. The maximum free-flow time difference within the choice sets was 48%, 

the minimum difference 29%, and the average difference 40%. The slowed-down time variation 

within choice sets was significant as one route nearly always had zero slowed-down time. The 

maximum difference within choice sets was 16 minutes, a minimum of 0 minutes and an average of 
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difference of 10 minutes. The median toll cost between choice sets was very consistent at 

approximately R23.00. The variation of toll cost within the choice sets was a maximum of 29%, a 

minimum of 13% and an average of 16%. Within choice sets the petrol cost variation was significant, 

with a maximum difference of R11.58 (or a 17% variation), a minimum difference of zero, and an 

average of 14%. 

In conclusion, the attribute level differences between and within choice sets were dependent on the 

nature of the alternative routes generated by RAPP-UP. Shorter duration route alternatives tended to 

display less variation in attribute levels within the choice sets. This is to be expected, as the route 

alternatives are similar in length and duration, and experience similar levels of traffic congestion. 

However, as the route durations increase, more attributes are subject to level differences and the 

variation in attribute levels within the choice sets also increases. 

Overall, the magnitude of attribute level differences within the choice sets are adequate for the 

estimation of robust route choice models.                 
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10. ESTIMATION OF DISCRETE ROUTE CHOICE MODELS 
 

10.1 Introduction 
 

Several types of discrete route choice models with different utility specifications were estimated. 

These were the multinomial logit model (MNL); the more sophisticated random parameters logit 

(RPL) (also known as the mixed logit model); the latent class multinomial logit model (LCMNL); and 

forms of the MNL model that specifically take route overlap (i.e., correlation) into consideration as 

follows: 

a) Multinomial logit (MNL) models. It is always recommended as good practice to first estimate 

an MNL no matter what the ultimate (preferred) model is (Hensher, et al., 2015), as the MNL 

is likely to highlight any model or data insufficiencies. The assumption of the independent 

and identical distribution (IID) of Type II Gumbel extreme value distribution of the error 

component is an important constraint on the use of the MNL. In addition, the Independence of 

Irrelevant Alternatives (IIA) constraint is equally important, i.e., the possibility of correlated 

alternatives. These constraints are relaxed using the Random Parameters Logit (RPL) models 

(also known as Mixed Logit models) that have become more commonly used.  

b) Random parameters model (RPL) (also known as the mixed logit model). The RPL is a highly 

flexible model that can approximate any random utility model (McFadden & Train, 2000). 

The open-ended form of the RPL requires that it is solved by simulation which in turn 

requires the specification of continuous mixing distributions for the attribute coefficients. A 

powerful characteristic of the RPL model is the ability to address respondent response 

correlations, i.e., panel effects. 

c) Latent Class Models (LCM) were developed to address the IIA constraint of the MNL. They 

assume there is latent heterogeneity in the sample of observations that varies with factors that 

are unobserved by the analyst. It resembles the RPL model but uses non-continuous 

distributions to identify latent classes of respondents within the sample of survey participants. 

LCM models provide an alternative approach to accommodating heterogeneity in models 

such as the MNL and RPL. LCMs assume that a population consists of a finite number of 

groups (or classes) of individuals that are heterogenous, but the groups are different from each 

other. The classes are distinguished by the different attribute coefficients. The analyst is 

required to specify the number of classes when setting up the model and iteratively determine 

the number of classes that estimate the most statistically significant coefficients.  

d) C-Logit: The C-Logit model is the most commonly used model based on the MNL that 

specifically takes consideration of the route overlap by introducing a commonality factor into 

the utility expression as previously described. 
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e) PS-Logit: The path-sized logit model is also based on the MNL form and takes the route 

overlap into consideration with the introduction of a path size factor (of a different form to C-

Logit) in the utility expression as previously described. 

The models were used to evaluate the systemic variation in behaviour by including socio-economic 

attributes using covariable approaches, specifically dummy attributes. Income, trip length and gender  

covariables were tested. 

10.2 MNL Base Model 
 

Several MNL models were estimated, each with a different form of utility expression. The MNL Base 

Model was estimated with the utility expression shown in Equation 2. This form of expression has a 

richer disaggregation of travel time into free-flow, slowed-down time and stop-start time measured in 

minutes. The trip petrol and toll cost are individually specified in the utility expression and are 

measured in Rands. The probability of on-time arrival (pota) is also specified in the expression and is 

measured as a decimal value between zero and one. Note that the route choice experiment was 

unlabelled, so there was initially no allowance for an Alternative Specific Constant (ASC) in the 

expression. Hensher (2015) argues that the inclusion of an ASC in a model based on data collected 

from an unlabelled experiment has behavioural meaning, including survey response bias). If WTP 

measures are required from the model, then the ASC is irrelevant as it is ignored in these calculations. 

However, if the model is to be used for forecasting purposes, the inclusion of an ASC may be 

problematic. Several MNL models were estimated starting with the Base Model that does not include 

an ASC.  The MNL Base Model output is shown in Table 16. 

Table 16: MNL Base Model Output 

Variable Coefficient Std. Error t-ratio P-value Lower CIL Upper CIL 

Free-flow time      -0.177*** 0.036 -4.90 0.000 -0.247 -0.106 

Slow-down time    -0.218*** 0.055 -3.94 0.000 -0.326 -0.109 

Stop-start time -0.397*** 0.090 -4.42 0.000 -0.574 -0.221 

Petrol cost    -0.394*** 0.068 -5.79 0.000 -0.527 -0.260 

Toll cost -0.288*** 0.079 -3.66 0.000 -0.443 -0.134 

Pota     2.779*** 1.072 2.59 0.010 0.678 4.880 

Log-Likelihood -122.07 

Sample size 364 

McFadden R2 0.51 

***, **, * ==> Significance at 1%, 5%, 10% level. 
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The base MNL results show that: 

a) The coefficient signs are all correct, i.e., negative for the free-flow, slowed-down and 

stop-start times (as these times increase disutility); negative for the petrol and toll costs 

(as these costs increase disutility); and positive for the pota value (as pota increases the 

trip disutility decreases). 

b) All the attribute coefficients are significant at the 99% confidence level, with the absolute 

values of the t-ratios greater than the tcritical value of 1.97. This means that the null 

hypothesis can be rejected, i.e., the coefficient values are all significantly different from 

zero. The high t-ratios indicate that the standard errors are small, and the ranges of the 

95% lower and upper confidence interval limits are narrow.  

c) The coefficient P-values are all significant at the 95% confidence interval (i.e., the values 

are all less than 0.05). 

d) The McFadden R2 value (analogous to the goodness-of-fit coefficient of determination 

(R2) for linear regression models) is 0.51. This is a high value for a non-linear model in 

which values are typically between 0.2 and 0.4 (Hensher, et al., 2015). The empirical 

relationship between pseudo-R2 and R2 was estimated by Domencich and McFadden 

(1975). A McFadden Pseudo-R2 value of 0.5 is the equivalence of a linear regression R2 

value in excess of 0.85. 

e) The free-flow coefficient is lower in magnitude than the slowed-down and stop-start time 

values. This means that the survey participants associate less disutility with free-flow 

time. The petrol (operating) cost coefficient is larger in magnitude than the toll cost value 

(ratio of 1.37), indicating that, for every R1.00 spent on either of these out-of-pocket 

costs, the survey participants perceive that the petrol cost contributes more to trip 

disutility than a toll fee. It also implies that the participants are more willing-to-pay a toll 

to save travel time. However, it must also be kept in mind that there is a scale effect of 

trip petrol cost to toll cost, i.e., in the survey the ratio of trip petrol and toll costs for the 

chosen routes was 8.1, indicating that, on average, trip petrol costs were eight times 

higher than trip toll costs. Therefore, on average, the toll cost of a route will contribute 

substantially less to total trip disutility than the cost of petrol.   

f) The absolute value of the probability of on-time arrival (pota) coefficient is substantially 

larger than the time and cost coefficients. However, the scale of the attribute levels for 

pota is significantly lower and measured in decimal values less than one. This dilutes the 

impact of the contribution of pota to the overall trip utility. 

g) The base MNL can correctly replicate the route choices made by the participants 89% of 

the time and can hence be considered to be a reliable predictor of route choice for the 

sample of survey participants. 
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A comparison of the free-flow, slowed-down and stop-start travel time coefficient ratios with 

those determined by Hensher (Hensher & Rose, 2005; Parsons Brinkerhoff, 2002; Hensher, 2001) 

is shown in the following table. These ratios have been termed congestion multipliers by 

Wardman and Ibanez (2012). The table illustrates that the RAPP-UP survey participants associate 

a high disutility for slowed-down and stop-start travel times with similar patterns shown in the 

other studies. While there is a wide range of ratios between studies, there is behavioural 

conformity between the RAPP-UP survey participants and international findings. The ratios 

determined by Hensher (2001) are noticeably higher and are for longer-distance inter-city trips in 

New Zealand whereas the other studies are urban-based. The study by Hensher and Rose in 2005 

was based in Brisbane and Parsons Brinkerhoff in 2001 in Sydney. These disaggregated time 

findings have important implications for their application in road economic appraisals and 

transport demand models. 

Table 17: Comparison of Free-Flow, Slowed-Down and Stop-Start Congestion Multipliers 

Study/ Source Ratio of Slowed-

Down to Free-Flow 

Coefficients 

Ratio of Stop-Start 

to Free-Flow 

Coefficients 

Ratio to Stop-Start to 

Slowed-Down 

Coefficients 

RAPP-UP (2022) * 1.23 2.24 1.82 

Hensher & Rose 

(2005)** 

1.43 1.86 1.30 

Parsons Brinkerhoff 

(2002)** 

1.40 - - 

Hensher (2001)** 3.60 7.45 2.16 

*Derived from MNL model; **Derived from RPL models 

 

A comprehensive meta-analysis of congestion multipliers was undertaken by Wardman and Ibanez 

(2012). The meta-analysis assessed the congestion multipliers based on the ratios of congested, 

slowed-down, and stop-start coefficients ratioed with the free-flow coefficient. The strict definition of 

congestion is not clear from the studies, but it is assumed to be a blend of slowed-down and stop-start 

time and is hence not directly comparable with the RAPP-UP congestion multipliers. These 

congestion multipliers for commuting trips are summarised in the following table. The cities or 

country in which the studies were undertaken, and the year of the study are also shown. 
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Table 18: Summary of Congestion Multipliers for Commuting Trips (Ratio of Congested and 
Free-flow Coefficients)  

City / Country Year Travel Time Type Congestion Multiplier 

UK 1986 - 2008 Congested 1.59 

Canada 1993 Congested 1.37 

New Zealand 2001 Slowed down 1.33 

Copenhagen 2002 Congested 1.31 

Brisbane 2005 Stop-start 1.34 

Copenhagen 2007 Congested 1.15 

Sydney 2008 Slowed down 1.35 

Montreal 2005 Stop-start 1.65 

Riga 2005 Stop-start 1.00 

Serbia 2007 Stop-start 1.73 

Brisbane 2007 Stop-start 1.19 

Sydney 2010 Slowed down 1.68 

Singapore 2009 Light & heavy congestion 1.16 

 

The RAPP-UP congestion multiplier of 1.23 for slowed-down time is lower than the values for this 

category shown in Table 18, i.e., values of 1.33, 1.35 and 1.68. There is a wide range of multipliers 

for stop-start travel time in the table. The RAPP-UP value of 2.24 is higher than all of the values in 

the table. Furthermore, if it is assumed that the RAPP-UP congested time can be defined by a 

weighted combination of slowed-down and stop-start time based on the proportions of observed times 

for each of these categories (i.e., 8% for slowed-down time and 4% for stop-start time), the estimated 

RAPP-UP congested time multiplier is 1.55. This is within the range of congested time multipliers 

shown in the table. It can be concluded that the behavioural tendencies of the sample of Gauteng 

commuters in regard to the relative disutility of the travel time categories as defined by the congestion 

multipliers is within the range defined by international studies. However, it appears that the sample of 

Gauteng commuters in the survey perceive a high disutility for stop-start time.  

Table 19 shows the MNL Base Model coefficient correlation matrix. The correlations are relatively 

low, and the signs are correct. The higher value of 0.622 for the free-flow and slowed-down time 

implies that the participants perceived a positive association between a route’s free-flow time and the 

slowed-down time, i.e., as the free-flow time on a route increased, so did the slowed-down time. The 

negative correlation of -0.142 between a route’s free-flow time and petrol cost indicates that 

participants perceived petrol cost decreasing with increasing free-flow time which is intuitively 

correct. A route toll cost has a high positive correlation with free-flow time indicating that the 

participants associated higher proportions of free-flow travel on the freeways when a toll was paid. 

The toll coefficient correlation with slowed-down and free-flow time are significantly lower with 
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there being little correlation between paying a toll and stop-start time. The probability of on time 

arrival (pota) has low correlations with the other coefficients indicating that the participants did not 

perceive a correlation between the various trip categories from which it was defined.  

Table 19: Base MNL Coefficient Correlation Matrix    

Correlation 

Matrix 

Free-flow 

time 

Slow-down 

time 

Stop-start 

time Petrol cost Toll cost Pota 

Free-flow time     1.000      

Slow-down time 0.622 1.000     

Stop-start time 0.234 0.233 1.000    

Petrol cost    -0.142 0.031 0.294 1.000   

Toll cost     0.771 0.407 0.258 -0.217 1.000  

Pota      0.125 -0.226 -0.178 -0.013 0.020 1.000 

   

The willingness-to-pay for travel time savings as measured by the value of travel time (VTT) are 

shown in Table 20. The values are determined on the basis of the cost of marginal changes in time 

spent travelling and are estimated from the ratio of the time and cost coefficients. Values were 

determined for each of the travel time categories for the petrol and toll costs.  

