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A B S T R A C T

Informative frequency band identification methods are used to automatically design bandpass filters to enhance
fault signatures in vibration measurements. Blind and targeted features can be used to guide the frequency
band selection process. Blind features’ performance is impeded when there are dominant non-stationary
extraneous components, whereas targeted features’ performance is impeded when the characteristic frequency
of the machine component is unknown, erroneously estimated or the damaged component is not targeted.
An anomalous frequency band identification method is proposed that utilises the available historical data to
detect weak damage components that deviate from the baseline or reference condition. This makes it possible to
ignore dominant extraneous components that are also present in the historical dataset. The proposed method
is analysed and compared against conventional and feature ratio methods on numerical and experimental
datasets. The results demonstrate that the proposed method has much potential for identifying informative
frequency bands for fault detection.
. Introduction

Gearboxes are widely used in the power generation and mining
ndustries [1,2]. Condition monitoring is employed on critical gear-
oxes for incipient fault detection, fault component identification and
ault trending to detect a deterioration in their health [1,3]. Gear and
earing damage manifest as changes in the vibration signature of the
ystem; and therefore vibration-based diagnostics and prognostics are
uch researched [4–7]. However, the performance of the vibration-

ased methods is impeded by varying operating conditions, by the
resence of non-Gaussian or impulsive noise and by weak fault sig-
atures masked by dominant signal components such as extraneous
omponents (e.g. electromagnetic interference) [8–10].

The damage information often manifests in narrow frequency bands
11–13]. Therefore, the fault signatures can be enhanced by extracting
he signals from the aforementioned frequency bands using bandpass
ilters or by applying matched filters [14]. The damage components
ften result in amplitude modulation and therefore the squared enve-
ope spectrum can be used to identify the underlying periodicities in
he amplitude modulation and the synchronous average of the squared
nvelope can be used to visualise the modulation caused by the damage
e.g. to determine whether the damage is potentially spread over
ultiple teeth or localised to a single tooth) [12].

∗ Corresponding author.
E-mail addresses: stephan.schmidt@up.ac.za (S. Schmidt), konstantinos.gryllias@kuleuven.be (K.C. Gryllias).

Informative frequency band selection methods such as the kur-
togram and its extensions [15–17], the protrugram [18], the sparso-
gram [19], the infogram [20], the autogram and its improvements [21–
23], the distcsgram [24], the entrogram [25], the IESFOgram [26] and
the PESOgram [27] are some of the methods that have been used to en-
hance weak fault signatures. Hebda-Sobkowicz et al. [28,29] proposed
and compared methods for informative frequency band identification
under non-Gaussian noise conditions. Ahsan and Bismor [30] used the
harmonic search function with different kurtosis-based fitness functions
for selecting the frequency band. Smith et al. [11] distinguished be-
tween blind and targeted demodulation-band selection methods and
compared the performance of existing blind and targeted methods
against the log-cycligram.

Targeted features extract the fault symptoms of specific cyclic com-
ponents (e.g. the peak of the ball-pass outer race order in the envelope
spectrum), whereas, blind features do not make any assumptions about
the cyclic orders of the fault symptoms [11]. More specifically, blind
features such as the spectral kurtosis [14], negentropy [20], Gini in-
dex [31] and its improvements [32], L2/L1-norm ratio [31,33], and
Hoyer index [34] do not require prior knowledge about which mechan-
ical component (e.g. inner race of a bearing) is damaged to guide the
frequency band selection. For example, damaged signals are expected
vailable online 9 September 2023
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to be sparse in the envelope spectrum, and therefore the sparsity in the
squared envelope spectrum of a bandlimited signal [31,33] can be used
to find informative frequency bands. In contrast, targeted features such
as the indicator of cyclostationarity aim to identify fault components of
specific pre-selected mechanical components [11]. This is specifically
performed by targeting the characteristic frequencies or orders of the
potentially damaged components, e.g. the inner race bearing is targeted
by using the ball pass order of the inner race [11,12,26,35].

Blind methods can be used to identify multiple frequency bands
with potential signal components of interest for further interroga-
tion. However, it is desired to only isolate the damage component
when performing automatic fault detection. The performance of blind
methods for single frequency band identification is impeded by the
presence of extraneous components [12,36]. Since targeted methods
are calculated for specific pre-selected components (e.g. the inner race
bearing damage component), they are much less affected by extraneous
impulses or repetitive transients [12]. However, the implementation
of the methods is impeded when the kinematics of the system is
unknown, when the characteristic frequency of a damaged component
is unknown, or when the damaged component is not targeted. This can
lead to false negatives (i.e. damage is not detected), which ultimately
would result in a delayed detection or even unexpected breakdowns.
Therefore, there is an incentive to find features that do not require the
fault components to be known a priori.

We expect that condition monitoring measurements are measured
on a regular basis to enable early damage detection and to perform
fault trending (e.g. [37]) and therefore it is assumed that historical
data are available that can be utilised for improved frequency band
identification and detection. Hong et al. [38] used the enhanced kur-
togram, a Gaussian mixture model and principal component analysis
to identify fault states for classification. Hou et al. [39] identified that
the kurtogram is impeded by extraneous components and therefore
proposed a data-aided method that uses healthy and damaged data
for frequency band identification. Udmale and Singh [40] combined
the kurtogram with an extreme learning machine for automatic fault
classification.

Historical fault data are scarce and therefore methods are also
required for cases where only healthy historical data or data from a
reference condition are available. Hou et al. [41] used the difference
spectrum decomposition between reference signals and the signal under
consideration for fault enhancement. In the frequency band identi-
fication field, the SKRgram uses the ratio of the kurtogram feature
plane of a gearbox in an unknown condition to the kurtogram feature
plane of a healthy system to identify important frequency bands [42].
Different features have also been used in the development of similar
feature planes (e.g. [43,44]). We refer to these methods as feature ratio
methods in this work.

Feature ratio methods require the selection of a measurement for
constructing the reference feature plane [42]. However, there are usu-
ally many historical measurements available that can be utilised to
identify important frequency bands and therefore the selection of only
a single measurement for constructing the reference feature plane
needs to be improved. Therefore, a frequency band identification ap-
proach that utilises all of the available historical data is needed to
perform automatic frequency band identification. Hence, in this work
an anomalous frequency band identification method is proposed that
uses all available healthy historical data to identify frequency bands
with potential damage. It is intended for applications where historical
data is available in a reference condition and deviations from this
reference condition needs to be detected. More specifically, in this
work, the proposed method is implemented to detect bearing damage
in a numerical gearbox model and tested to detect gear damage in
experimental data. The method is compared to conventional frequency
band identification methods and to the feature ratio methods.
2

In summary, the contributions of this work are as follows: D
• A new method is proposed to incorporate historical data in the
frequency band identification process. This makes it possible to
move from the conventional methods of finding frequency bands
that maximise features, to finding frequency bands that shows the
largest deviations from the reference condition.

• It is shown that the proposed method can naturally incorporate
all of the reference historical data to support the frequency band
identification process and does not require the a priori selection
of a specific reference signal.

• The proposed method is compared to conventional frequency
band identification methods and feature plane ratio methods on
numerical and experimental datasets acquired under constant
and time-varying operating conditions respectively. The results
demonstrate the potential of the proposed method.

The layout of this work is as follows. The proposed method is
presented in Section 2. Thereafter, the method is evaluated and com-
pared to conventional and feature-ratio frequency band identifica-
tion methods on numerical gearbox data in Section 3 and on exper-
imental gearbox data in Section 4. The work is finally concluded in
Section 5. Appendix A contains more information on the numerical
gearbox model.

2. Anomalous frequency band identification method

Firstly, an overview is presented of a conventional frequency band
identification method and of the proposed anomalous frequency band
identification method. The different steps of the proposed anoma-
lous frequency band identification method are discussed in detail in
Sections 2.1–2.4.