Table 20: Commuting Values of Travel Time from Base MNL Model (Rands/Hour) 

VTT (Rands/Hour) 

VTT Free-Flow 

Time (Rand/hour) 

VTT Slowed Down 

Time (Rand/Hour) 

VTT Stop-Start 

time (Rand/hour) 

VTT (Petrol) R26.93 R33.17 R60.53 

VTT (Toll) R36.78 R45.30 R82.67 

 

Table 20 shows that when operating (i.e., petrol) cost is used to derive the VTT, the value is relatively 

low, i.e., R26.93 per hour. This value is relatively low in the context of the high participant income 

levels, but is intuitively correct, i.e., commuters are not willing-to-pay much for travel time savings 

when the trip is made in free-flow conditions. However, the VTT for the slowed-down and stop-start 

portions of a trip increase to R33.17 and R60.53/hour respectively which is also intuitively correct, 

i.e., if a trip was made in stop-start conditions commuters would be willing-to-pay more to save travel 

time.  

The willingness-to-pay a toll for travel time savings is higher than that for operating costs, but still 

relatively low for the high-income survey participants. This result is somewhat unexpected, as there 

has been a high resistance by motorists using the Gauteng GFIP freeways to pay e-tolls. However, the 

context of the experiment is likely to have resulted in participant disassociation from the negative 

sentiment attached to the GFIP e-toll system. This result should be viewed in the context of the 
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relative magnitude of average toll costs compared to petrol costs for a trip using a tolled section. The 

average petrol: toll cost ratio was eight, meaning that toll fees make up a significantly lower 

proportion of total trip disutility than petrol costs.  

Benchmarking this finding produced mixed results. The result is contrary to findings by Hensher and 

Rose (2005) and Parsons Brinkerhoff (2002) who determined that the toll cost coefficient was lower 

in magnitude than the operating (petrol) cost coefficient resulting in lower VTT’s produced by using 

the toll cost as the numeraire (i.e., the monetary units in which the VTT is expressed). In a 

comprehensive meta-analysis of the values of travel time, Wardman et al. (2016), also found that 

when the toll cost was used as the numeraire to estimate the VTT the value was 25% less than when 

the numeraire was the petrol cost. However, the finding is supported by Hensher (2001) who also 

determined that the toll coefficient is larger in magnitude than the operating cost coefficient. The 

relative magnitudes of these coefficients are clearly context specific and dependent on the petrol and 

toll costs of routes used in the choice experiment; the income and trip characteristics of the survey 

participants; and the in the case of Gauteng e-tolls, the historical context and unpopularity of the e-toll 

scheme.    

The following MNL models were also investigated: 

i. A Fundamental MNL model that only considered the total travel time of a route, not the 

disaggregated times in free-flow, slowed-down and stop-start conditions.   

ii. An MNL with the inclusion of a toll road quality bonus (TRQB) as a dummy attribute 

(resembling an ASC) that was intended to determine whether there were any unobserved 

factors of utility influencing the utility of toll roads.    

iii. An MNL with the inclusion of a dummy attribute (BIAS) to determine whether the order of 

the presentation of the routes in the choice sets influenced the respondent’s choice of route. 

iv. An MNL to determine whether the adjustment of the scale of the travel time coefficients is 

required. This was achieved by introducing a route length adjustment factor. The factor 

essentially normalizes the various trip times in order to ensure that the same route time 

differences between short and long trips is accounted for. 

v. Several MNL’s that investigated whether any observed participant socio-demographic 

covariates (e.g., age, gender, and income) influenced the choice of route and identified any 

observed heterogeneity. These covariates were included as interaction effects (as is required 

with unlabelled choice models) with the various observed time and cost attributes in the 

utility expression.   
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10.3 Fundamental MNL Model 
 

A Fundamental MNL was estimated by aggregating the three travel time attributes into a single travel 

time attribute, and the petrol and toll costs into a single trip cost attribute. This is a highly simplified 

model that diminishes the richness of the disaggregated trip time and cost attributes but provides a 

useful insight into the willingness-to-pay for a weighted trip time and cost route and enables more 

appropriate comparisons with VTT estimates from earlier studies in Pretoria and Johannesburg. The 

utility expression is as follows for user i using route j at time t: 

Uijt = b1*tttimejt + b2*ttcostjt + b6*potajt + εij                   

Where: 

 b1, b2 and b3 are coefficients to be estimated. 

 tttimejt is the total travel time of route j (i.e., the sum of free-flow, slowed-down and stop-

start time) at time t. 

 ttcostjj is the total trip cost for route j (i.e., the sum of petrol and toll cost) at time t. 

 potaij is the probability of on-time arrival for route j at time t. 

 εij  is the random term representing unobserved factors.  

The Fundamental MNL Model results are shown in Table 21. The model log-likelihood is -117.1 

which is a slight improvement over the Base MNL Model (-122.07). The coefficient signs are correct, 

and all are significant with their absolute t-ratios higher than tcrit of 1.97. The weighted VTT based on 

the sum of the operating and toll costs is R39.45 per hour. This value is higher than the consolidated 

Tshwane and Ekurhuleni Metropolitan area value of R25.18 determined in 2013 (Hayes & Venter, 

2017). This comparison is not fully valid as the value of R25.18/hour was determined in a mode 

choice context between car use and bus rapid transit (BRT). There are additional factors to keep in 

mind when making this comparison. Most importantly are the average sample income levels which 

were higher for the RAPP-UP sample; the years in which the surveys were undertaken (the car: BRT 

mode choice model was estimated in 2013, meaning current values would be approximately R31/hour 

in 2022 Rands assuming an average of 5% increase in wages and a 0.50 income: VTT elasticity); and 

lastly the survey methodology which adopted conjoint methods for Pretoria and Ekurhuleni.  
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Table 21: Fundamental MNL Model Output 

Variable Coefficient Std. Error t-ratio P-value Lower CIL Upper CIL 

Total travel time      -0.240*** 0.031 -7.65 0.000 -0.301 -0.178 

Total travel cost    -0.365*** 0.047 -7.73 0.000 -0.457 -0.272 

Pota     4.08*** 0.988 4.17 0.000 2.164 5.994 

Log-Likelihood -117.1 

Sample size 364 

McFadden R2 0.52 

***, **, * ==> Significance at 1%, 5%, 10% level. 
 

10.4 Base MNL Model with Toll Road Quality Bonus (TRQB) Attribute 
 

Hensher & Rose (2004) estimated route choice models for the proposed Brisbane River Crossing in 

2004. In this study the introduction of a toll road quality bonus (TRQB) was investigated and found to 

be significant with a negative coefficient sign, i.e., it reflected a user perceived disutility of toll roads. 

The TQRB is a factor of utility that accounts for those attributes of a tolled route that have not been 

included in the various trip time, trip cost and on-time arrival attributes.   

The TRQB was introduced as a dummy attribute, with a value of 0 for non-tolled roads and a value of 

one for tolled roads. The form of the utility expression including the TRQB is thus as follows for 

individual i using route j at time t where the attribute coefficients and names are described before in 

Equation 2: 

Uijt = b1*fftimejt + b2*sdtimejt + b3*fftimejt + b4*petcostjt + b5*tollcostjt + b6*potajt + b7*TRQBjt +  εij                   

The results of the Base MNL Model estimated with the TRQB included in the utility expression is 

shown in Table 22. The log-likelihood is -119.5 which is a slight improvement over the Base MNL 

Model. As with the Base MNL Model the coefficient signs are all correct, and the travel time and 

petrol cost coefficients are significant at the 99% confidence limit, and the toll cost, and the pota and 

TRQB at the 95% confidence limit. The McFadden R2 value is 0.52 which is a very good result 

indicating a good fit between modelled and observed choices. The TRQB coefficient has a negative 

sign that indicates the tolled routes have a disutility when the factors other than trip time, cost and on-

time arrival are considered. As highlighted by Hensher and Rose (2005), not all commuters may 

perceive the TRQB as having a net utility and found in Brisbane that the TRQB had a negative sign. 

For the RAPP-UP survey participants it cannot be excluded that they had a negative perception of the 

GFIP toll system consistent with wider public negative sentiment toward the system. 
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Table 22: Base MNL Model with Toll Road Quality Bonus Attribute (TQRB) 

 Variable Coefficient Std. Error t-ratio P-value Lower CIL Upper CIL 

Free-flow time      -0.193*** 0.037 -5.19 0.000 -0.265 -0.120 

Slow-down time    -0.226*** 0.055 -4.12 0.000 -0.334 -0.119 

Stop-start time -0.374*** 0.090 -4.16 0.000 -0.551 -0.198 

Petrol cost    -0.360*** 0.068 -5.30 0.000 -0.493 -0.227 

Toll cost -0.196** 0.084 -2.32 0.020 -0.361 -0.030 

Pota     +2.800** 1.091 2.57 0.010 0.661 4.939 

TRQB -0.786** 0.351 -2.24 0.025 -1.474 -0.098 

Log-Likelihood -119.5 

Sample size 364 

McFadden R2 0.52 

***, **, * ==> Significance at 1%, 5%, 10% level. 
   

The MNL model with the TQRB attribute has lower free-flow and slowed-down time coefficient 

values than the Base MNL Model (the coefficients have reduced by 8.3% and 3.6% respectively over 

the Base MNL Model values) but has a higher stop-start time coefficient value (an increase of 5.8%). 

The petrol and toll cost coefficients are also smaller, but the pota value is unchanged.  It is important 

to note that the toll cost coefficient has decreased more than the petrol cost coefficient i.e., an 8.6% 

decrease for petrol cost coefficient versus a 31.9% decrease for the toll cost coefficient. The effect of 

this disproportionate large decrease in the toll cost coefficient has a significant impact on the 

willingness-to-pay a toll for travel time savings as shown in Table 23, i.e., it increases the 

willingness-to-pay a toll for travel time savings in free-flow, slowed-down and stop-start conditions. 

The large reduction in the magnitude of the toll cost coefficient is explained by the introduction of the 

TRQB attribute that has disaggregated the utility associated with using a tolled freeway. However, an 

analysis of an average freeway trip with and without the TQRB shows no net gain in disutility due to 

the introduction of the TQRB, i.e., the proportion of disutility of the toll and TQRB attributes (11% of 

total disutility) remains similar when compared to the Base MNL Model with toll only (10% of total 

disutility) when all other attribute levels are held constant. This result is insightful and implies that 

when predicting the demand for a toll road, the first cent of the toll tariff should be valued higher than 

any subsequent cents. 

The reduction in coefficient values between the Base MNL Model and Base MNL Model with TQRB 

can be explained by the increased explanatory power of the MNL utility specification and the 

reduction of the error component in the utility expression as reflected by the reduction of the log-

likelihood value. The coefficient values are proportional to the magnitude of the error term and 
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reducing the error term through the introduction of the TRQB attribute will reduce the coefficient 

values. 

The values of travel time derived from the operating and toll costs are shown in Table 23. The 

willingness-to-pay for travel time savings derived from operating costs and toll costs have increased 

over those estimated from the Base MNL Model.  

Table 23: Values of Travel Time from Base MNL Model with TRQB (Rands/Hour) 

VTT (Rands/Hour) 

VTT Free-Flow 

Time (Rand/hour) 

VTT Slowed Down 

Time (Rand/Hour) 

VTT Stop-Start 

time (Rand/hour) 

VTT (Petrol) R32.17 R37.67 R62.33 

VTT (Toll) R59.08 R69.18 R114.49 

 

10.5 MNL with RAPP-UP Route Order Presentation Bias Correction 
 

A dummy attribute (BIAS) was included in the utility expression to account for the order of the route 

presentation in RAPP-UP. The routes that were presented first on the smartphone screen were given a 

value of 1 and the second route a value of zero. For this model the TRQB was excluded.  The result is 

shown in Table 24. The BIAS coefficient is not significant. The result illustrates that survey 

participants were not biased in their choice of route by the order in which the routes were presented in 

RAPP-UP and that they considered both route options before choosing their preferred route. The 

remaining attribute coefficients  are similar in magnitude and significance to the Base MNL Model 

and MNL model with the TRQB. 

Table 24: MNL Model with Inclusion of Route Order Dummy Attribute (BIAS) 

Variable Coefficient Std. Error t-ratio P-value 

Free-flow time      -0.193*** 0.043 -4.45 0.000 

Slow-down time    -0.229*** 0.058 -3.95 0.000 

Stop-start time -0.401*** 0.091 -4.42 0.000 

Petrol cost    -0.397*** 0.068 -5.79 0.000 

Toll cost -0.287*** 0.079 -3.62 0.000 

Pota     +2.671** 1.079 2.47 0.013 

Bias -0.172 0.244 -0.70 0.481 

Log-Likelihood -121.82 

Sample size 364 

McFadden R2 0.52 

***, **, * ==> Significance at 1%, 5%, 10% level. 
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10.6 MNL with Route Length Correction for Travel Times 
 

The route length correction model adjusted the utility travel times to adjust the scale of the travel time 

coefficients. This was done to ensure that a difference in travel time for two short route alternatives 

(e.g., 10 minutes versus 11 minutes) is perceived differently to the same difference between two 

longer duration route alternatives (e.g., 50 versus 51 minutes). The need for this correction is 

dependent on the proportion of short and longer trips in the data set and the travel time attribute level 

variation in the choice sets. The normalising of the route trip times (i.e., free-flow, slowed-down and 

stop-start times) was done using the route average speed. The average speed (total route length 

divided by total route time) was calculated. The average speed was then used to normalize the 

individual trip time components by multiplying the observed trip times on a route by the average 

speed. This adjustment had the effect of increasing the attribute level gap for longer trips and reducing 

them for shorter trips.  

The MNL model estimated on this basis did not produce statistically significant coefficients for any of 

the attributes. This result is most likely due to: 

 The low number of total observations in the experiment. 

 A low number of observed trip times between routes in the slowed-down and stop-start 

categories. 

 Few route observations with low travel times (17 choice sets out of 364 (5%) had travel times 

less than 10 minutes); 100 choice sets had travel times between 10 and 20 minutes (27%) and 

most choice sets had travel times of over 20 minutes (68%).  

 

10.7 MNL Models with Socio-Demographic Covariates        
 

Socio-demographic covariates were introduced into the utility expression as interaction effects. In 

particular, participant income was introduced by calculating the relative income for each participant 

(based on the middle of the income band) divided by the weighted average income of the sample (also 

calculated from the middle of the income bands) and interacting these values with the petrol and toll 

cost attribute values in each choice set for the respondent. The MNL model estimated on this basis did 

not produce statistically significant coefficients for the petrol and toll attributes. 

The socio-demographic attributes of gender (male/female) and income (less than R30k and more than 

R30k per month income) were also added as main effect dummy attributes added individually and 

collectively to the utility expression. These models also did not produce statistically significant 

coefficients.  
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Overall, the inclusion of socio-demographic covariates into the MNL models did not produce 

statistically significant coefficients. The reason for this result should be explored further when a larger 

sample of participants is used to estimate models.   

10.8 Base Random Parameters Model (RPL) 
 

The Base RPL Model was estimated using the same utility expression as for the Base MNL Model 

(i.e., as shown in Equation 2). The TQRB was included in the RPL models, having shown to be 

significant in the MNL models. The decision as to what attribute coefficients to randomise and what 

form of mixing distribution to apply required several models to be estimated and evaluated. The first 

model estimated allowed all the travel time, pota and TRQB coefficients to be randomised (normal) 

and the cost coefficients (i.e., petrol and toll) were fixed. This was termed the Base RPL Model. The 

Base RPL Model was estimated in an unconditional and conditional manner. The unconditional 

approach uses the full sample population without consideration of the correlation of responses from 

individuals, i.e., the coefficients are not conditioned on a particular individual’s choice patterns but 

rather on the sample population as a whole. The process of estimating unconditional random 

parameters is similar to the estimating process of non-random parameters in the MNL and RPL 

models, i.e., maximisation of the log-likelihood function over the data for the sample population. All 

the survey participant responses can be used when estimating the unconditional RPL, i.e., a total of 

364 responses from all 48 participants.  

Conditional RPL models consider individual-specific choice patterns, specifically the correlation 

between successive choices by individuals, i.e., the panel effect. For conditional RPL models the 

number of choice sets answered by each individual must be specified when estimating the model, and 

importantly, the number of choice sets must be the same for each respondent. Because a total of 43 

participants completed all eight choice sets and four participants completed less than this, the 

responses from the 43 participants were when estimating the conditional RPL model, i.e., a total of 

344 observations with a panel value of eight. All the RPL models were run with 700 Halton draws.       

The RPL model log-likelihoods can be directly compared with that of the Base MNL Model (that has 

a log-likelihood value of -122.1 with TRQB attribute included in the utility expression). The log-

likelihood from the equivalent MNL model with 43 participants and 344 observation is -119.5 with 

the TRQB attribute included in the utility expression. Both of the RPL models thus show significantly 

improved goodness-of-fit compared to their equivalent MNL models. The RPL model outputs are 

shown in Table 25. 
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Table 25: Base RPL Model Outputs (All Coefficients Randomised Normal) 

 Attribute Unconditional RPL Model Conditional RPL Model 

 Coefficient  Std Error t-Ratio Coefficient  Std Error t-Ratio 

Free-flow time -0.312*** 0.095 -3.28 -0.249*** 0.054 -4.62 

Slowed-down time -0.453** 0.179 -2.52 -0.361*** 0.115 -3.13 

Stop-start time -0.746*** 0.246 -3.03 -0.633*** 0.162 -3.91 

Petrol cost -0.799*** 0.197 -4.05 -0.481*** 0.144 -3.33 

Toll cost -0.367* 0.191 -1.92 -0.224* 0.129 -1.74 

Pota 2.826 1.905 1.48 2.463 1.571 1.57 

TRQB -0.969* 0.587 -1.65 -1.153** 0.505 -2.28 

Standard 
Deviations 

      

Free-flow time 0.099 0.111 0.89 0.009 0.061 0.14 

Slowed-down time 0.279 0.197 1.42 0.294** 0.105 2.80 

Stop-start time 0.011 9.796 0.00 0.007 0.195 0.04 

Petrol cost 0.438** 0.184 2.37 0.148 0.144 1.03 

Toll cost 0.141 0.309 0.46 0.019 0.225 0.09 

Pota 0.002 134.07 0.00 4.502* 2.496 1.80 

TRQB 0.049 17.17 0.00 0.014 0.512 0.03 

Log-Likelihood -106.9 -101.6 

McFadden Pseudo 
R2 

0.56 0.56 

***, **, * ==> Significance at 1%, 5%, 10% level. 

 

The following findings were drawn from the Base RPL Models: 

a) For both models the coefficients all have the right signs. 

b) The three travel time and petrol cost coefficients are significant at the 99% confidence limit, 

the toll coefficient at the 95% limit, the TRQB coefficient at the 90% levels and the pota is 

not significant in both models.  

c) For the conditional RPL model, all the standard deviation values (except for slowed-down 

time and pota attributes) are not significant. This means that that the dispersion of values 

around the mean for these attribute coefficients are not statistically different to zero 

suggesting that all the information in the distribution is captured within the mean value. This 
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means that it is appropriate to use the average coefficient values for forecasting and for 

estimating the value of travel time. 

d) The significant standard deviation of the slowed-down time attribute raises the possibility of 

estimating negative VTT’s for this attribute. 

e) The statistical insignificance of the pota coefficient in the RPL models is unexpected, as trip 

time reliability has been found to be significant in international studies. The value of trip 

reliability was found to be similar to that of the value of travel time savings (Bliemer, 2020). 

This finding requires further investigation of the pota attribute, either in its form in RAPP-UP, 

i.e., as a probability of on-time arrival that may be misinterpreted by survey participants, or in 

the units measured, i.e., its specification as a percentage in RAPP-UP. Its specification as 

early or late arrival in minutes may be more suitable and requires investigation. That the Base 

MNL model determined little correlation between pota and the various categories of trip time 

also emphasises the need for this investigation into the calculation and presentation of the 

value in the choice sets. 

f) While there is some variation around the mean for the petrol coefficient in the conditional 

model (standard deviation is 0.148), it is not significant (t-ratio is 1.03). There is no variation 

in the toll coefficient (standard deviation is 0.019) but it is also not significant (t-ratio is 0.09). 

These low and insignificant variations around the mean coefficient values for these attributes 

suggest that the VTT values do not differ significantly between participants. 

g) In the conditional model the pota coefficient has a significant standard deviation and hence 

there is heterogeneity associated with this coefficient. However, the mean pota coefficient 

value itself is not significant in the conditional model. 

h) The low coefficient standard deviations indicate that it is not necessary to use mixing 

distributions to ensure positive willingness-to-pay measures such as log-normal and one-sided 

triangular distributions.   

The values of travel time savings derived from the petrol and toll cost numeraires are summarised in 

Table 26 for both models. It is noticeable that the VTT’s derived from the conditional RPL model are 

significantly higher than those derived from the unconditional model. The conditional RPL model 

VTT’s estimated far higher than those of the Base MNL Model (see Table 23). Amador et al., (2005) 

indicate that it is common for RPL models to estimate higher VTT’s than the more restrictive MNL 

models, although there is no general rule that this will occur. Amador et al. (2005) also suggest that 

the estimated values of travel time are dependent on the variables included in the model, the 

functional form chosen for the indirect utility function and the nature of the data. 
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Table 26: Values of Travel Time (VTT) from Unconditional and Conditional Base RPL Models 
with TRQB (Rands/Hour) 

VTT (Rands/Hour) 
Free-Flow VTT 

(Rand/hour) 

Slowed Down VTT 

(Rand/Hour) 

Stop-Start VTT 

(Rand/hour) 

Unconditional RPL    

VTT (Petrol) R23.43 R33.98 R55.95 

VTT (Toll) R51.01 R73.90 R121.96 

Conditional RPL    

VTT (Petrol) R31.06 R45.03 R78.96 

VTT (Toll) R66.70 R96.70 R169.55 

 

The distribution of individual willingness-to-pay for travel time savings can be obtained from the 

conditional RPL model. The distribution of VTT’s is shown in the following figures. Figure 65 shows 

that there is one participant that has a negative value of slowed-down value of travel time. The 

possibility of this occurrence was highlighted by the significant standard deviation of the slowed-

down time coefficient. There is more variation in the slowed-down and stop-start VTT’s and 

noticeably less variation in the free-flow VTT.   

 

Figure 65: Distribution of Value of Travel Time Derived from Petrol Cost Coefficient 
(Rand/Hour) 

The VTT’s derived from the toll fee in Figure 66 show dissimilar patterns to those from the petrol 

cost. There is little variation in the free-flow and stop-start VTT’s, but significant variation in the 

slowed-down VTT. The negative VTT is repeated for one participant. The smooth curves for the free-

flow and stop-start VTT’s reflect the low standard deviations for these coefficients and that the 

standard deviations are not significantly different from zero. For the slowed-down time the standard 

deviation is significantly different to zero.   
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Figure 66: Distribution of Values of Travel Time Derived from Toll Cost Coefficient (Rand/Hour) 

 

10.9 RPL Model with Fixed Coefficients 

 
When estimating RPL models it is possible to either fix the cost coefficients to avoid the 

consequences of estimating willingness-to-pay measures from the ratio of two distributions (Train, 

2009), or to use mixing distributions that ensure only positive willingness to pay measures (Hensher, 

et al., 2015). An RPL model was estimated with non-random petrol and toll cost coefficients and the 

random coefficients for the other coefficients (normally distributed). A conditional (i.e., panel) RPL 

was estimated for this case, and the model output is shown in Table 27. It is noticeable that the log-

likelihood of -101.80 is very similar to the RPL with randomised cost coefficients (-101.6) and has the 

same McFadden Pseudo R2 value. 

 

 

 

 

 

 

 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



149 
 

149 
 

Table 27: RPL Model Output with Non-Random Cost Coefficients 

Attribute Conditional RPL Model with Non-Random Cost 
Coefficients & Normal Distribution for Randomised 

Coefficients 

 Coefficient  Std Error t-Ratio 

Free-flow time -0.251*** 0.052 -4.85 

Slowed-down time -0.363*** 0.112 -3.25 

Stop-start time -0.590*** 0.137 -4.30 

Petrol cost -0.420*** 0.091 -4.60 

Toll cost -0.219* 0.1213 -1.77 

Pota 2.355 1.511 1.56 

TRQB -1.189** 0.492 -2.42 

Standard Deviations    

Free-flow time 0.003 0.066 0.04 

Slowed-down time 0.290*** 0.105 2.75 

Stop-start time 0.012 0.267 0.05 

Petrol cost - - - 

Toll cost - - - 

Pota 4.213 2.513 1.68 

TRQB 0.003 0.516 0.01 

Log-Likelihood -101.8 

McFadden Pseudo R2 0.56 

 

From Table 27 it is evident that for this model: 

a) The coefficients have the correct signs, and the various travel time and petrol coefficients are 

significant at the 99% confidence level. The TRQB coefficient is significant at the 95% 

confidence level and the toll cost coefficient at the 90% confidence interval. The pota 

coefficient is not significantly different to zero. 

b)  As with the RPL model with all coefficients randomised, the standard deviations are not 

significantly different to zero except for the slowed-down time that is significant. Although 

the pota standard deviation is high, the coefficient itself is not significant. Hence it can be 

anticipated that the slowed-down time VTT will vary significantly between survey 

participants and as before give rise to negative VTT estimates. 
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The VTT’s are shown in Table 28 for the various travel times based on the operating (petrol) cost and 

the toll cost. The VTT’s are higher than for the Base MNL Model and vary when compared to the 

conditional RPL with randomised petrol and toll cost coefficients. The distribution of VTT can be 

expected to show little variation for the free-flow and stop-start values and some variation for the 

slowed-down VTT. 