The conventional frequency band identification method, shown in
Fig. 1(a), constructs a feature plane by extracting features from a set of
bandpass filtered signals. This feature plane, denoted 𝜳 , is maximised
to find the frequency band of interest. This process is described in
Section 2.1.

In contrast to the conventional method, the proposed method con-
tains two phases: In the training phase, shown in Fig. 1(b), it is assumed
that 𝑁 historical measurements are available from the machine in
a reference condition. A feature plane is calculated of each signal
using conventional methods, with the feature plane of the 𝑛th signal
denoted 𝜳 𝑛 whereafter the parameters of the proposed feature plane
are estimated from the historical data, with the estimated parameters
denoted

{

�̂�ℎ
}

. In the application phase shown in Fig. 1(c), the esti-
mated parameters are used to calculate an anomalous feature plane
𝜩 of a new signal. The feature plane is subsequently maximised to
identify the feature band of interest [𝑓 − 1

2 ⋅ 𝛥𝑓, 𝑓 + 1
2 ⋅ 𝛥𝑓 ]. The

training and application phases are discussed in Section 2.2 and the
frequency band identification process is described in Section 2.3. The
measured signal is subsequently bandpass filtered using the identified
frequency band [𝑓 − 1

2 ⋅ 𝛥𝑓, 𝑓 + 1
2 ⋅ 𝛥𝑓 ] and analysed for damage as

escribed in Section 2.4. The proposed method, in Figs. 1(b)– 1(c),
ses deviations from the healthy signal for informative frequency band
etection, which makes it more sensitive to damage and less sensitive to
xtraneous components. The benefits of the proposed method over the
onventional method and feature ratio methods are discussed further
n detail in Section 2.3.

.1. Conventional feature plane decomposition

Conventional feature plane decomposition methods are also used
o construct the frequency ratio methods and the proposed method.
herefore, a brief overview of the essential concepts of the conventional
eature plane decomposition methods is first presented.

Before applying the conventional feature plane decomposition met
ods, a feature, that is sensitive to damage, needs to be identified.
amaged rotating mechanical components often result (i) in an increase
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Fig. 1. The conventional and proposed anomalous frequency band identification methods are presented with the proposed method separated into a training and application phase.
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in repetitive impulses in the time domain, (ii) in the presence of
statistically significant components in the cyclic spectrum, and (iii) in
the increase of the impulsiveness of the time domain signal. There-
fore, measures such as the kurtosis, negentropy and sparsity indicators
(e.g. L2/L1, Gini, Hoyer) are often utilised in the frequency band iden-
tification process [11,14,15,20,31,34]. Even though any feature can
be utilised in this method, the proposed method will be implemented
and compared using the Gini index, the negentropy and the Hoyer
index. These blind features are selected since they have performed very
well to improve the damage detection capabilities of frequency band
identification methods [20,31,34,45]; the negentropy performed better
than all the sparse measures considered in Ref. [46]; the Hoyer index
is better suited than the L2/L1-ratio according to Ref. [47]; and the
Gini index performed well relative to other the sparsity measures in
Ref. [31].

The first step of the process is to decompose the signal into a
time–frequency domain for a given frequency resolution 𝛥𝑓 . This is
erformed using the Short-Time Fourier Transform (STFT) as described
n Ref. [20] in this work. The STFT with a frequency resolution of
𝑓 is denoted STFT(𝑡; 𝑓, 𝛥𝑓 ) at a time step 𝑡 and a frequency 𝑓 . The
TFT is used to calculate the features for different combinations of 𝑓
nd 𝛥𝑓 . This makes it possible to identify the optimal frequency band
𝑓 − 𝛥𝑓∕2, 𝑓 + 𝛥𝑓 ]. The reader is referred to Refs. [11,15] for more
nformation on different decomposition methods.

Subsequently, the features are extracted from the STFT. The Gini
ndex measures the degree of inequality in a distribution or sparsity in
ata [31,34]. The Gini index is defined by [31]:

(𝑓, 𝛥𝑓 ) = 1 − 2 ⋅
𝑁
∑ S̃E(𝑡𝑛; 𝑓, 𝛥𝑓 )

‖SE(𝑡𝑛; 𝑓, 𝛥𝑓 )‖𝐿

⎛

⎜

⎜

𝑁 − 𝑛 + 1
2

𝑁

⎞

⎟

⎟

(1)
3

𝑛=1 1
⎝ ⎠
here the squared envelope SE(𝑡𝑛; 𝑓, 𝛥𝑓 ) is estimated from the STFT,
.e. SE(𝑡𝑛; 𝑓, 𝛥𝑓 ) = |STFT(𝑡𝑛; 𝑓, 𝛥𝑓 )|2. The sorted squared envelope sig-
al, denoted S̃E(𝑡𝑛; 𝑓, 𝛥𝑓 ), is sorted so that S̃E(𝑡1; 𝑓, 𝛥𝑓 ) ≤ S̃E(𝑡2; 𝑓, 𝛥𝑓 )
≤ S̃E(𝑡𝑁 ; 𝑓, 𝛥𝑓 ). The 𝐿1-norm of the squared envelope SE(𝑡𝑛; 𝑓, 𝛥𝑓 ),

alculated over the time axis, is denoted ‖SE(𝑡𝑛; 𝑓, 𝛥𝑓 )‖𝐿1
.

The negentropy [20]

(𝑓, 𝛥𝑓 ) =
⟨

|SE(𝑡𝑛; 𝑓, 𝛥𝑓 )|2
⟨

|SE(𝑡𝑛; 𝑓, 𝛥𝑓 )|2
⟩

𝑛

⋅ log

(

|SE(𝑡𝑛; 𝑓, 𝛥𝑓 )|2
⟨

|SE(𝑡𝑛; 𝑓, 𝛥𝑓 )|2
⟩

𝑛

)

⟩

𝑛

(2)

s the second indicator considered in this work. Antoni [20] proposed
he SE infogram, the SES infogram and the weighted average of the
E and the SES infogram. The SE infogram and the SES infogram
re calculated using the negentropy of the squared envelope and the
quared envelope spectrum respectively. The SE infogram measures the
mpulsiveness in the signal and is used in this work [20].

Lastly, the Hoyer index [34]

(𝑓, 𝛥𝑓 ) =

√

𝑁
√

𝑁 − 1
− 1

√

𝑁 − 1

∑𝑁
𝑛=1 |SE(𝑡𝑛; 𝑓, 𝛥𝑓 )|

√

∑𝑁
𝑛=1 |SE(𝑡𝑛; 𝑓, 𝛥𝑓 )|2

(3)

of the squared envelope is considered. The Hoyer index is closely
related to the L2/L1 norm; instead of maximising the L2/L1 ratio,
the negative of the normalised L1/L2 ratio is maximised. The fea-
ture calculation process is summarised in Fig. 2 for a specific fre-
quency bandwidth 𝛥𝑓 . This is repeated for different 𝛥𝑓 to con-
truct the feature planes. We used the following window lengths
4, 8, 16, 32, 64, 128, 256, 512] for the STFT calculation of all datasets.