Table 28: Values of Travel Time from Conditional Base RPL Model with TRQB (Rands/Hour) 

VTT (Rands/Hour) 

Free-Flow VTT 

(Rand/hour) 

Slowed Down VTT 

(Rand/Hour) 

Stop-Start VTT 

(Rand/hour) 

VTT (Petrol) R35.86 R51.86 R84.29 

VTT (Toll) R68.76 R99.45 R161.64 

 

10.10 RPL Model with Uniform and Triangular Distributions 
 

Conditional RPL models with several types of mixing distributions were also tested. The distributions 

that produced sensible outcomes were the uniform and triangular distributions. The triangular 

distribution was the one-sided type that ensures positive willingness-to-pay values (even though only 

one of the participants displayed negative value of travel times in the Base RPL model). For these 

RPL models the petrol and toll costs were non-randomised. The model outputs are shown in Table 

29. Constrained (i.e., panel) models were estimated for both with 700 Halton draws. 

Table 29 shows that both models have the correct signs. The magnitude of the coefficients is similar 

except for the toll cost coefficient for the triangular model which is significantly larger than for the 

uniform model. This will result in lower values of travel time based on the toll cost numeraire. The 

standard deviation coefficients of the model with triangular distributions are the same value as the 

attribute coefficient values which is to be expected. The standard deviations are all significant. The 

RPL model with uniform mixing distributions has a lower log-likelihood than the model with 

triangular distributions. The model log-likelihood is also lower than that for the RPL estimated with 

normal mixing distributions (see Table 27). The magnitude of the coefficients is similar for both 

models in Table 29 except for the pota value which is an important distinction. The pota coefficient is 

significant at the 95% confidence interval for the model with the triangular mixing distributions but is 

not significant for the model with uniform mixing distributions. It must be emphasized that the one-

sided triangular distribution is a mathematical convenience to ensure positive willingness-to-pay 

measures and does not imply a behavioural phenomenon.   
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Table 29: RPL Models with Uniform and Triangular Mixing Distributions  

Attribute Conditional RPL Model with 
Triangular Mixing Distributions 

Conditional RPL Model with Uniform 
Mixing Distributions 

 Coefficient  Std 
Error 

t-Ratio Coefficient  Std Error t-Ratio 

Free-flow time -0.239*** 0.057 -4.16 -0.249*** 0.051 -4.88 

Slowed-down time -0.331*** 0.095 -3.47 -0.334*** 0.105 -3.19 

Stop-start time -0.492*** 0.133 -3.68 -0.590*** 0.140 -4.21 

Petrol cost -0.398*** 0.081 -4.91 -0.419*** 0.092 -4.55 

Toll cost -0.265** 0.128 -2.08 -0.214* 0.125 -1.72 

Pota 2.642** 1.260 2.10 2.186 1.604 1.36 

TRQB -0.881** 0.443 -1.99 -1.196** 0.495 -2.41 

Standard Deviations       

Free-flow time 0.239*** 0.057 4.16 0.001 0.113 0.01 

Slowed-down time 0.331*** 0.095 3.47 0.498*** 0.145 3.42 

Stop-start time 0.492*** 0.133 3.68 0.003 0.475 0.01 

Pota 2.642** 1.260 2.10 6.976 4.573 1.53 

TRQB 0.881* 0.443 1.99 0.006 0.880 0.01 

Log-Likelihood -109.8 -101.7 

McFadden Pseudo R2 0.54 0.57 

***, **, * ==> Significance at 1%, 5%, 10% level. 

 

The values of travel time derived from the operating (petrol) cost and the toll cost are shown in Table 

30. The VTT’s estimated using the petrol cost numeraire are similar between models, but values 

derived from the toll cost numeraire are significantly higher.  

Table 30: Values of Travel Time Savings for RPL Models  

VTT (Rands/Hour) 
Free-Flow VTT 

(Rand/hour) 

Slowed Down VTT 

(Rand/Hour) 

Stop-Start VTT 

(Rand/hour) 

RPL Triangular    

VTT (Petrol) R36.03 R49.90 R74.94 

VTT (Toll) R54.11 R74.94 R111.39 

RPL Uniform    

VTT (Petrol) R35.64 R47.86 R84.60 

VTT (Toll) R69.81 R93.54 R165.34 
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10.11 Latent Class Models (LCM) 
 

An LCM model with two classes was found to produce the more statistically significant estimates of 

the attribute coefficients. Two models were estimated, both with two classes. Firstly, a model with 

randomised normal time coefficients and fixed cost, pota and TQRB coefficients was estimated. 

Secondly, a fully randomised (normal) coefficient (RPL) form of LCM was estimated. When more 

than two classes were specified, the models estimated non-significant coefficients. The model log-

likelihood values were significant improvements over the MNL models, and similar to the RPL 

models. The probability of both classes was statistically significant. However, both the models 

produced counter-intuitive results for Class 2 with the slowed-down time coefficient for this class 

having a positive sign, even though the coefficient is not significant. The results of the fixed cost 

coefficient LCM model are shown in Table 31. The reason for the incorrect sign for slowed-down 

time may be due to the small sample size and the model’s inability to define two distinct classes. 

Table 31: Latent Class Model (LCM) with Fixed Cost Coefficients and Randomised 
Normal Time Coefficients. 

Attribute Coefficient Standard 
Error 

t-Value 

Class 1    
Free-flow time -0.638** 0.270 -2.34 
Slowed-down time -1.110** 0.502 -2.21 
Stop-start time -0.746*** 0.263 -2.83 
Petrol cost -0.577** 0.276 -2.09 
Toll cost -0.912** 0.389 -2.34 
Pota 2.810 4.576 0.61 
TRQB -0.959 0.983 -0.98 
Class 2    
Free-flow time -0.103* 0.057 -1.78 
Slowed-down time 0.162 0.114 1.42 
Stop-start time -0.622** 0.244 -2.54 
Petrol cost -0.837*** 0.315 -2.65 
Toll cost 0.016 0.239 0.07 
Pota 2.770 4.716 0.59 
TRQB -0.778 0.989 -0.79 
Estimated Latent Class Probabilities 
Probability Class 1 0.57*** 0.155 3.64 
Probability Class 2 0.43*** 0.155 2.79 
Log-Likelihood -99.40 
McFadden Pseudo R2 0.61 
***, **, * ==> Significance at 1%, 5%, 10% level. 
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10.12 MNL Models with Route Choice Correlation: C-Logit and PS-Logit 
 

The C-Logit and PSL-Logit models were tested to determine whether route correlation resulted in any 

significant difference to the Base MNL Model. There are various formulations for the determination 

of the commonality factor (CF) for the C-Logit Model and the path size (PS) factor for the PSL 

model, but in general they are estimated as the ratio of the common length of routes i and j and the 

total lengths of routes i and j. For the estimation of C-Logit and PSL-Logit models, the formulations 

for the commonality factor were based on Equation 8 and Equation 9 for C-Logit and Equation 12 

for PS-Logit.  

As highlighted previously the route generation algorithm used in RAPP-UP three criteria when 

generating route alternatives, one being the minimization of route overlap of the alternative and 

optimal route. Only 10.3% (i.e., 75 of 728 individual observations) of the routes generated by RAPP-

UP had route overlaps.  The following route overlap characteristics in the choice set database were 

noteworthy: 

 The maximum extent of route overlap for a single observation: 44% 

 The average proportion of route overlap for those routes with overlaps: 16% 

 The average proportion of route overlap for all routes: 1.7% 

The low proportion of the number of routes with overlaps and the low proportion of total length of 

these overlaps was expected to influence the significance of the commonality and path size attributes 

in the C-Logit and PSL Logit models.  

10.13 C-LOGIT Models 
 

The C-Logit model was estimated with two forms of the commonality factor (CF), i.e., that shown in 

Equation 8 and Equation 9. The form of the utility function used to estimate the C-Logit models was 

as follows for individual i using route j at time t: 

Uijt = b1*fftimejt + b2*sdtimetj + b3*fftimejt + b4*petcostjt + b5*tollcostjt + b6*potajt + b7*TRQBtj +  
b8*CFtj  + εij                   

Where (the ij notation has been excluded): 

 b1, b2,..b8 are the coefficients to be estimated. 

 fftime, sdtime and sstime are the free-flow, slowed-down and stop-start time attributes 

respectively. 

 petcost is the petrol cost and tollcost is the toll cost. 

  Pota is the probability of on-time arrival. 
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 TRQB is the toll road quality bonus. 

 CF is the commonality factor. 

 εij is the random (error) term. 

The C-Logit model outputs are shown in Table 32. For both models the coefficient signs are correct, 

and all the coefficients are significant at either the 99% of 95% confidence interval except for the 

commonality coefficient which is not significantly different to zero for both models. As highlighted 

earlier, this result is not surprising given the limited number of route overlaps in the choice data set 

and the low degree of overlap.  

It is useful to compare these models with the result from the Base MNL Model with the toll road 

quality bonus (TRQB) shown in Table 22 that has a log-likelihood value of -119.5. The C-Logit 

models do not add any further information or insights into the choice of route indicating that route 

correlation did not play a role in the model estimation. The coefficient magnitudes and degrees of 

significance between the Base MNL Model and the C-Logit models are similar.   

 Table 32: C-Logit Model Outputs  

Utility Attribute C-Logit Model with CF1 
Formulation 

C-Logit Model with CF2 
Formulation 

 Coefficient  Std Error t-Ratio Coefficient  Std Error t-Ratio 

Free-flow time -0.188*** 0.037 -5.08 -0.192*** 0.0371 -5.18 

Slowed-down time -0.223*** 0.055 -4.06 -0.227*** 0.055 -4.12 

Stop-start time -0.372*** 0.090 -4.13 -0.374*** 0.090 -4.16 

Petrol cost -0.348*** 0.068 -5.10 -0.357*** 0.069 -5.21 

Toll cost -0.188** 0.085 -2.22 -0.195** 0.085 -2.30 

Pota 2.800** 1.096 2.55 2.760** 1.100 2.51 

TRQB -0.779** 0.351 -2.22 -0.791** 0.351 -2.25 

Commonality CF  
Factor 

-3.240 3.152 -0.92 -1.247 4.697 -0.27 

Log-Likelihood =  -118.9 -119.5 

McFadden R2 = 0.50 0.49 

***, **, * ==> Significance at 1%, 5%, 10% level. 
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10.14 Path Size (PS) Logit Model 
 

The path size logit model was also estimated with the same utility function as for the C-Logit models, 

but with the path size (PS) factor in place of the commonality factor (CF). Both a conventional PSL 

was estimated (i.e., an MNL model with PS utility correction) as well as an RPL model with PS utility 

correction. The PS-Logit model outputs are shown in Table 33. It is important to note that the MNL 

version was estimated with the full data set (364 observations) while the RPL model (with panel 

effects) was estimated with 344 observations. The log-likelihoods therefore cannot be compared. All 

the coefficients in the RPL model were assumed distributed normal and the cost coefficients were 

fixed. 700 Halton draws were for the RPL. 

Table 33: Path-Size Logit (PS-L) MNL and RPL Model Outputs 

Attribute PS-Logit Model (MNL) PS-Logit Model (RPL) 

 Coefficient  Std Error t-Ratio Coefficient  Std Error t-Ratio 

Free-flow time -0.193*** 0.037 -5.19 -0.247*** 0.051 -4.81 

Slowed-down time -0.226*** 0.055 -4.11 -0.357*** 0.111 -3.21 

Stop-start time -0.374*** 0.090 -4.15 -0.586*** 0.136 -4.30 

Petrol cost -0.361*** 0.068 -5.28 -0.406*** 0.091 -4.56 

Toll cost -0.196** 0.084 -2.33 -0.213* 0.123 1.73 

Pota 2.817** 1.100 2.56 2.397 1.510 1.59 

TRQB -0.784** 0.351 -2.23 -1.175** 0.490 -2.40 

Path Size (PS) Factor 0.089 0.751 0.12 3.566 4.014 0.89 

Standard Deviations       

Free-flow time - - - 0.003 0.064 0.04 

Slowed-down time - - - 0.290** 0.104 2.17 

Stop-start time - - - 0.009 0.239 0.04 

Pota - - - 4.160* 2.514 1.64 

TRQB - - - .0.003 0.502 0.01 

Path Size (PS) Factor - - - 0.011 4.504 0.00 

Log-Likelihood =  -119.5 Log-Likelihood =  -101.3 

McFadden Pseudo R2 =  0.49 McFadden Pseudo R2  = 0.58 

***, **, * ==> Significance at 1%, 5%, 10% level. 
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Table 33 shows that the PS factor is not significantly different to zero in both models, although there 

is an improvement in the RPL model. This finding confirms the insignificance of the CF factor 

estimated for the C-Logit models. The PS-L RPL model log-likelihood can be compared to the Base 

RPL model results shown in Table 27 that has a log-likelihood value of 101.8 and McFadden Pseudo 

R2 value of 0.56. Therefore, while the PS-Logit (RPL) model has a better outcome than the Base RPL 

model, the PS factor itself is not significant. Furthermore, the PS-L RPL model coefficient values are 

similar to the RPL without the path size correction shown in Table 27. The values of travel times 

from the Base RPL model and PS-L RPL model are in Table 34. There are small differences in VTT 

values between the models.   

Table 34: Values of Travel Time Savings for Standard and PS RPL Models  

VTT (Rands/Hour) 

Free-Flow VTT 

(Rand/hour) 

Slowed Down VTT 

(Rand/Hour) 

Stop-Start VTT 

(Rand/hour) 

Standard RPL (Table 27)    

VTT (Petrol) R35.86 R51.86 R84.29 

VTT (Toll) R68.76 R99.45 R161.64 

PS-L RPL    

VTT (Petrol) R36.50 R52.76 R86.10 

VTT (Toll) R69.58 R100.56 R165.07 
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11. CONCLUSIONS AND RECOMMENDATIONS 

  
11.1 Achievement of Research Objectives 

 

The objectives of this research were four-fold: 

i. To undertake a review of transport choice modelling in South Africa for both mode and route 

choice contexts and appraise historical values of travel time that have been derived. The 

review of mode choice studies revealed that very few have been conducted. Those that have 

been conducted have suffered from poor experimental design and survey execution. The 

review highlighted large gaps in our understanding of route choice behaviour in South Africa, 

especially in the urban context. No urban route choice surveys of any type have been carried 

out in South Africa over the last 20 years nor has any route choice modelling research or 

studies been undertaken in this period despite the introduction of a large urban tolling scheme 

in Gauteng Province in 2011. This scheme subsequently failed, in no small part due to the 

lack of insight into motorists’ willingness to pay tolls for travel time savings in urban areas. 

Reliable values of travel time for commuting motorists do not exist in South Africa drawing 

question marks under the economic appraisals that have been undertaken for transport 

schemes in this period. The review emphasised the need for research into motorists’ route 

choice behaviour in urban settings in South Africa     

ii. To develop a smartphone application for the collection of route choice data based on real-time 

traffic information. The definition of the route trip utility was the starting point for the app 

development. It was especially important to include the route travel time attribute in three 

different categories, i.e., free-flow, slowed-down and stop-start conditions. Other route 

attribute data to be included in the route choice sets and presented to the survey participant on 

their smartphone are the petrol cost (in Rands and derived from average retail petrol price and 

vehicle fuel consumption); and the route toll cost (if any) in Rands; and the probability of on-

time arrival. The Route Choice Application - University of Pretoria (RAPP-UP) was 

developed for this purpose. RAPP-UP was successfully developed and implemented, so this 

objective has been achieved 

iii. To undertake a small sample survey using RAPP-UP to collect route choice preference data 

for car commuters during the morning peak period in Gauteng Province. A sample of 48 

commuters was recruited, providing a total of 364 choice sets. The sample was characterised 

by high incomes, their own car to commute to work, and having permanent employment. The 

participants also had to own a smartphone to be able to download the RAPP-UP application 
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and take part in the survey. The survey was successfully implemented and so this objective 

has been achieved    

iv. To estimate a range of route choice models based on discrete choice methods using on 

random-utility maximisation. Three model forms were used, i.e., multinomial logit (MNL) 

models; random parameters logit (RPL) (i.e., mixed logit) models; and C-Logit and path size 

(PS) logit models that specifically account for route overlap (i.e., route correlation). The 

models were estimated so this objective has been achieved. Where possible the results of the 

models were benchmarked against international experience.  

Thus, all of research objectives have been achieved. The findings highlighted areas of further research 

required for the enhancement of the RAPP-UP application and the need for evaluation of the survey 

method and route choice models with a larger sample of participants. The model results and findings 

confirmed those found in international studies and have provided a good foundation on which further 

insights into commuter route choice behaviour in South African urban areas can be achieved. 

11.2 The RAPP-UP Application 
 

The RAPP-UP application was successfully developed and is now a stable platform for the execution 

of large-scale route choice surveys. The application was designed to be flexible and can hence be 

easily modified to accommodate: 

a) Fewer or more utility attributes. 

b) Attribute level data that can either be derived from platforms such as TomTom® in real time 

or can be externally determined and input into the application by means of look-up tables. 

c) Manipulation (e.g., factoring) of the attribute levels to put more experimental control in the 

hands of the analyst. 

The nature of smartphone survey applications is that their upfront design and coding cost may be 

large, but their application after that initial cost is low. Even modifications to the application can be 

done at low cost. It should be kept in mind that for largescale use of TomTom data downloads there 

is a fee that should be included in the survey cost. 

From a user’s perspective the application was considered by survey participants to be user friendly 

and easy to understand and use. Suggested enhancements from users were: 

a) An improved alarm notification system to remind users to use the application at the start of 

their trip. 

b) An automated method for displaying the users’ survey account balances and cumulative trip 

data in real time. 
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c) Improved methods for regularly communicating general survey information to participants 

during the course of survey. 

d) The development of a survey website to more efficiently communicate with participants and 

provide timeous feedback.   

Three of the original participants considered the survey too onerous, i.e., after using the application 

once or twice they felt that further participation would be inconvenient. The inconveniences raised 

included not travelling to work from home every day, i.e., their destinations changed regularly, their 

trip to work was too infrequent to be completed in the three-week timeframe requirement, and the 

financial inducement to participate in the survey was insufficient. These issues highlighted that 

participant recruitment should be more selective, potential recruits should be better informed of the 

survey requirements, and perhaps the financial inducement to participate could be increased.  

11.3 The Survey Execution 
 

The practicalities of the survey execution involved: 

a) Obtaining ethics approval from the University Ethics Committee 

b) Preparation of the survey material for the participants. This included the preparation and 

distribution of the informed consent form; the socio-demographic questionnaire; the survey 

briefing and information note. Summarising the survey methodology and participant 

information in a short note of not more than two pages was challenging, as this included 

describing the downloading and use of RAPP-UP 

c) Recruitment and briefing of the survey participants 

d) Monitoring of the remote database to ensure the data sets that are downloaded on a daily basis 

are not corrupted. If users’ data was found to be corrupted in transmission, they were 

contacted directly to identify the cause of the corruption. 

The main obstacle found in this process was the recruitment of the survey participants. Difficulty was 

found recruiting participants from the university students and staff and using social media. It was 

found to be more practical to recruit participants from a market research company.  

11.4 Remote Database 
 

The transmission and storage of the route data in the remote cloud-based database was found to be 

efficient and effective. The transmission of route data from smartphone to database was fast and 

efficient and was usually completed within a few minutes of trip completion. The remote database 

was available at all times and there was never any data loss.  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



160 
 

160 
 

The downloading of the datasets from the database using Windows command files in JSON format 

was efficient and rapid. The conversion of JSON files into CSV format was straightforward and the 

conversion of CSV files to GIS formats using an online converter for plotting is also straightforward.    

 

11.5 Route Choice Model Outcomes 
 

Several model types were estimated, i.e., MNL, RPL, LCM, C-Logit and PS-Logit models. The 

models were all statistically significant to varying degrees. However, the small sample size meant that 

the model outputs were only applicable to a small sample of Gauteng motorists that was biased 

toward high income motorists. The main findings from the estimated models were as follows: 

a) Multinomial logit models can successfully be estimated from the RAPP-UP preference data 

due to the small proportion of overlapped routes in the sample (i.e., 10%) as well as the low 

proportions of overlap for those routes with overlapped sections (average percentage overlap 

for overlapped routes was 16%). If there were higher proportions of overlapped routes, the 

statistical significance of these models may deteriorate. 

b) It is noticeable that the pota coefficient is significant in the MNL models at the 99% 

confidence interval, but not significant in the RPL models. The statistical significance of the 

toll cost coefficient also deteriorates in the RPL models.  

c) For the same reasons, the application of C-Logit and PS-Logit revealed that the commonality 

factor (for C-Logit) and path size factor (for PS-Logit) coefficients were not statistically 

significant. The application of an RPL model with the PS factor improved the significance of 

the factor, but it was still not statistically significant different to zero. 

d) The LCM models produced counter-intuitive positive coefficient values for slowed-down 

time, even though the coefficient was not statistically significant.  

e) Random Parameter Logit (RPL) models with different mixing distributions useful insights 

into the route choice behaviour of the survey sample. The low coefficient standard deviations 

reflected little choice heterogeneity in the sample of participants. The only attribute 

coefficient that had a significant standard deviation was the slowed-down time. The 

coefficients of these models were more statistically significant than their equivalent MNL 

models, with normal mixing distributions providing the most robust solutions. A larger 

sample size is likely to reveal heterogeneity in route choice behaviour requiring different 

forms of RPL models to be estimated and evaluated. 

f) The low variance in the RPL model attribute coefficients meant that there was little 

heterogeneity in the free-flow, slowed-down and stop-start values of travel time. However, 

the RPL models provided higher estimates of VTT than the MNL models. 
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g) All the MNL and RPL models showed high statistical significance (at the 99% confidence 

limit) for the free-flow, slowed-down and stop-start time attribute coefficients. Therefore, the 

survey participants perceived differences between these three levels of congestion. The 

magnitudes of the coefficients for these attributes increased with increasing congestion and 

these results confirm the findings from international studies. The congestion multiplier 

analysis revealed conformity with internally estimated values. 

h) The MNL and RPL model petrol cost coefficients were consistently significant at the 99% 

confidence interval. The petrol cost constituted the largest proportion of total trip cost when a 

participant used a tolled section in their route and incurred a toll cost. 

i) The toll cost attribute coefficients were significant at the 99% confidence interval for the 

MNL models but reduced to 90% in the RPL models.  In all the models the petrol cost 

coefficient was larger in magnitude than the toll cost coefficient. This result reflected a scale 

effect – the average trip petrol cost on tolled routes is several magnitudes higher than the 

average toll (on tolled routes). This effect of this difference in coefficient magnitudes 

resulted in significantly higher levels of willingness-to-pay a toll for travel time savings. 

j) The probability of on-time-arrival (pota) coefficient was significant in all of the MNL 

models, but not significant in any of the RPL models. This result in the RPL models was 

surprising given that international studies have shown that on-time arrival is a significant 

utility attribute, and motorists are willing-to-pay for on-time arrival at similar to levels to that 

for travel time savings (Bliemer, 2020). The reason why the attribute was not significant in 

the RPL models requires investigation. Possible reasons are the measurement of the attribute 

i.e., a probability of on time arrival in percent may not be fully understood by participants, 

and it may be better understood if the number of minutes early or late is specified. Specifying 

the measure in minutes will also make it easier to quantify the value of on-time arrival. 

k) The toll road quality bonus (TRQB) (a dummy attribute in the utility expression) that 

quantified the benefits (or disbenefits) of using tolled freeways (other than the observed trip 

times and costs in the utility expression) in Gauteng was found to be significant. Importantly 

the coefficient had a negative sign which means that survey participants had a negative 

perception of using the tolled freeways. This is an interesting result that may confirm the 

negative perception of the GFIP e-toll system held by the Gauteng public and perhaps a 

broader negative perception toward the payment of urban tolls.  

11.6 Values of Travel Time (VTT)   
 

The RAPP-UP surveys were done during a time of traffic demand recovery from the COVID 

pandemic between April and July 2022. Traffic volumes were ramping up to pre-COVID levels at that 

time, but the demand legacies of COVID were still present. The most important of these was working 
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from home (WFH), that has had a material (but as yet formally unquantified) impact on traffic 

demand. The net result of the demand suppression has been an observed higher proportion of free-

flow time on routes than slowed down and stop-start time. This may have impacted on the values of 

travel time associated with the three components of trip time.  

The values of travel time between the various models show consistency in several ways: 

a) The VTT’s derived from operating and toll costs all increase with increasing levels of 

congestion. The VTT for start-start driving conditions is approximately double that of the 

free-flow time across all the models. This finding is in line with international experience. 

b) The willingness to pay a toll for travel time savings is consistently higher than the values 

derived from operating costs. On average, for the MNL models the VTT derived from toll 

costs are 36% higher than those derived from operating costs across all model types. For the 

RPL models this ratio increases to 100%. However, there is a scale effect is in play with this 

result as the average petrol cost (on tolled routes) is a factor of five times higher than the 

average toll charge (on tolled routes). 

c) The following chart shows the range of VTT’s estimated from the MNL and RPL models for 

derived from operating (petrol) and toll costs. The TRQB is included in both models. These 

models are described in Table 22 and Table 27.  The table illustrates the consistently higher 

values derived from the route toll charge, as well as the higher values obtained from the RPL 

model. The highest VTT of R160/hour is derived from the RPL and derived from the 

willingness-to-pay a toll for time savings in stop-start conditions. The lowest value of 

R32/hour is derived from the operating cost in free-flow time using the MNL model.     

 

Figure 67: Comparison of Values of Travel Time (VTT by Category) from MNL and RPL Models 
(Rand/Hour) 

The analysis highlights that using a single VTT for all users in a transport demand model or economic 

appraisal is not appropriate and will lead to potentially significant errors in mode and route choice 
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modelling, as well as under or overestimating the economic feasibility of a road-based transport 

initiative.  

11.7 Further Research  
  

Each stage of the research gave rise to important issues that requires further investigation and 

research. These were: 

 The utility attribute that was introduced to indicate the route travel time reliability, i.e., the 

probability of on-time arrival (pota) was found to be significant in the MNL models, but not 

in the RPL models. International experience has shown that the trip time reliability is an 

important component of trip utility and commuters are willing-to-pay for this reliability. The 

specification of Pota as a probability (percentage) needs to be investigated and possibly 

changed to an actual time (measured in minutes) of arriving early or late at the destination. 

This would make route trip time reliability clearer to the survey participants and would also 

enable the quantification of the willingness-to-pay for trip time reliability.   

 Due to the nature of the route generation algorithm used in RAPP-UP, there was seldom any 

route overlap between the optimal route and the alternative route. If there was an overlap it 

was short. This impacted on the statistical significance of the commonality factor and path-

size factors included in the utility expression of the C-Logit and PS-Logit models. There are 

two possible schools of thought on this matter. The first (Prato, 2009) is that in dense urban 

road networks, it is very likely that there will common sections on two alternative routes and 

hence the adoption of MNL models will not be appropriate and utility adjustment as per the 

C-Logit and PS-Logit models is necessary. On the other hand, the route generation algorithms 

of route guidance platforms such as TomTom®, Waze® and Google Maps® generate realistic 

optimal and alternative routes and apply these algorithms across the world for millions of 

travellers every day. If users did not place reliance on these routes, the platforms would not be 

popular, seldom used and either changed or be taken off the market. It is also evident that 

research and project studies (Hensher, 2001; Bierlaire, et al., 2010; Hensher, 2001; Hensher & 

Rose, 2004) have not considered the implications of route overlap on route choice, and have 

applied RPL models, a discrete choice model that can approximate any random utility model 

(McFadden & Train, 2000). 

 The small sample that was recruited for the proof-of-concept investigation was biased toward 

high-come car commuters. The model results thus reflect the route preferences of this limited, 

focused market segment and should be interpreted with this kept in mind. A significantly 

larger sample of car commuters should be recruited across a wider socio-economic and 

demographic population in order to draw firmer conclusions about route choice preference 

from the broader motoring public. This larger sample size would require consideration of the 
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very large remote preference database that would result and how to automate the processing 

of the data, plotting of routes and formatting the data for input into NLOGIT. 

 The impact of traffic demand suppression should also be kept in mind, as this may have 

affected the estimated values of travel time. Any new surveys using RAPP-UP should ideally 

be done when traffic demand has stabilised.  
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APPENDIX A: RAPP-UP SURVEY PARTICIPANT SOCIO-DEMOGRAPHIC 
QUESTIONNAIRE 

 

SOCIO-DEMOGRAPHIC QUESTIONNAIRE FOR PARTICIPANTS IN THE ROUTE CHOICE TRAVEL 
SURVEY 

SEPTEMBER 2021  

Thanks you for participating in the survey. Please note that the information provided in this 

questionnaire will be kept in the strictest confidence and will not be shared with any third party. The 

information will be retained at the Centre for Transport Development and destroyed when the 

research is complete.  