In summary, each of the aforementioned features is evaluated for
different combinations of centre frequencies 𝑓 and frequency band-

widths 𝛥𝑓 to obtain a feature plane 𝜳 as shown in Fig. 3(a). This
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Fig. 2. The feature calculation process is summarised for a given 𝛥𝑓 and feature (e.g. Eqs. (1)–(3)). The STFT decomposition of the signal is calculated, with the STFT data
f the frequency band [𝑓𝑖 − 𝛥𝑓∕2, 𝑓𝑖 + 𝛥𝑓∕2] denoted 𝐒𝐓𝐅𝐓(𝑓𝑖 , 𝛥𝑓 ) = [STFT(𝑡1; 𝑓𝑖 , 𝛥𝑓 ), STFT(𝑡2; 𝑓𝑖 , 𝛥𝑓 ),… STFT(𝑡𝑁 ; 𝑓𝑖 , 𝛥𝑓 )]. The frequency resolution 𝛥𝑓 is dependent on the window
ength. The process is repeated for all candidate 𝛥𝑓 values to construct the feature plane in Fig. 3(a).
Fig. 3. Examples of conventional and the anomalous feature planes are presented with different centre frequencies denoted 𝑓𝑘 and different frequency bandwidths denoted 𝛥𝑓𝑗 ,
here 𝛥𝑓1 > 𝛥𝑓2 > 𝛥𝑓3. The conventional feature associated with the centre frequency 𝑓𝑖 and frequency bandwidth 𝛥𝑓𝑗 is denoted 𝜓(𝑓𝑖 , 𝛥𝑓𝑗 ) and used to construct the conventional

eature plane 𝜳 , i.e. 𝜳 consists of all the centre frequencies and frequency bandwidths shown in (a). The anomalous feature plane construction process is described in Section
.2. The anomalous feature plane, i.e. the anomalous feature associated at the centre frequency 𝑓𝑖 and frequency bandwidth 𝛥𝑓𝑗 , are denoted 𝜉(𝑓𝑖 , 𝛥𝑓𝑗 ) and used to construct the
nomalous feature plane 𝜩. Eq. (5) is used to calculate each 𝜉(𝑓𝑖 , 𝛥𝑓𝑗 ). This is only an example of a feature plane; other feature plane decomposition methods are discussed in
efs. [11,15]. .
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rocess is used to obtain the conventional feature planes in Fig. 1. The
eature plane is also often used to visualise the objective function of the
requency band identification problem.

.2. Anomalous feature plane calculation (training and application)

The objective is to find a method to identify anomalous frequency
ands in the feature plane. Feature ratio frequency band identification
ethods (e.g. SKRgram), divide the feature of the signal in an unknown

ondition 𝜓(𝑓, 𝛥𝑓 ) by the feature from a measurement in the historical
dataset 𝜓𝑛(𝑓, 𝛥𝑓 ) to construct the feature plane, i.e.

𝜅(𝑓, 𝛥𝑓 ) =
𝜓(𝑓, 𝛥𝑓 )
𝜓𝑛(𝑓, 𝛥𝑓 )

(4)

In contrast, the proposed anomalous feature plane of a signal 𝑥(𝑡)
as the following form for the frequency band [𝑓 − 1

2 ⋅ 𝛥𝑓, 𝑓 + 1
2 ⋅ 𝛥𝑓 ]:

(𝑓, 𝛥𝑓 ) =
𝜓(𝑓, 𝛥𝑓 ) − 𝑚(𝑓, 𝛥𝑓 )

𝑠(𝑓, 𝛥𝑓 )
(5)

here 𝜓(𝑓, 𝛥𝑓 ) is the conventional feature plane of the signal 𝑥(𝑡). The
nomalous feature plane has two sets of parameters for each frequency
and, the location 𝑚(𝑓, 𝛥𝑓 ) and scaling 𝑠(𝑓, 𝛥𝑓 ) parameters. The pa-
ameters 𝜽ℎ(𝑓, 𝛥𝑓 ) = [𝑚(𝑓, 𝛥𝑓 ), 𝑠(𝑓, 𝛥𝑓 )] are functions of the centre
requency 𝑓 and bandwidth 𝛥𝑓 respectively. Eq. (5) is used for all
onsidered centre frequencies and frequency bandwidths to construct
he anomalous feature plane 𝜩 as shown in Fig. 3(b).

In the training phase of the proposed method, the parameters of
4

he anomalous feature plane, are estimated from the historical data r
n two steps. In the first step of the training phase, a feature plane
i.e. Fig. 3(a)) is calculated for each measurement in the historical
ataset as shown in Fig. 1(b). The feature plane of the 𝑛th measurement
s denoted 𝜳 𝑛. Each feature plane consists of features calculated from a
ombination of centre frequencies 𝑓 and frequency bandwidths 𝛥𝑓 . The
eature associated with the frequency band [𝑓 − 1

2 ⋅ 𝛥𝑓, 𝑓 + 1
2 ⋅ 𝛥𝑓 ], cal-

ulated from the 𝑛th measurement in the historical dataset, is denoted
𝑛(𝑓, 𝛥𝑓 ). The set of 𝑁 features for the frequency band [𝑓− 1

2 ⋅𝛥𝑓, 𝑓+
1
2 ⋅

𝛥𝑓 ] is denoted {𝜓𝑛(𝑓, 𝛥𝑓 )} = {𝜓1(𝑓, 𝛥𝑓 ), 𝜓2(𝑓, 𝛥𝑓 ),… , 𝜓𝑁 (𝑓, 𝛥𝑓 )} and
sed to find the parameters 𝜽ℎ(𝑓, 𝛥𝑓 ) = [𝑚(𝑓, 𝛥𝑓 ), 𝑠(𝑓, 𝛥𝑓 )] of Eq. (5).

In the second step, after the conventional feature planes have been
alculated, the parameters of each frequency band [𝑓 − 1

2 ⋅𝛥𝑓, 𝑓 +
1
2 ⋅𝛥𝑓 ]

are estimated from the historical dataset {𝜓𝑛(𝑓, 𝛥𝑓 )} as follows: The
location parameter is set to the expected value of the feature from a
machine in the reference condition, i.e.

𝑚(𝑓, 𝛥𝑓 ) = E𝜓∼𝑝𝑟𝑒𝑓 (𝜓 ;𝑓,𝛥𝑓 ){𝜓(𝑓, 𝛥𝑓 )} (6)

here E𝜓∼𝑝𝑟𝑒𝑓 (𝜓 ;𝑓,𝛥𝑓 ){𝜓(𝑓, 𝛥𝑓 )} denotes the expected value of the fea-
ure under the (unknown) probability density function (pdf) from the
achine in a reference condition denoted 𝑝𝑟𝑒𝑓 (𝜓 ; 𝑓, 𝛥𝑓 ) for the fre-

uency band [𝑓 − 1
2 ⋅ 𝛥𝑓, 𝑓 + 1

2 ⋅ 𝛥𝑓 ]. The squared scaling parameter
can be estimated from

𝑠2(𝑓, 𝛥𝑓 ) = E𝜓∼𝑝𝑟𝑒𝑓 (𝜓 ;𝑓,𝛥𝑓 )
{

(𝜓(𝑓, 𝛥𝑓 ) − 𝑚(𝑓, 𝛥𝑓 ))2
}

(7)

hich is also the variance of the feature 𝜓(𝑓, 𝛥𝑓 ) from the machine in a

eference condition. These parameters are estimated with Monte Carlo
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integration as follows:

�̂�(𝑓, 𝛥𝑓 ) = 1
𝑁

𝑁
∑

𝑛=1
𝜓𝑛(𝑓, 𝛥𝑓 ) (8)

and

�̂�2(𝑓, 𝛥𝑓 ) = 1
𝑁

𝑁
∑

𝑛=1

(

𝜓𝑛(𝑓, 𝛥𝑓 ) − �̂�(𝑓, 𝛥𝑓 )
)2 (9)

where 𝜓𝑛(𝑓, 𝛥𝑓 ) denotes the feature of the 𝑛th historical measurement
rom the machine in the reference condition, which we assume are sam-
led from 𝑝𝑟𝑒𝑓 (𝜓 ; 𝑓, 𝛥𝑓 ). Eqs. (8) and (9) need to be used for all centre

frequency–frequency bandwidth pairs in the feature plane (e.g. Fig. 3)
and therefore a set of parameters {�̂�ℎ} = {�̂�ℎ(𝑓1, 𝛥𝑓1), �̂�ℎ(𝑓2, 𝛥𝑓2)…} are
obtained, whereafter Eq. (5) is used to calculate the anomalous feature
plane.

For finite measurements 𝑁 , the Monte Carlo integration only pro-
vides estimates of the parameters. The estimator in Eq. (9) is biased
for small 𝑁 and therefore 1

𝑁 can be replaced with 1
𝑁−1 to correct for

the bias. It is however recommended that the historical measurements
should be representative of the machine under its normal operating
conditions and a large amount of representative measurements should
be used to ensure the Monte Carlo estimates in Eqs. (8) and (9) are
accurate. We have, however, found that 40 historical measurements
are adequate to obtain acceptable results for the considered datasets.
The historical measurements should be acquired from the machine in
a reference condition (e.g. a new machine, machine after corrective
maintenance was performed), whereafter deviations from the reference
condition are detected.

The proposed anomalous frequency plane has a few properties that
are beneficial when compared against conventional and feature ratio
methods.

Firstly, the expected value of the numerator 𝜓(𝑓, 𝛥𝑓 ) − 𝑚(𝑓, 𝛥𝑓 ) is
zero if the frequency band does not contain anomalous information.
This is reminiscent of the classical spectral features such as the spectral
kurtosis, the L2/L1 norm, and the Gini index where often a constant is
subtracted to ensure that the expected value of the feature is zero under
Gaussian noise, e.g. the spectral kurtosis has the form 𝜓(𝑓, 𝛥𝑓 ) − 2 and
he L2/L1 norm has the form 𝜓(𝑓, 𝛥𝑓 ) −

√

2 if the signal is complex
aussian. Hence, the baseline is usually Gaussian stationary noise
ith the conventional frequency band identification method. With the
roposed method, the baseline is given by 𝑚(𝑓, 𝛥𝑓 ) which is based
n the reference machine’s expected behaviour in the frequency band
nd deviations from this reference is used for identifying the infor-
ative frequency band. This is expected to make it more sensitive to
amaged components, which manifest as deviations from the reference
ondition.

Secondly, the negative log-likelihood, which is frequently used for
nomaly detection, has the following form: − 1

2 log(2𝜋) − log 𝑠(𝑓, 𝛥𝑓 ) −
1
2 ⋅

(

𝜓(𝑓,𝛥𝑓 )−𝑚(𝑓,𝛥𝑓 )
𝑠(𝑓,𝛥𝑓 )

)2
if the feature is Gaussian distributed with a

ean 𝑚(𝑓, 𝛥𝑓 ) and variance 𝑠2(𝑓, 𝛥𝑓 ). The negative log-likelihood can
be written in terms of the proposed feature as follows: − 1

2 log(2𝜋) −
log 𝑠(𝑓, 𝛥𝑓 ) − 1

2 ⋅ 𝜉(𝑓, 𝛥𝑓 )2. The negative log-likelihood is insensitive to
the sign of the deviation 𝜓(𝑓, 𝛥𝑓 ) −𝑚(𝑓, 𝛥𝑓 ) due to the squaring oper-
ation, however, we are usually interested in positive deviations when
performing diagnosis (e.g. the signal usually becomes more leptokurtic
or more sparse when the signal is damaged). This is the rationale
behind using Eq. (5) instead of the negative log-likelihood and instead
of |𝜉(𝑓, 𝛥𝑓 )|2.

Thirdly, in contrast to feature ratio methods, the proposed method
incorporates the variance of the feature in the anomaly score calcula-
tion. More specifically, Eq. (5) normalises the distance of the observed
feature from the baseline, i.e. 𝜓(𝑓, 𝛥𝑓 )−𝑚(𝑓, 𝛥𝑓 ) by the standard devia-
tion 𝑠(𝑓, 𝛥𝑓 ) of the reference feature in the frequency band. This means
that frequency bands with large variations in the reference dataset will
have a smaller effect on the anomaly score than frequency bands with
smaller variations. This is expected to improve the reliability of the
5

proposed method over equivalent feature ratio methods. p
2.3. Frequency band identification

The objective of frequency band identification methods is to au-
tomatically find the frequency band [𝑓 − 𝛥𝑓∕2, 𝑓 + 𝛥𝑓∕2] with po-
tential damage information. The classical informative frequency band
identification approaches solve the following optimisation problem

argmax
𝑓,𝛥𝑓

𝜓(𝑓, 𝛥𝑓 ) − 𝐶 (10)

or the preselected features, e.g. Eqs. (1)–(3). Since the feature plane
ontains by construction discrete centre frequencies and frequency
andwidths (e.g. Fig. 3), the maximisation process can be efficiently
olved by searching for the optimal combination of centre frequencies 𝑓
nd bandwidths 𝛥𝑓 on the grid. The constant 𝐶 is usually the expected
alue of the feature for a Gaussian stationary signal. Since 𝐶 is constant
ver all frequency bands, it is equivalent to solve the conventional
requency band optimisation problem without the constant, i.e. only
aximising 𝜓(𝑓, 𝛥𝑓 ). A minimisation problem (e.g. if a feature needs

o be minimised) can be converted to a maximisation problem by
ultiplying the feature with −1, i.e. −𝜓(𝑓, 𝛥𝑓 ). The proposed method

olves the following problem

rgmax
𝑓,𝛥𝑓

𝜉(𝑓, 𝛥𝑓 ) (11)

o determine the informative frequency bands. The difference be-
ween the proposed method in Eq. (11) and the conventional method
n Eq. (10) is highlighted by substituting Eq. (5) in Eq. (11) to obtain

rgmax
𝑓,𝛥𝑓

𝜓(𝑓, 𝛥𝑓 ) − �̂�(𝑓, 𝛥𝑓 )
�̂�(𝑓, 𝛥𝑓 )

(12)

hich can be written in a similar form to Eq. (10):

rgmax
𝑓,𝛥𝑓

𝜓(𝑓, 𝛥𝑓 )
�̂�(𝑓, 𝛥𝑓 )

+ �̂�(𝑓, 𝛥𝑓 ), with �̂�(𝑓, 𝛥𝑓 ) = −
�̂�(𝑓, 𝛥𝑓 )
�̂�(𝑓, 𝛥𝑓 )

(13)

he proposed method uses the historical data’s feature plane behaviour
e.g. its estimated expected value �̂�(𝑓, 𝛥𝑓 ) and estimated variance
̂2(𝑓, 𝛥𝑓 ) in a specific frequency band) to determine the importance of
he frequency band [𝑓 −𝛥𝑓∕2, 𝑓+𝛥𝑓∕2]. In contrast to solving Eq. (10),
he proposed method scales the feature by the reciprocal of the scaling
arameter �̂�(𝑓, 𝛥𝑓 ) in the band and adds a frequency band dependent
onstant �̂�(𝑓, 𝛥𝑓 ) as shown in Eq. (13). Therefore, frequency bands
ith large variances are penalised. Ultimately, the proposed method

inds the frequency band with the largest relative increase in feature
rom the reference condition as shown in Eq. (12), which makes it much
ess sensitive to extraneous components and therefore it is expected to
erform much better than conventional methods.

In the next section, the processing and analysis of the measured
ignal using the data are discussed.

.4. Processing and analysis

The measured vibration signal 𝑥(𝑡) can be filtered using the iden-
ified frequency band [𝑓 − 𝛥𝑓∕2, 𝑓 + 𝛥𝑓∕2] and subsequently analysed
or damage. In this work, the Squared Envelope Spectrum (SES) and the
ynchronous Average of the Squared Envelope (SASE) of the bandpass
iltered signal are calculated [12].