Question 1: Please provide you Gmail email and cell phone number. These will be used for 

communications between the survey manager Mr Gary Hayes.  Your final Takealot voucher will be 

emailed to you at this email address.  

Email address:  ________________@gmail.com  __ 

Cell phone number: ____________________________________ 

Question 2: Your Gender (mark with an X):     Male:_____       Female:______  Other:_______ 

Question 3: Your Age Bracket: Please place an X into the age bracket you fall into: 

Age band 18-25 years:_____________   Age band 26 – 30 years: _______________ 

Age Band 31-40: years ____________  Age band 41-50 years: ________________ 

Age band 51-60 years: ____________  Age band > 60 years: __________________ 

Question 4: Income Bracket: Please place an X next to the income bracket that you fall into. This 

income is your gross income per month, i.e., before taxes and deductions: 

Income bracket 1: R0 - R10,000 per month:               __________________ 

Income bracket 2: R10,001 – R20,000 per month:     __________________ 

Income bracket 3: R20,001 – R30,000 per month:     __________________ 

Income bracket 4: R30,001 – R40,000 per month:     __________________ 

Income bracket 5: More than R40,000 per month:    __________________ 
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I do not have salary income:        __________________ 

Question 5: Home and Work Suburbs: Please write the name of the suburb and city where you live 

and where you work: 

Home suburb & city:  ___________________________ 

Work suburb & city: ____________________________ 

Question 6: Commute trip departure and arrival times. Please indicate your typical time of 

departure from home and arrival at work when you commute. 

Typical departure time from home:  _____________am ___  

Typical arrival time at work:  ______________ am ___ 

Question 7: Typical route to driven to work: Please answer the following questions with a Yes/No 

answer: 

Do you always use the same route to work (assuming no traffic accidents or incidents)?    _________ 

Do you change your route based on real-time traffic information, e.g., from TomTom, Waze, radio 

etc? _________ 

Question 8: The trip times and costs for your normal commute route: Please provide your typical 

travel times and costs for the route you normally use to travel to work from home: 

Typical total travel time (door to door): ________ minutes 

Total petrol cost (per trip):  __________ Rands 

E-Tolls (if any per trip):  ______________ Rands 

Total trip distance: ________________ km. 

Question 9: Your employment status. Please select from the following list by marking with an X: 

Full time employed: ____________    Part-time employed: _________ 

Unemployed: ______________   Retired: ________ 

Other: ______________   

Thank you for completing the survey. 
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ANNEXURE B: RAPP-UP SURVEY PARTICIPANT INSTRUCTION FORM 
 
 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



176 
 

176 
 

 

 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



177 
 

177 
 

 

ANNEXURE C: RAPP-UP APPLICATION TECHNICAL SPECIFICATION 
 

TECHNICAL SPECIFICATION OF RAPP-UP REMOTE PARSE DATABASE 

1. The Transmission of Data from Satellite to Remote Database 
 

The transmission of signals between satellites and smartphone GPS devices and then onto remote 

databases via cell phone towers is shown in the following figure. Satellites in earth’s orbit continually 

send signals to earth at specific frequencies that are received by GPS devices. Longitude and latitude 

coordinates are generated for each pulse received by the GPS device. This enables the straight-line 

distance between the successive two points on the surface of the earth to be accurately measured. 

The shorter the pulse frequency, the shorter the straight-line distance between successive pulses, 

and the more accurate the distance between them. The time difference between signal transmission 

from the satellite and receipt by the GPS receiver is also accurately measured. This time together 

with the straight-line difference allows an average speed between the two points to be calculated. 

Three satellite signals are required for location triangulation, and a fourth is required for altitude 

estimation. The location data is calculated by the GPS device, and then transmitted terrestrially via 

GSM using cell towers to the remote database that has been established for this research. There is a 

time lag between calculation of the location data by the cell phone GPS and receipt by the remote 

database and this difference is shown in the time stamps received by the database. MongoDB has 

been used as the cloud-based software platform for the remote database. This database is accessed 

using the internet, and the security restriction requires a username and password for access.   

 shows the communication links between the satellite, smartphone, cell tower and remote database. 
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Figure 1: Illustration of the Transmission of Location Data between Satellite (GPS) and Remote 
Database (GSM). 

 

2. Route Choice Survey Applications 
 

There are separate two separate smartphone applications (apps) that have been developed and 

used for obtaining travel data from the route choice survey participants. The apps only operate on 

Android smartphones, and are as follows: 

i. Travel Diary App: This app simply records the routes that participants have used. It has been 

used in the context of observing the typical routes used by participants, i.e., without any 

route preference data 

ii. RAPP-UP App: This is the route choice experiment app that is used to generate alternative 

routes and their associated choice tables.    

Each app has a separate MongoDB database. These are discussed in the next sections. 
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3. MongoDB Database Structure 
 

MongoDB is an internet-based open-source document-oriented database. It is used to store a large 

amounts of data in the cloud and also allows manipulation of the data. MongoDB is not based on the 

table-like relational database structure but provides an altogether different mechanism for storage 

and retrieval of data, that’s why known as NoSQL database. Here, the term ‘NoSQL’ means ‘non-

relational’. The format of storage is called BSON (similar to JSON format). 

Important parts of MongoDB are as follows: 

• Drivers: Drivers are used to communicate with MongoDB. The drivers support by the 

MongoDB are C, C++, C#, and .Net, Go, Java, Node.js, Perl, PHP, Python, Motor, Ruby, Scala, 

Swift, Mongoid. 

• MongoDB Shell: MongoDB Shell or mongo shell is an interactive JavaScript interface for 

MongoDB. It is used for queries, data updates, and it also performs administrative 

operations. Data is exported from the MongoDB Shell in the Windows command window 

using export scripts that are linked to the database 

• Storage Engine: It is an important part of MongoDB which is generally used to manage how 

data is stored in the memory and on the disk. MongoDB can have multiple search engines. 

Any search engine can be used or the default search engine, known as WiredTiger Storage 

Engine. It works efficiently for reading and writing data. 

Two MongoDB databases have been used for collecting trip data from survey participants. The first 

collects trip data from the Travel Diary app, and the second from the RAPP-UP app.   

Each MongoDB database is located on a remote server and contains several parse dashboards that 

have been developed to store the various Travel Diary and RAPP-UP data sets. A parse dashboard is 

a spreadsheet like database that allows for editing and manipulation of large datasets. Each 

dashboard contains specific data either related to the routes that were tracked using the Travel 

Diary app, or route options presented in RAPP-UP (i.e., the choice sets) or for the route actually 

driven after selection in RAPP-UP.  Within each dashboard are several, separate databases within 

which the various data sets are stored. The dashboard layout is shown in Figure 2Error! Reference 

source not found.. 
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The Travel Diary and RAPP-UP MongoDB parse dashboards require permissions to access the 

database, specifically a username and password. The MongoDB Travel Diary remote dashboard is 

located at the following internet address:   

https://up-travel-diary-server.herokuapp.com/dashboard/apps/UPTravelDiaryServer/browser/_Installation 

The RAPP-UP dashboard is located at: 

https://up-travel-diary-server-dev.herokuapp.com/dashboard/apps/UPTravelDiaryServer/browser/_Installation 

Figure 2 shows a screenshot of the RAPP-UP shapefile dataset dashboard. The other dashboards can 

be seen on the left hand side of the figure, i.e., User, ChoiceSet, DefaultFactors etc. The contents of 

each of these dashboards is described in a following sections. For the Shape dashboard shown, it can 

be seen that it contains data related to the objectId, shape sequence, altitude, trip id, speed etc. This 

data can be extracted from the dashboard using Windows script files. This process is described in the 

next section.  

Figure 2: MongoDB Remote Server with Dashboards 
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4. Downloading Data from the Remote MongoDB Database 
 
Downloading the various route and trip databases from the parse database requires running short 

command files from the Windows Command Prompt window. The user must be logged into the 

parse database when this is done, but not into a specific dashboard. When entering the command 

prompt window in Windows, the root directory is shown, e.g., c:\\Users. The path to the directory 

where the command files are stored must then be specified using Dos commands, e.g., cd Routes if 

Routes is the directory where the command files are stored. When the command files are run, the 

output files are stored in the same directory. 

The command files are small script files with a .sh extension that execute the commands for 

downloading the data from the parse dashboards. The names of the command files and output file 

names are shown in the next sections for each database. 

When running a command file, the Dos command bash should be used. For example, if the 

command files name is route_collection_JSON.sh, then the command file is: 

bash route_collection_JSON.sh. 

This command will execute the commands and create the output file in the same directory. 

Important points to note are: 

 When the command file is run, the output file is created, and it overwrites any old output 

files. It is best to change the name of the output file after running the command file and 

putting the output file into a separate directory 

 The command files can be edited in a text editor if it required to change the output file 

name. 

The output files are in JSON format (Java Script Object Notation). The files are named filename.json.  

These files can be edited in a text editor and converted to CSV format. CSV files can be read into 

Excel for analysis. The CSV files containing coordinates can be converted into XML, GPX and KMZ 

files and then read into platforms such as Google Maps® and Google Earth®.   

The following figure shows the process, from extracting the json file from the database to plotting 

the route in Google Maps® (GPX format), Google Earth (kml format), ArcGIS® (GPX format) or 

OpenStreetMap® (GPS format).  
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Figure 3: Data Extraction Process – from Database to Google Maps®  

Figure 3 shows the process of downloading the various data files 

from the parse database, and then converting the files to CSV & 

Excel format for converting to the required format, i.e., KML, GPX 

etc.  The analysis of the data is done using the Excel files, and the 

plotting using the KML and GPX files. 

It is best to manipulate the data (e.g., splitting columns of data) 

in Excel as this relatively straightforward. The final data set 

should be saved in a CSV file format for importation into various 

software platforms for viewing the route such as Google Earth®, 

Google Maps®, OpenStreetMap® or ArcGIS®. The CSV file can be 

converted into the GPX format using online converter software. 

The recommended free platform is GPS Visualizer at the 

following address: https://www.gpsvisualizer.com 

It is important to note that to convert the CSV files to KML or GPS 

format, the files must be in the correct format with the required 

headings. For example, to plot a route with a GPX file using 

Google Maps®, the CSV file must have at least three fields for the segment number and longitude 

and latitude coordinates for each segment. 

The format of the CSV input files for conversion to GPX, KML and other formats is described at the 

following website: 

https://www.topografix.com/gpx_manual.asp 
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5. MongoDB Database for Travel Diary App 
 

The Travel Diary App is a passive route tracker. It records the route details of trips made by the 

survey participants. The MongoDB database records three data sets: 

i. A user data table. This table contains the survey participant id’s with their email addresses 

and a date stamp for when they were added to the user list by the administrator. The users 

can be added directly to the user data table in the dashboard 

ii. A trip collection table: This table records the trips made by each survey participant. Each trip 

is allocated an id together with the date and time stamp for the trip. The user id is included 

in the trip data for cross referencing 

iii. A shape table: This table contains the details of the routes travelled by each participant. The 

routes are defined by route segments and node coordinates for each segment (these are 

recorded every 5 seconds). A sequence of segments makes up a route. Each coordinate is 

allocated an id together with various date and time stamps. Pairs of coordinates define 

segments of the routes for which a straight-line distance is calculated and presented. Other 

data provided for each segment are the bearing, average speed and travel time.  

It is important to note that three date and time stamps are provided in the various outputs as 

follows: 

i. ReceivedAt: This is the date and time that the GPS device in the smartphone received the 

signal pulse from the overhead satellite/s. An example is 30 Sept 2021 at 08:25:05 UTC. The 

data entry can be for any identifier e.g., a user, route or route segment 

ii. CreatedAt: This is the date and time that the entry was created in the remote database. An 

example is 30 Sept 2021 at 08:30:26 UTC. Note that this time will always be delayed from 

the ReceivedAt time. This can be for several reasons such as the smartphone GSM signal was 

poor and the data was transmitted when the signal improved or when the smartphone 

entered into a wi-fi area that enabled data transmission 

iii. UpdatedAt: This date and time indicates when the data entry to the remote database was 

updated for any reason. An example is 30 Sept 2021 at 08:30:26 UTC. If this time is the same 

as the CreatedAt timestamp, then the data has not been updated. 

Note that UTC is standard universal time, which is the same as Greenwich Mean Time (GMT). South 

African time is UTC + 2 hours.  

For trip data specifically, two additional date and time stamps are provided, i.e.,: 
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i. DepartAt: The date and time of the departure of the trip (i.e., the trip start time) 

ii. ArriveAt:  The date and time of the arrival of the trip (i.e., the trip end time). 

The following tables summarises the individual data sets contained in each dashboard. Each table 

describes the data name as well as a description of the data. In addition, the export script file name 

is shown and the output file name that is generated in JSON format. The full text script of the export 

process is shown.  

Note that: 

 The user does not need to specify this full script if the Dos command scripts are run as 

described earlier 

 There are common data names in the tables that enable users, trips and shape data to be 

linked. 

Access Control Dashboard 

This dashboard is used by the database administrator to add now survey participants to the 

database. The users name (forename and surname) and gmail email address must be entered. Once 

entered the database generates an ObjectId, i.e., a user code. The user id is a 10 digit alphanumeric 

code that is used to identify the user in the subsequent database dashboards. An objectd example is 

JLlujkY2Mx. The participants gmail address is also used to grant permission to download the Travel 

Diary and RAPP-UP applications from the Google Play Store®. 

User Dashboard 

The user dashboard stores several sets of data as per the following table. 