The bandpass filtered signal, with a passband over the domain
𝑓 − 𝛥𝑓∕2, 𝑓 + 𝛥𝑓∕2], is denoted |𝑥𝑓 (𝑡; 𝑓, 𝛥𝑓 )|

2 in the time domain and
he order tracked filtered signal is denoted |𝑥𝑓 (𝜑; 𝑓, 𝛥𝑓 )|

2 where 𝜑 is
he angle variable. The squared envelope spectrum is estimated with

ES𝑥 (𝛼; 𝑓, 𝛥𝑓 ) = 𝜑→𝛼{|𝑥𝑓 (𝜑; 𝑓, 𝛥𝑓 )|2} (14)

here is the Fourier transform 𝜑→𝛼 of the squared bandpass filtered
ignal |𝑥𝑓 (𝜑; 𝑓, 𝛥𝑓 )|

2. The Fourier transform converts the signal from
he angle domain 𝜑 to the cyclic domain 𝛼. The squared envelope is

owerful to identify the periodicity of the modulation in the signal and
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can therefore be used to identify the characteristic frequency (or order)
of the damaged components. The normalised SES [48]

NSES𝑥 (𝛼; 𝑓, 𝛥𝑓 ) =
(SES𝑥 (𝛼; 𝑓, 𝛥𝑓 )

SES𝑥 (0; 𝑓, 𝛥𝑓 )

)2
(15)

is used to compare the performance of the methods in this work. The
normalised SES can be used to calculate an indicator of cyclostationar-
ity ICS𝑥 =

∑

𝛼 NSES𝑥 (𝛼) for example.
The synchronous average of the squared envelope can be used to

isualise the modulation and understand the nature of the damage
e.g. is the damage localised to one tooth or is it potentially distributed
ver multiple teeth). The synchronous average of the squared envelope
s estimated with

ASE𝑥 (𝜑; 𝑓, 𝛥𝑓 ) =
1
𝐾

𝐾−1
∑

𝑘=0
|𝑥𝑓 (𝜑 + 𝑘 ⋅𝛷; 𝑓, 𝛥𝑓 )|2 (16)

where 𝛷 is the cyclic period of the component of interest in the angle
domain, e.g. the angle period of a gear rotation. The normalised SASE
is used in this work as basis for comparison. The normalised SASE is
defined as follows

nSASE𝑥 (𝜑; 𝑓, 𝛥𝑓 ) =
SASE𝑥 (𝜑; 𝑓, 𝛥𝑓 )

med{SASE𝑥 (𝜑; 𝑓, 𝛥𝑓 )}𝜑
(17)

where med{𝑥(𝑡)}𝑡 is the median of the function 𝑥(𝑡) over the vari-
able 𝑡. The median is used instead of the average to ensure that the
denominator is less affected by the damage information in the SASE.

In the next section, the method will be evaluated on numerical data,
whereafter the method will be investigated on experimental data in
Section 4.

3. Numerical investigation

In this section, the performance of the proposed method is evalu-
ated on numerical gearbox data and its performance is compared to
conventional and feature ratio frequency band identification methods.
To highlight the contributions of the proposed method, a signal is
generated that has dominant impulsive components that are unre-
lated to the damage of interest. Dominant extraneous impulses can
be encountered when the operating environment or other mechani-
cal components generate impulsive components that are consistently
present in the vibration signal. The impulsive components will manifest
in the baseline signal and in the new signals from the machine in an
unknown condition. The impulsive components can mask weak damage
components in the signal and delay detection.

The model by Abboud et al. [49] contains distributed gear fault and
bearing fault signatures. To demonstrate the ability of the proposed
method to detect weak damage components despite the presence of
dominant extraneous components, the distributed gear fault compo-
nent will be used to model an extraneous impulsive component. The
distributed gear fault component is therefore purposefully included
in the reference dataset, i.e. we would like to enhance the bearing
damage despite the presence of this extraneous component. The model
is discussed in more detail in the next section.

3.1. Numerical gearbox model

A phenomenological gearbox model is used in this work to evaluate
the performance of the proposed anomalous frequency band method.
The phenomenological gearbox model is based on the work of Abboud
et al. [49]. The vibration measurement of the gearbox in its reference
condition is modelled as follows:

𝑥𝑐 (𝑡) = 𝑥𝑔𝑚𝑐 (𝑡) + 𝑥𝑑𝑔𝑑 (𝑡) + 𝑥𝑛(𝑡) (18)

he casing signal comprises of a gear mesh signal component 𝑥𝑔𝑚𝑐 (𝑡),
distributed gear damage component 𝑥𝑑𝑔𝑑 (𝑡) and a noise component
6

𝑛(𝑡). The data from Eq. (18) is used to generate hundred measurements a
hat will act as historical data. The distributed gear damage compo-
ent, which was proposed in Ref. [49] is used in this work to model
ominant extraneous impulsive components. We specifically include
he distributed gear damage component in the reference dataset to
emonstrate the performance of this method when dominant cyclic
omponents are present in the baseline signal. We would like to de-
ect frequency bands that deviate from the reference signal given
n Eq. (18).

The casing vibration signal with bearing damage is modelled as
ollows:

𝑐 (𝑡) = 𝑥𝑔𝑚𝑐 (𝑡) + 𝑥𝑑𝑔𝑑 (𝑡) + 𝐹𝑆𝑏𝑙𝑜 ⋅ 𝑥𝑏𝑙𝑜(𝑡) + 𝐹𝑆𝑏𝑙𝑖 ⋅ 𝑥𝑏𝑙𝑖(𝑡) + 𝑥𝑛(𝑡) (19)

here 𝑥𝑏𝑙𝑜(𝑡) is the outer race bearing damage component and 𝑥𝑏𝑙𝑖(𝑡)
s the inner race bearing damage component. The model in Eq. (19) is
sed to evaluate the ability of the method to detect anomalies due to
nner race and outer race bearing damage, despite the presence of the
ear damage component. The fault severity functions of the outer race
nd the inner race, denoted 𝐹𝑆𝑏𝑙𝑜 and 𝐹𝑆𝑏𝑙𝑖 respectively, are used to
odel either outer race bearing damage (i.e. 𝐹𝑆𝑏𝑙𝑖 = 0, 𝐹𝑆𝑏𝑙𝑜 = 1) or

nner race bearing damage (i.e. 𝐹𝑆𝑏𝑙𝑖 = 1, 𝐹𝑆𝑏𝑙𝑜 = 0) in this work.
The performance of the proposed method will be evaluated on

wo signals from the model; a signal with outer race bearing damage
i.e. 𝐹𝑆𝑏𝑙𝑖 = 0, 𝐹𝑆𝑏𝑙𝑜 = 1) and a signal with inner race bearing damage
i.e. 𝐹𝑆𝑏𝑙𝑖 = 1, 𝐹𝑆𝑏𝑙𝑜 = 0). The equations and parameters of the signal
omponents are included in Appendix A. The distributed gear damage
omponent excites a frequency band centred at 2.0 kHz and has a cyclic
rder of 1.0 shaft orders. The outer race bearing damage component
xcites a frequency band centred at 6.0 kHz and has a cyclic order of
.12 shaft orders. Lastly, the inner race bearing damage component
xcites a frequency band centred at 9.0 kHz and has a cyclic order
f 5.88 shaft orders. The sampling frequency of the simulated signal
s 40.0 kHz. The signal-to-noise ratio of the different components are
ummarised in Table A.3 in Appendix A.

The normalised SES of the raw signals are presented in Fig. 4 for the
wo considered cases. The squared envelope spectra are dominated by
he gear components, which makes it difficult to observe the evidence
f damage (e.g. the BPFO and its harmonics in Figs. 4(a) and 4(b)
nd the BPFI, its harmonics and its sidebands in Figs. 4(c) and 4(d)).
he results obtained by the conventional, feature ratio and proposed
ethods are compared against the raw signal’s results in the subsequent

ections.

.2. Conventional frequency band identification

The conventional frequency band identification method is applied
n the outer race and inner race bearing damage data of the numerical
earbox model in this section.

Firstly, the outer race bearing damage case is considered. The
eature planes of the three features, i.e. the Gini index, the Negentropy
nd the Hoyer index, are presented in Figs. 5(a)–5(c) respectively for
he outer race bearing damage signal. It is evident that there are
wo dominant frequency bands in the feature planes. The distributed
ear damage component manifest at 2.0 kHz, while the outer race
earing damage manifest at 6.0 kHz. Since the distributed gear damage
omponent is more dominant than the outer race bearing damage
omponent, it maximises the feature planes and is extracted for further
nalysis. These results are reflected in the squared envelope spectra
hown in Figs. 5(d)–5(f) and the zoomed squared envelope spectra in
igs. 5(g)–5(i). The squared envelope spectra only contain the gear
omponents attributed to the distributed gear damage at the first (1.0)
haft order and its harmonics and does not contain the bearing damage
omponents at 4.12 shaft orders. The inner race bearing damage case
s considered in Fig. 6 using the same procedure as the outer race
earing damage. The feature planes of the Gini index, the negentropy

nd the Hoyer index in Figs. 6(a)–6(c) are again dominated by the
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Fig. 4. The Squared Envelope Spectra (SES) of the two raw signals considered in this work.
dominant component and not by the inner race bearing damage com-
ponent. Therefore, the dominant is extracted for demodulation as seen
in the squared envelope spectra results in Figs. 6(d)–6(f); the first (1.0)
shaft order component is very dominant, while the inner race bearing
damage component at 5.88 shaft orders is missing. The zoomed views
of the SES in Figs. 6(g)–6(i) highlight that the fundamental inner race
bearing component is missing.

Therefore, the bearing damage is not detected using the conven-
tional method with the Gini index, the Hoyer index, and the negen-
tropy. The conventional methods perform as expected; the conventional
methods select the most dominant non-stationary component in the
signal (i.e. the distributed gear damage signal). However, the most
dominant sparse components are not always related to the health of the
machine under consideration (e.g. Ref. [36]). The proposed method is
needed to detect large deviations from the baseline sparsity as opposed
to the dominant sparse components itself.

3.3. Anomalous frequency band identification

The proposed method is applied with the procedure described in
Section 2. Firstly, 100 historical measurements were generated using
the model in Eq. (18), whereafter feature planes were extracted using
the Gini index, the negentropy and the Hoyer index as described in Sec-
tion 2.1. Thereafter, the feature planes of the historical measurements
were used with the procedure described in Section 2.2 and maximised
to find the anomalous frequency band with the procedure described in
Section 2.3.

The proposed method is applied on the outer race bearing damage
signal of the phenomenological bearing signal and the results are
presented in Fig. 7. The feature planes of the Gini index, the negentropy
and the Hoyer index in Figs. 7(a)–7(c) are dominated by the outer
race bearing damage component as this is the novel component in the
signal when comparing Eq. (19) to Eq. (18). This is reflected in the
squared envelope spectra of the different methods; the square envelope
spectra in Figs. 7(d)–7(f) contain dominant outer race bearing damage
components at 4.12 shaft orders and its harmonics. When comparing
the zoomed normalised squared envelope spectra in Figs. 7(g)–7(i) to
5(g)–5(i), we can conclude that it is possible to distinguish between the
7

fourth harmonic of the distributed gear component (at 4.0 orders) and
the outer race bearing damage component (at 4.12 orders). The damage
is also significantly enhanced when compared against the raw signal’s
results in Figs. 4(a) and 4(b).

The proposed method is also applied on the inner race bearing
damage signal and the results are presented in Fig. 8. The feature planes
of the proposed method, using the Gini index, the negentropy and
the Hoyer index, are shown in Figs. 8(a)–8(c). The feature planes are
dominated by the inner race bearing damage components at a spectral
frequency of 9.0 kHz. Therefore, the inner race bearing component is
extracted and observed in the squared envelope spectra in Figs. 8(d)–
8(f). The inner race bearing damage component of 5.88 shaft orders is
dominant in the squared envelope spectra of the three methods. Since
the inner race bearing damage rotates with the shaft, it will move
in and out of the load zone with each shaft rotation. This causes the
bearing impulses to be modulated by the shaft rotation and therefore
the squared envelope spectra contain dominant sidebands spaced at
1.0 shaft orders. Figs. 8(g)–8(i) show the fundamental component at
5.88 shaft orders and two sidebands on the left of the fundamental
component (i.e., at 5.88−1.0 = 4.88 orders and 5.88−2.0 = 3.88 orders).
It is therefore possible to distinguish between the sixth distributed gear
damage harmonic in Figs. 6(g)–6(i) and the first harmonic of the inner
race bearing damage component in Figs. 8(g)–8(i).

This example was specifically used to demonstrate that the proposed
method does not focus on the most dominant components, but the
most anomalous components. Since the distributed damage component
is present in the historical dataset used to establish the baseline, it
means that we are already aware of this component and would like
to detect deviations from this condition. Therefore, the dominant gear
component is ignored and the weaker damage component can be
extracted and characterised.

3.4. Feature ratio methods

The original SKRgram maximises the ratio of the kurtogram of a
signal in an unknown condition to the kurtogram of a healthy signal.
However, it is possible to generalise it to any feature, i.e.

𝜅(𝑓, 𝛥𝑓 ) =
𝜓(𝑓, 𝛥𝑓 ) (20)

𝜓𝑛(𝑓, 𝛥𝑓 )
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Fig. 5. The results of the conventional frequency band identification method are presented using the phenomenological bearing data with outer race bearing damage. Three
features were used to obtain the feature planes in Fig. 5(a)–Fig. 5(c). The normalised Squared Envelope Spectrum (SES) of the bandpass filtered signals is obtained with Equation
Eq. (15). The cyclic orders associated with the damage component is also superimposed on the SES and labelled as Expected.
where 𝜓(𝑓, 𝛥𝑓 ) is the feature calculated for the new signal and 𝜓𝑛(𝑓,
𝛥𝑓 ) denotes the feature of a measurement in the historical dataset.
Therefore, the new feature plane, obtained with the feature ratio and
denoted 𝑲, can be maximised for demodulation. This feature ratio
method has been applied for other features such as the Gini index [34],
the negentropy [44], and the Teager energy entropy [43].

To apply the method, two aspects need to be addressed. Firstly,
the denominator in the feature ratio, i.e. the reference feature in the
denominator, i.e. 𝜓𝑛(𝑓, 𝛥𝑓 ), should not approach zero (0) to avoid
numerical issues. Therefore, we did not subtract the constants from the
features (e.g. subtract 2 from the kurtogram feature).

Secondly, a measurement should be selected from the historical
dataset to obtain the feature in the denominator of Eq. (20). In this
work, the following procedure is applied:

• Calculate 𝜓𝑛(𝑓, 𝛥𝑓 ) for all historical datasets to obtain a set of
features for the frequency band 𝑓, 𝛥𝑓 . The set of features is
denoted {𝜓 (𝑖)

𝑛 (𝑓, 𝛥𝑓 )}.
• Apply Eq. (20) on all measurements to obtain a set of feature

ratios. Thereafter, identify the healthy measurement 𝑛 that max-
imises the feature ratio

𝜅(𝑓, 𝛥𝑓 ) = max
𝑛

{

𝜓(𝑓, 𝛥𝑓 )
𝜓𝑛(𝑓, 𝛥𝑓 )

}

(21)

to calculate the new feature plane denoted 𝑲 . The maximisation
operator is used in Eq. (21) to ensure that feature plane is the
most sensitive to anomalies.
8

• Maximise the feature plane 𝑲 to find the optimal frequency band
for demodulation.