Table 1: User Dashboard  

Data Name Description 

ObjectID 10 digit alphanumeric User ID code, e.g., JLlujkY2Mx  

Name The users name, e.g., Gary Hayes 

UpdatedAt 
The date and time the user was created in the 

database, e.g., 15 Sept 2021 at 17:35:10 UCT 

Username 
This is the email address of the user, e.g., 

u16401868@tuks.co.za 

Export script file name Export_User_Collection_JSON.sh 
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Export file name: User_Collection.JSON 

Script: mongoexport --uri 

mongodb+srv://AndroidClient:T0lGPkcYhOWDjpUI@traveldiaryphase1.pq2x9.mongodb.net/TravelDiaryPhase

1 --collection _User --type json --out ./User_Collection.json 

 

The next table shows the structure of the trip data file, i.e., the trip that was tracked for a specific 

user. 

Table 2: Trip Dashboard 

Data Name Description 

ObjectID 
10 digit alphanumeric trip ID code, e.g., 

07zsQsoZwk 

Departuretime 

The time of the start of the trip i.e., when the 

Travel Diary App was activated, e.g., 12 Sept 

2021 at 05:15:30 UTC 

Username The user id code as per the User Table 

UpdatedAt 
The date and time the trip id was updated in the 

database, e.g., 15 Sept 2021 at 17:35:10 UCT 

Duration 
The duration of the trip (i.e., between app 

activation and deactivation) in seconds 

Distance The trip length in kilometres 

CreatedAt 
The date and time the trip id was created in the 

database, e.g., 15 Sept 2021 at 17:35:10 UCT 

Export script file name Export_Trip_Collection_JSON.sh 

Export file name: Trip_Collection.JSON 

Script: mongoexport --uri 

mongodb+srv://AndroidClient:T0lGPkcYhOWDjpUI@traveldiaryphase1.pq2x9.mongodb.net/TravelDiaryPhase

1 --collection Trip --type json --out ./Trip_Collection.json 
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This last table shows the shape collection dashboard. This data contains the detailed trip 

information, i.e., coordinates, coordinate altitude etc. 

Table 3: Shape Collection Dashboard (Shape) 

Data Name Description 

Objectid 
Alphanumeric segment ID code for the route segment e.g., YApvq3A6Le. The 

segment identifiers for each route are unique 

Shape Sequence No The segment sequence number (in ascending order) from 0….n for n segments.  

Altitude Segment altitude in meters, e.g., 1613.1 m 

TripID 
Alphanumeric trip ID code e.g., L5E1HnBezP. The trip identifier is constant for all 

segments in the route 

Speed The average speed on the segment in meters/second 

User id 
The user id for whom the routine was created, e.g., ANRRVmCk46 for Gary 

Hayes 

CreatedAt 
The date and time that the segment data was created (or first entered into) in 

the database, e.g., 15 Sept 2021 at 17:39:20 UCT 

UpdatedAt 
The date and time that the segment data was updated in the database, e.g., 15 

Sept 2021 at 17:39:20 UCT 

Bearing The segment bearing (i.e., direction of travel) in decimal degrees 

ReceivedAt 
The date and time that the segment was received by the smartphone GPS 

device , e.g., 15 Sept 2021 at 17:39:20 UCT 

Location 
The segment a-node coordinates in decimal latitude and longitude. The next 

sequential segment a-node is effectively the b-node of the preceding segment 

Distance The length of the segment in meters. Note this is a straight line distance 

Export script file name Export_Shape_Collection_JSON.sh 

Export file name: Shape_Collection.JSON 

Script: ongoexport --uri 

mongodb+srv://AndroidClient:T0lGPkcYhOWDjpUI@traveldiaryphase1.pq2x9.mongodb.net/TravelDiaryPhase

1 --collection Shape --type json --out ./Shape_Collection.json 
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5. RAPP-UP Data Structure and Definitions 
 

The data structure and terminology of RAPP-UP is shown in Figure 4. The figure shows the definition 

of a trip; the routes, a choice set; the selected route and the selected route shape and segment data. 

The parse database dashboard names are also shown.  

Note that: 

 A user is a survey participant who is registered to download RAPP-UP from the Play Store 

 A trip is undertaken on a particular day and consists of two route alternatives 

 A routine is a sequence of trips on consecutive (or non-consecutive) days making up the 

total survey for a particular user  

 A route is a path between O & D, for which shape and segment data are provided for 

plotting and analysis 

 The choice set contains both routes and their associated attribute levels, some of which are 

derived from near real-time data, e.g., the travel times  

 The selected route is the route chosen for travel by the user 

 The selected route “as driven” data is transmitted to the remote database by the GPS 

tracking device on the users smartphone.   

Figure 4: File Structure and Terminology of RAPP-UP Application 
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The following table summarises the parse database dashboard names, the data in the dashboards 

and the export file names for extracting the data.  

Table 4: Summary of Parse Database Dashboard Names, Contents and Extraction Filenames 

Parse Database 

Dashboard 

Names 

Description of Contents Extraction Command File Name 

User List of users participating in the survey 

with allocated id’s 

Export_user_collection_json.sh 

Routine Summary of routes generated ion 

subsequent days of the survey 

Export_routine_collection_json.sh 

ChoiceSet Set of fixed data and factors that are used 

in the eight choice sets. These include the 

toll and pota factors for each 

observation; the day for which the choice 

set is applied; and the route number 

against which the factors are applied. 

Eport_choicest_collection_json.sh 

Routine A set of trip id’s made by the participant 

over the 8 surveys days 

Export_routine_collection_json.sh 

Route The route id and time and cost attribute 

levels for the two alternative routes used 

in the choice set for a particular survey 

day. These are used in the survey choice 

set  

Export_route_collection_json.sh 

TrafficSegment The segment data for each of two 

alternative routes for a particular survey 

data including segment no., segment 

length and travel time classification code 

Export_trafficsegment_collection_jso

n.sh 

Routeshape The alternative route segment data 

including the route id, segment sequence 

Export_routeshape_collection_json.s

h 
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no., the location (i.e., latitude and 

longitude coordinates) 

Shape For the route driven by the participant, 

the segment id & sequence, locations 

coordinates, speed, time and altitude 

Export_shape_collection_json.sh 

Trip The trip information for the chosen route 

including route id, trip tine and duration  

Export_trip_collection_json.sh 

Waypoint The waypoint coordinates for each 

alternative route for a specific survey 

Export_waypoint_collection_json.sh 

 

Users (i.e., survey participants) are added to the database using the AccessControl dashboard in the 

database. Only an authorized administrator is permitted to add additional or new users. The names 

and email addresses of each survey participant must be added to firstly allow them to download the 

application from the Play Store, and secondly to start recording their survey data in the database.  

When extracting data from the database for plotting and analysis, the sequence of data sets from 

the remote database are as per the following figure. There are seven steps required to prepare the 

choice set data for the two alternative routes for input into NLOGIT, i.e., steps 1, 2 and 3; extracting 

the route segment and location data for plotting and analysis.   

Figure 5: File Structure and Terminology of RAPP-UP Application 

 

Understanding the contents and definitions of the RAPP-UP database are shown figuratively Figure 

6. The figure is a pictorial representation showing the full data sets for two routes, viz, two 

alternative routes and the route driven (or chosen) by the survey participant.  
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The highlights of the figure are: 

 The trip is for G Hayes, with an email address (u16401868@tuks.co.za) and user id 

ANRRVmCk46. This user id is used throughout the survey 

 There are two alternative routes with route identifiers, i.e., route SCzVhhKrAF (shown in 

black) and route L1wd3YxS4X shown in red. These two routes make up a routine (i.e., choice 

set al.ternatives) with the identifier BZO6ecyZGa   

 For each route (with identifier) there is a sequence of route segments that contains the 

segment latitude and longitude co-ordinates (for the a-node); the segment sequence 

number (the sequence is ascending from 0); the date; and the time stamp  

 For each route there is an attribute data set that includes the total trip time; total distance; 

probability of on-time arrival (pota); fuel cost, toll cost, free-flow time (fft); slowed-down 

time (sdt) and stop-start-time (sst). These data constitute the choice set attributes and levels 

for each route 

 The route chosen by the user is also shown as given by the route identifier (in this case route 

L1wd3YxS4X shown in red)  

 The driven route is shown with a shapefile that contains the user identifier; the route 

identifier (L5E1HnBezP); segment identifiers (e.g., YApvq3A6Le); the shape sequence 

number (ascending in order); the a-node of the segment (lat and lon); segment altitude; 

segment bearing; and average speed on the segment. 
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Figure 6: Structure of RAPP-UP Parse database Outputs 
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The subsequent sections present tables that describe the RAPP-UP dashboards and the data in 

each. The left side margin of the parse dashboard in Figure 2Error! Reference source not found. 

shows the various dashboards in the overall database. These tables are: 

i. The User data table that contains the registered survey participants with their security 

access emails 

ii. The choice set data set that contains the attribute levels for each route in the choice set 

iii. The route data set for each alternative that contains includes the route id, travel times, 

toll cost, length, pota and toll cost factors, fuel cost, stop-start, sowed-down and free-

flow travel times, etc. 

iv. The route shapefile that contains the route geometric data, i.e., route segments with a-

node co-ordinates, lengths, travel times etc. These files are the largest in size 

v. The routine file that contains the series of trips made by the user on different days 

vi. The shape files that contain the summarised data for each trip 

vii.  The traffic segment data file that contains the data for all the traffic segments on each 

route 

viii. The trip data file that contains the individual route identifications 

ix. The waypoint data set that contains the details of the waypoints on each route, i.e., the 

waypoint co-ordinates. 

Each table is now presented with the details of the contents.  
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6. Choice Set Dashboard (ChoiceSet) 
 

The choice set dashboard contains the attributes and attribute levels included in the choice sets for 

each route.  

Table 5: Data Sets in Choice Set Database (ChoiceSet) 

Data Name Description 

Choice set id 

ID code for choice sets. There are a total of 8 choice sets determined 

by orthogonal design for unlabeled experiment. Experimental design is 

with 8 choice sets and two attribute levels for probability of on time 

arrival (pota) (0.9 and 1.1) and toll cost attributes (0.9,1.1). The choice 

sets are applied on a “per day” is, i.e., choice set 1 is applied on day 1, 

choice set 2 on day 2, etc. Note that two alternative routes are 

generated, and the pota and toll cost factors are applied differently to 

each route on each day. 

CreatedAt 
The date and time the segment data was created in the database, e.g., 

15 Sept 2021 at 17:35:10 UCT 

UpdatedAt  
The date and time on which the choice set factors were updated in the 

remote database, e.g., 15 Sept 2021 at 17:35:40 UCT 

RouteNumber 
The choice set route (i.e., either route 1 or 2) to which the pota and 

fuel cost factors are applied 

ChoiceSetforDay The day to which the pota and toll cost factors are applied 

FactorTollCost 
The toll cost factor applied to the actual toll cost (i.e., i.e., either 0.9 or 

1.1) 

ChoiceSetVersion The version of choice set table (for this first set the default is 1) 

FactorPota 
The pota factor applied to the actual estimation of on-time arrival (i.e., 

either 0.9 or 1.1) 

Export script file name: Export_ChoiceSet_Collection_JSON.sh 

Export file name Choiceset_Collection.JSON 

Script: mongoexport --uri mongodb+srv://AndroidClient:T0lGPkcYhOWDjpUI@traveldairy-
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dev.tvrdw.mongodb.net/TravelDairy-Dev --collection ChoiceSet --type json --out 

./ChoiceSet_Collection.json 
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7. Route Collection Dashboard (Route) 
 

This dashboard is continually updated with alternative route data as the survey progresses. It 

contains the alternative route data that make up the choice sets. The data items in the dashboard 

are as follows: 

Table 6: Route Collection Data Set Definitions 

Data Name Description 

Route id 

Alphanumeric ID code for each route, e.g., SCzVhhKrAF.  Two routes, 

each with different id’s make a routine that also has a unique 

identifier, e.g., routes SCzVhhKrAF and route L1wd3YxS4X are the route 

pair making up routine BZO6ecyZGa  

FuelCost 

This is the estimated fuel cost for the route, calculated from the total 

route length; the current cost per litre of 95 octane unleaded petrol 

(R15.10/l); and an average vehicle fuel consumption of 8 litres per 100 

km  

Routine id 
This is the common alphanumeric routine name for two alternative 

routes as described earlier, e.g., BZO6ecyZGa 

TravelTime 
This is the total travel in seconds for the route derived from real-time 

TomTom traffic data 

TollCost 

This is the toll cost in Rands for a route if it includes a Gauteng e-toll 

freeway. The actual toll cost has been based on the private vehicle 

discounted toll rate of R0.40/km and factored by the TollCostFactor 

Pota 

The probability of on-time arrival (in %) calculated from a weighted 

sum of the stop-start, slowed-down and free-flow time multiplied by 

the FactorPota 

UpdatedAt 

The date and time stamp of the generation of the route, e.g., 15 Sept 

2021 at 17:35:10 UCT (Co-ordinated Universal Time). Add +2 hours for 

South African time. 

Distance The total length of the route in meters 
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ChoiceSetApplied 
This data field indicates the toll cost and pota factors used from the 

ChoiceSet dashboard, i.e., either 0.9 or 1.1 

Traffic 

This data field shows the stop-start time (sst); slowed-down-time (sdt) 

and free-flow time (fft) in seconds used for the route in the choice set. 