The feature ratio method is applied on the outer race and inner race
bearing damage signals of the phenomenological model using the same
three features used in the previous investigations. The results of the
outer race bearing damage is presented in Fig. 9. The feature planes of
the three features, shown in Figs. 9(a)–9(c) are dominated by the outer
race bearing damage. The distributed gear damage, that was part of the
reference dataset, is absent in the feature planes.

The associated squared envelope spectra in Figs. 9(d)–9(f) cor-
roborate the observations of the feature planes; the frequency ratio
method is able to extract the bearing damage and therefore the squared
envelope spectrum is dominated by the outer race bearing damage
components. If the squared envelope spectra of the proposed method
and the feature ratio method are compared, it is observed that the
harmonics are low passed filtered in the feature ratio and therefore
higher harmonics are not as pronounced.

The feature ratio methods are applied on the inner race bearing
dataset and the results are presented in Fig. 10. The feature planes
in Figs. 10(a)–10(c) are dominated by the inner race bearing damage
component at 9.0 kHz. Therefore, the squared envelope spectra of the
bandpass filtered signal shown in Figs. 10(d)–10(f) contains evidence
of the damaged component.

When comparing the raw signals’ results in Fig. 4, the conventional
method’s results in Figs. 5 and 6, the proposed method’s results in
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Fig. 6. The results of the conventional frequency band identification method are presented using the phenomenological bearing data with inner race bearing damage. Three
features were separately applied and their respective feature planes and normalised Squared Envelope Spectra (SES) shown in this figure.
Figs. 7 and 8 and the frequency ratio method’s results in Figs. 9 and
10, we can conclude that it is beneficial to incorporate historical data
in the frequency band identification process if the features are blind,
i.e. if a specific component is not targeted. Even though this investi-
gation highlighted the benefits of incorporating historical data in the
frequency band identification method (i.e. both the proposed and the
feature ratio methods detected the weak damage component that was
not present in the historical data), the benefits of the proposed method
over the feature ratio methods still need to be demonstrated. In the
next section, the proposed method is compared to the conventional and
feature ratio frequency band identification methods on experimental
data.

4. Experimental investigation

In this section, the proposed method will be compared against
the conventional and the feature ratio frequency band identification
methods on experimental data that were acquired under time-varying
operating conditions. In the next section, the test-rig will be presented.

4.1. Experimental test-rig

The experimental test-rig is presented in Fig. 11. The test-rig con-
tains three helical gearboxes, an alternator and an electrical motor.
The electrical motor drives the system and the alternator dissipates the
rotational energy from the system. The centre of the three gearboxes,
referred to as the monitored gearbox in Fig. 11, is instrumented with
sensors and its gear (as opposed to pinion) is damaged.

The gearbox was monitored for damage using a 100 mV/g tri-axial
accelerometer. The axial component is monitored due to the dominant
9

axial excitations of the helical gearboxes. The rotational speed of the
system is measured using an optical probe and a zebra tape shaft
encoder. The geometrical imperfections of the zebra type shaft en-
coder are corrected using the Bayesian geometry compensation method
proposed by Diamond et al. [50]. The accelerometer was sampled at
25.6 kHz while the zebra tape shaft encoder was sampled at 51.2 kHz.

In the monitored gearbox, the pinion is healthy, while the gear is
damaged during the degradation experiments. The gear is fixed to the
reference shaft (i.e. the shaft with the zebra tape shaft encoder) and
therefore the modulation due to a damage tooth will have a periodicity
of 1.0 shaft orders.

Measurements were acquired from the healthy gearbox, whereafter
the gearbox was disassembled, the gear was removed and damaged, and
the gearbox was assembled and aligned. The dataset was acquired from
an accelerated fatigue test of the gear tooth shown in Fig. 12. Damage
was seeded in the gear tooth with an electric discharge machine and the
gear tooth before the test is shown in Fig. 12(a). The gear was inserted
in the gearbox and operated with the damaged tooth until it failed. The
gear after the completion of the experiment is shown in Fig. 12(b).

The time-varying operating conditions for all measurements consid-
ered in this work are presented in Fig. 13. The rotational speed of the
electrical motor and the applied load of the alternator were separately
controlled.

4.2. Results

The result section is structured as follows: Firstly, the results using
only the raw signal is presented in Section 4.2.1 to establish a baseline.
Thereafter, the results of the conventional method, the feature ratio
method and the proposed method are compared in Section 4.2.2.



Measurement 222 (2023) 113515S. Schmidt and K.C. Gryllias
Fig. 7. The results of the proposed anomalous frequency band identification method are presented using the phenomenological bearing data with outer race bearing damage.
Three features were separately applied and their respective feature planes and normalised Squared Envelope Spectra (SES) are shown in this figure.
4.2.1. Raw signal results
Four measurements of this dataset are considered in this work.

Measurements one to four were acquired after 23%, 45% and 65% and
85% of the experiment were completed respectively. The normalised
Synchronous Average of the Squared Envelope (SASE) and the nor-
malised Squared Envelope Spectra (SES) are presented in Fig. 14 for
the four measurements. The gear damage, which is located at 135
degrees in the normalised SASE, is not easily seen in Fig. 14. This is
corroborated by the squared envelope spectra in Fig. 14; the SES does
not contain clear evidence of the damaged components at 1 shaft order
and its harmonics.

4.2.2. Results of the different methods
The feature planes, the squared envelope spectra and the syn-

chronous average of the squared envelopes of the conventional, the
anomalous and the feature ratio frequency band identification methods
are compared in this section using the fourth measurement (i.e. the
case where the damage was the most pronounced). The conventional
frequency band identification method was applied on measurement
four of the considered dataset and the results are presented in Fig. 15.
The feature planes of the Gini index, the negentropy and the Hoyer
index are shown in Figs. 15(a)–15(c). The feature planes are dominated
by frequency bands in the higher spectral frequencies. The squared
envelope spectra associated with the bandpass filtered signals of the
feature planes are presented in Figs. 15(d)–15(f). The squared envelope
spectra show evidence of dominant cyclic components at 5.72 shaft
10
orders and its harmonics. These frequency components were even
present in the data from the healthy gearbox and are seen as extraneous
when monitoring the health of the gears. The synchronous average of
the squared envelope signals shown in Figs. 15(g)–15(i) do not contain
any useful information related to the health of the gears and therefore
the gear damage is not detected in these measurements.

The proposed anomalous frequency band identification method is
now considered. Sixty (60) measurements were used during the training
phase of the method. Firstly, the parameters of the proposed method
were obtained using the feature planes of 60 healthy measurements,
whereafter the method was applied with the procedure described in
Section 2.2 to obtain the anomalous feature plane. The results are
shown in Fig. 16. More specifically, the feature planes are presented
in Figs. 16(a)–16(c) for the Gini index, the negentropy and Hoyer
index respectively. The three feature planes are dominated in the same
spectral frequency region.

The squared envelope spectra of the bandlimited signals obtained
by following the procedure described in Section 2.3 are presented
in Figs. 16(d)–16(f). The squared envelope spectra show evidence
of strong modulation at the gear shaft rotation. The source of the
modulation is clear when observing the synchronous average of the
squared envelope spectra of the gear shown in Figs. 16(g)–16(i). The
damaged gear tooth results in modulation that is periodic with the
rotation of the gear shaft. Therefore, by using the synchronous average
of the squared envelope it is possible to determine that a small localised
region (e.g. one tooth) of the gear is damaged.
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Fig. 8. The results of the proposed anomalous frequency band identification method are presented using the phenomenological bearing data with inner race bearing damage.
Three features were separately applied and their respective feature planes and normalised Squared Envelope Spectra (SES) are shown in this figure.