The values displayed in the choice sets are in minutes. These 

proportions are derived from the TomTom TEC definitions of traffic 

flow per segment and are summed for the total route. The sum of 

sst+sdt+fft will equal the TravelTime 

Export script file name: Export_Route_Collection_JSON.sh 

Export file name Route_Collection.JSON 

Script: mongoexport --uri mongodb+srv://AndroidClient:T0lGPkcYhOWDjpUI@traveldairy-

dev.tvrdw.mongodb.net/TravelDairy-Dev --collection Route --type json --out 

./Route_Collection.json 
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8. Route Shape Collection Dashboard (RouteShape) 
 

This dashboard provides the alternative route segment data, i.e., route segment identifiers and co-

ordinates. The sequence of segments in ascending order make up a route. The data for each 

segment includes its length and coordinate for the a-node. This data can be used to plot and analyse 

the routes. The segment length data is used for the computation of the route overlap.  

Table 7: Route Shape Collection Dashboard (RouteShape) 

Data Name Description 

Segment id 
Alphanumeric segment ID code for a route, e.g., zjxV7ksb50. Each 

segment has a unique id 

Length 
The cumulative segment lengths in meters. For individual segment 

lengths the cumulative length must be adjusted 

CreatedAt 
The date and time the segment data was created in the database, e.g., 

15 Sept 2021 at 17;35:10 UCT 

UpdatedAt 
The date and time the segment data was updated in the database, e.g., 

15 Sept 2021 at 17:35:10 UCT 

Sequence number 
The sequence number for the segment. The ascending order of these 

numbers makes up a route 

Location 
The latitude (lat) and longitude (lon) of the a-node of the segment. The 

b-node of the segment will be the a-node of the sequential segment 

Route id 
The alphanumeric route identifier, i.e., Routine id e.g., BZO6ecyZGa 

(see Table 5) 

Export script file name Export_RouteShape_Collection_JSON.sh 

Export file name Routeshape_Collection.JSON 

Script: mongoexport --uri mongodb+srv://AndroidClient:T0lGPkcYhOWDjpUI@traveldairy-

dev.tvrdw.mongodb.net/TravelDairy-Dev --collection RouteShape --type json --out 

./RouteShape_Collection.json 
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9. Routine Collection Dashboard (Routine) 
 

This dashboard provides a summary of the routines that have been generated in the choice set on a 

particular day. A routine consists of the two alternative routes in a choice set. 

Table 8: Routine Collection Dashboard (Routine) 

Data Name Description 

Routine id 
Alphanumeric segment ID code for a routine e.g., BZO6ecyZGa. Note 

that each routine consists of two routes 

CreatedAt  
The date and time the routine was created in the remote database e.g., 

15 Sept 2021 at 17;35:10 UCT 

UpdatedAt 
The date and time the segment data was updated in the database, e.g., 

15 Sept 2021 at 17:35:10 UCT 

User id 
The user id for whom the routine was created, e.g., ANRRVmCk46 for 

Gary Hayes 

Waypoints A listing of the segment names identified as waypoints for the routine 

Schedule 
The day of the week, date and time of the routine generation, e.g., 

Wednesday 15 Sept 2021 at 17:35:10 UCT 

Export script File name Export_routine_collection_JSON.sh 

Export file name Routine_Collection.JSON 

Script: mongoexport --uri mongodb+srv://AndroidClient:T0lGPkcYhOWDjpUI@traveldairy-

dev.tvrdw.mongodb.net/TravelDairy-Dev --collection Routine --type json --out 

./Routine_Collection.json 
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10. Shape Collection Dashboard (Shape) 
 

This dashboard contains the details of the route driven by the participant, i.e., the actual route used. 

It is defined by a route id; segment numbers; co-ordinates, segment speeds, lengths etc. 

Table 9: Shape Collection Dashboard (Shape) 

Data Name Description 

Segment id 
Alphanumeric segment ID code for the route segment e.g., 

YApvq3A6Le. The segment identifiers for each route are unique 

Shape Sequence No 
The segment sequence numbers (in ascending order from 0….n for n 

segments.  

Altitude Segment altitude in meters, e.g., 1613.1 m 

Trip identifier 
Alphanumeric trip ID code e.g., L5E1HnBezP. The trip identifier is 

constant for all segments in the route 

Speed The average speed on the segment in meters/second 

User id 
The user id for whom the routine was created, e.g., ANRRVmCk46 for 

Gary Hayes 

CreatedAt 
The date and time that the segment data was created (or first entered 

into) in the database, e.g., 15 Sept 2021 at 17:39:20 UCT 

UpdatedAt 
The date and time that the segment data was updated in the database, 

e.g., 15 Sept 2021 at 17:39:20 UCT 

Bearing The segment bearing (i.e., direction of travel) in decimal degrees 

ReceivedAt 
The date and time that the segment was received by the smartphone 

GPS device , e.g., 15 Sept 2021 at 17:39:20 UCT 

Location 

The segment a-node coordinates in decimal latitude and longitude. The 

next sequential segment a-node is effectively the b-node of the 

preceding segment 

Distance 
The length of the segment in meters. Note this is a straight line 

distance 
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Export script file name Export_Shape_Collection_JSON.sh 

Export file name: Shape_Collection.JSON 

Script: mongoexport --uri mongodb+srv://AndroidClient:T0lGPkcYhOWDjpUI@traveldairy-

dev.tvrdw.mongodb.net/TravelDairy-Dev --collection Shape --type json --out 

./Shape_Collection.json 
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11. Traffic Segment Collection Dashboard (TrafficSegment) 
 

The traffic segment collection contains the list of segments for each route for specific traffic 

conditions. The TEC codes define the traffic effect conditions and are found in ISO 21219-15. The TEC 

codes are described for the sequence of segments for which the traffic conditions apply. The 

segment sequence is defined by the starting sequence number and ending sequence number.  

Table 10: Traffic Segment Collection Dashboard (TrafficSegment) 

Data Name Description 

Object id  

CreatedAt 
The date and time that the segment data was created (or first entered 

into) in the database, e.g., 15 Sept 2021 at 17:39:20 UCT 

UpdatedAt 
The date and time that the segment data was updated in the database, 

e.g., 15 Sept 2021 at 17:39:20 UCT 

TEC object 

The TEC standard traffic code for traffic conditions, i.e., code from 1 to 

7 (see table 16 page 20 of ISO 21219-15) for definition of values from 1 

– 7. Also provide are main cause code for the traffic conditions – see 

table 20 page 17 of ISO 21219-15 

ShapeStart The starting segment sequence number for which the tec code applies 

ShapeEnd The ending segment sequence number for which the tec code applies 

Route id 
The route id code for the starting and ending segment sequence 

numbers, for example route VGjTABO6o6 

Export script file name Export_trafficsegment_collection_JSON.sh 

Export file name Trafficsegment_Collection.JSON 

Script: mongoexport --uri mongodb+srv://AndroidClient:T0lGPkcYhOWDjpUI@traveldairy-

dev.tvrdw.mongodb.net/TravelDairy-Dev --collection TrafficSegment --type json --out 

./TrafficSegment_Collection.json 
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12. Trip Collection Dashboard (Trip) 
 

The dashboard contains the trip information for the route driven and the associated chosen route. 

Table 11: Trip Collection Dashboard (Trip) 

Data Name Description 

Trip id 
Alphanumeric segment ID code for the route that was driven e.g., 

L5E1HnBezP 

DepartureAt  
The departure date and time of the driven route, e.g., 15 Sept 2021 at 

17:35:10 

ArrivalAt 
The arrival date and time of the driven route, e.g., 15 Sept 2021 at 

17:55:40 

CreatedAt 
The date and time that the segment data was created (or first entered 

into) in the database, e.g., 15 Sept 2021 at 17:39:20 UCT 

UpdatedAt 
The date and time that the segment data was updated in the database, 

e.g., 15 Sept 2021 at 17:39:20 UCT 

User id 
The user id for whom the routine was created, e.g., ANRRVmCk46 for 

Gary Hayes 

Selected Route The route was selected from the two alternatives, e.g., L1wd3YxS4X 

Duration The trip time in seconds 

Distance The length of the chosen trip in metres 

Export script file name Export_Trip_Collection_JSON.sh 

Export file name Trip_Collection.JSON 

Script: mongoexport --uri mongodb+srv://AndroidClient:T0lGPkcYhOWDjpUI@traveldairy-

dev.tvrdw.mongodb.net/TravelDairy-Dev --collection Trip --type json --out ./Trip_Collection.json 
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13. Waypoint Collection Dashboard (Waypoint) 
 

The dashboard contains the trip waypoint information for the route that was driven. Waypoints are 

an option and hence many trips to work will not have defined waypoints. 

Table 12: Waypoint Collection Dashboard (Waypoint) 

Data Name Description 

Waypoint id 
Alphanumeric segment waypoint ID code for the route that was driven 

e.g., 0KvEeECP9k 

CreatedAt 
The date and time that the segment data was created (or first entered 

into) in the database, e.g., 15 Sept 2021 at 17:39:20 UCT 

UpdatedAt 
The date and time that the segment data was updated in the database, 

e.g., 15 Sept 2021 at 17:39:20 UCT 

Name 
Waypoint name, e.g., Waypoint 1, Waypoint 2, etc. for all waypoints on 

the driven route 

Location 
The latitude and longitudinal coordinates of the waypoint/s that was 

defined 

Export script file name Export_Waypoint_Collection_JSON.sh 

Export file name Waypoint_Collection.JSON 

Script: mongoexport --uri mongodb+srv://AndroidClient:T0lGPkcYhOWDjpUI@traveldairy-

dev.tvrdw.mongodb.net/TravelDairy-Dev --collection Waypoint --type json --out 

./Waypoint_Collection.json 
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14. Route Overlap Calculation 
 

Route overlap can either be by distance of the overlapped segments, or by time of the overlapped 

segments. 

14.1 Route Distance Overlap 
 

An important variable for the estimation of discrete choice models for route choice is the extent of 

the route overlap.  The overlap of alternative routes in dense urban road networks is likely given that 

routes are likely to use common roads, especially higher order roads that offer reduced travel times 

(i.e., with higher capacity and higher speeds).  

The measurement of the route overlap by distance is calculated post-survey from the data 

presented in the parse dashboard from the alternative route segments. The proportion of route 

overlap is unique to each route. For example if two routes have a common section (or sections) 

totaling 2 km, and Route A has a total length of 10 km and Route B has a total length of 12 km, then 

the overlaps for each route are Route A = 2/10 = 20% and Route B = 2/12= 16.6%. 

The route segment data contained in parse dashboard RouteShape (see Error! Reference source not 

found.) can be used to quantify the route overlap. In this database the alternative route segments 

are listed. These can be exported to an Excel spreadsheet and a LOOKUP command used to identify 

common segments. The lengths of the segments are provided, and together with the total route 

lengths the common length proportions can be calculated. 

An example of two routes with a small overlap is shown in the following example for a trip from 

Rosebank to Hatfield in Pretoria on a Monday afternoon during the peak period (4 pm).  The choice 

sets for each alternative route are shown in the following figures. Route A is the western route and 

Route B the eastern route. 
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Figure 7: Route Overlap Example  

  

 

 

 

 

 

 

 

 

 

 

 

 

The  

RouteShape database segment numbers and sequences in an overlap analysis showed that there 

were a total of 74 route segments that overlapped totalling 1.74 km. Route A (58 km) has a total of 

844 segments and Route B (51 km) a total of 703. Therefore the proportion of overlap for Route A 

(total length 58 km) was 1.74/58 = 2.94% and for Route B (total length 51 km) was 1.74/51 = 3.37%.  

 

14.2 Route Time Overlap 
 

The route time overlap on the common route segments can also be calculated. This is done by 

extracting the common route segments as before, and then identifying the travel times of each of 

the common segments. 
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15. Interrogating and Formatting the RAPP-UP Output from JSON Files 
 

The RAPP-UP survey data is downloaded in JSON (Java Script Object Notation) file format from the 

remote database. The JSON data is not formatted. The data sets are separated by a combination of 

commas, periods, semicolons and more. An example of JSON output is shown below. The JSON file 

can be edited using a text editor such as UltraEdit or Notepad++. 

Figure 8: Example of RAPP-UP Output File in JSON Format 

  

In order to format the file and covert it to CSV format, it must be imported into Excel. To do this the 

following steps are required: 

i. Open Excel and open the JSON file. An import menu will pop up 

ii. Use the Delimited file type option and click enter 

iii. The next screen lets you ser the delimiters that separate the individual sets of data 

iv. Commas and colons are the most commonly used delimiters so set the comma delimiter and 

specify the colon delimiter in the “other” box 

v.  Then click Finish and the file will be imported into Excel  

vi. It may require further modification to remove unwanted characters such as “, ; { and } from 

a specific set of data 

vii. To do this use the Data / Text to Columns option and again set the delimiters you wish to 

specify. Note that you may need to add a column to the right of the data you wish to 

separate otherwise data may be overwritten 

viii. Several iterations of steps vi and vii may be required to fully format the data set 

ix. When finished, save the file as an Excel file and then again as a CSV file. The Excel file can be 

used to manipulate the data further if required, and the CSV file must be used for conversion 

to GPX, KML and MKZ files. 

Note that the preparation of the CSV file is required before conversion to GPS or KML format. For 

example. A file to plot a route requires a consecutive set of longitude and latitude co-ordinates. The 

segment coordinates must be arranged in ascending order. This can be done by creating a file that 
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consists of three columns, i.e., the sequence no. in column 1; the latitude value in decimal degrees  

in columns two with the heading lat; and the longitude coordinate in decimal degrees in column 3 

under the heading lon. The following figure shows the format. Note that the lat coordinate will be 

negative in the southern hemisphere.  

The recommended free platform for the conversion of CSV files to GPX, kML or KMZ format is GPS 

Visualizer at the following address: https://www.gpsvisualizer.com 

Figure 9: Format of a CSV File of Sequenced Route Coordinates for Conversion to GPS or KML 
Format for Plotting 
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