Fig. 9. The results of the feature ratio frequency band identification method are presented using the phenomenological bearing data with outer race bearing damage. Three features
were separately applied and their respective feature planes and normalised Squared Envelope Spectra (SES) are shown in this figure.
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Fig. 10. The results of the feature ratio frequency band identification method are presented using the phenomenological bearing data with inner race bearing damage. Three
features were separately applied and their respective feature planes and normalised Squared Envelope Spectra (SES) are shown in this figure.

Fig. 11. The experimental test-rig is presented with the important components highlighted in (a). In (b), the input shaft is shown with the zebra tape shaft encoder and the
tri-axial accelerometer used in this work.

Fig. 12. The damaged gear before the start of the experiment and after the completion of the experiment are shown.
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Fig. 13. The operating conditions at the input shaft of the monitored gearbox are presented.

Fig. 14. The results of the raw signals for the four measurements, i.e. without applying the conventional, feature ratio and proposed methods.
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Fig. 15. The results of the conventional frequency band identification method applied to the fourth measurement of the experimental gearbox data are presented. The feature
plane, the normalised Squared Envelope Spectrum (SES) and the normalised Synchronous Average of the Squared Envelope (SASE) are presented for three features.
The feature ratio methods are now applied with the procedure
described in Section 3.4. The same measurements as the proposed
anomalous frequency band identification method was used for training.
The feature ratio method is applied on measurement four and shown
in Fig. 17. The feature planes using the Gini index, the negentropy and
the Hoyer index are presented in Figs. 17(a)–17(c) respectively. Even
though the negentropy and the Hoyer index show some evidence of the
gear damage in the lower frequency bands, the feature planes are max-
imised by a frequency band between 6 and 9 kHz. The squared envelope
spectra shown in Figs. 17(d)–17(f) and the synchronous average of the
squared envelope spectra shown in Figs. 17(g)–17(i) do not shown clear
evidence of the gear damage.

To further understand the difference between the proposed method
and the feature ratio methods’ performance, the standard deviation
in the frequency bands are quantified, with the results presented in
Fig. 18. The standard deviation of the different frequency bands of
the healthy measurements are presented in Figs. 18(a)–18(c) for the
Gini index, the negentropy and the Hoyer index. According to these
results, the higher frequency bands (6 kHz and higher) have larger
variations between the measurements than the lower frequency bands.
If this variance information is ignored, the frequency bands might be
erroneously detected as informative frequency bands. While the feature
ratio methods do not account for the variation in the frequency bands,
the proposed method uses this variance to calculate the deviation from
the reference condition. This highlights the benefits of the proposed
method.

Furthermore, to compare the performance of the three methods
on the additional measurements, the normalised synchronous average
of the squared envelope applied to the bandpass filtered signals of
Measurement 1–4 are presented in Fig. 19 for the three features.

The results further demonstrate the improved performance of the
proposed method; the proposed method is able to identify the frequency
14
Table 1
The computational time that was required for the numerical and experimental signals
are presented in seconds using 50 measurements. A computer with the following
properties were used: Processor Intel(R) Core(TM) i7-9750H CPU 2.60 GHz, 2592
MHz, 6 Cores, 12 Logical Processors. 32 GB RAM. The method was implemented in
python using SciPy 1.10.0. [51] and NumPy 1.23.5 [52].

Conv. feature plane Anomalous plane Anomalous plane
decomposition (training - Fig. 1(b)) (application - Fig. 1(c))
(per signal) (using 50 signals) (per signal)

Numerical 4.249 212.468 4.269
Experimental 4.714 235.724 4.815

band associated with the gear damage and therefore the gear damage
is visible in the SASE. The conventional frequency band identification
methods and the feature ratio methods are incapable of identifying the
gear damage components.

The computational time of the proposed method is summarised in
Table 1 for the numerical and the experimental datasets. The table
shows the conventional feature plane decomposition, present in all
steps in Fig. 1, the completion of the training step in Fig. 1(b) using 50
signals and the application of the method on a new signal in Fig. 1(c).
The most time-consuming part is the feature plane decomposition,
which needs to occur for each signal in the historical dataset and for
each new measurement that is evaluated. Fortunately, the historical
data only need to be processed during the training phase of the method.
There are also faster decomposition methods available (e.g. [15]) that
would improve the computational time of the method, however, this
is not in the scope of this work. The benefits of the proposed method
justify the additional time associated with anomalous feature plane
calculation.
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Fig. 16. The results of the proposed anomalous frequency band identification method applied to the fourth measurement of the experimental gearbox data are presented. The
feature plane, the normalised Squared Envelope Spectrum (SES) and the normalised Synchronous Average of the Squared Envelope (SASE) are presented for three features.

Fig. 17. The results of the frequency ratio frequency band identification method applied to the fourth measurement of the experimental gearbox data are presented. The feature
plane, the normalised Squared Envelope Spectrum (SES) and the normalised Synchronous Average of the Squared Envelope (SASE) are presented for three features.
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Fig. 18. The standard deviation of each frequency band of the healthy measurement dataset is presented for the three features.

Fig. 19. The normalised Synchronous Average of the Squared Envelope (SASE) of the bandlimited signals obtained with the three features used in the three methods, namely,
the conventional method, the Feature Ratio (FR) method and the proposed method. The results are presented for four measurements of the experimental gearbox dataset. The
normalised SASE is obtained by applying Eq. (17) to the bandlimited signals.
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5. Conclusion

A frequency band identification method is proposed in this work
to identify the frequency band with the most anomalous behaviour.
The method is compared to conventional frequency band identification
methods and feature ratio frequency band identification methods. In
numerical and experimental investigations, it is shown that the pro-
posed method is better suited for detecting impulsive components that
were not present in the reference dataset. Instead of using a Gaussian
stationary signal as a reference, the proposed method uses the healthy
historical data as a reference. Therefore, deviations from the healthy
baseline is used for frequency band identification, which reduces the
influence of extraneous signal components in the frequency band iden-
tification process and it makes the frequency band identification more
sensitive to anomalous components. These results were demonstrated
on the Gini index, the negentropy and the Hoyer index. Furthermore,
the proposed method incorporates all of the available healthy historical
data in the estimation of the anomalous frequency band, which results
in an improved performance over feature ratio methods.
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Appendix. Phenomenological model parameters

In this section, more detail on the phenomenological model is
presented. The model is based on the work by Abboud et al. [49].
The measurement model given by Eq. (19) consists of a gear mesh
component, a distributed gearbox component, an outer race bearing
damage component, an inner race bearing damage component and a
noise component.

The gear mesh component of the model is given by

𝑥𝑔𝑚𝑐 (𝑡) =𝑀 (𝜔(𝑡)) ⋅ ℎ𝑔𝑚𝑐 (𝑡)⊗
⎛

⎜

⎜

⎝

𝑁𝑔𝑚𝑐
∑

𝑘=1
𝐴(𝑖)
𝑔𝑚𝑐 ⋅ sin

(

𝑘 ⋅𝑁𝑡𝑒𝑒𝑡ℎ ⋅ ∫

𝑡

0
𝜔(𝜏)𝑑𝜏 + 𝜑(𝑘)

𝑔𝑚𝑐

)

⎞

⎟

⎟

⎠

,

(A.1)

where 𝑀 (𝜔(𝑡)) scales the signal’s amplitude according to rotational
speed 𝜔(𝑡), ℎ𝑔𝑚𝑐 (𝑡) is the impulse response function of a single degree
of freedom system; 𝐴(𝑖)

𝑔𝑚𝑐 and 𝜑(𝑘)
𝑔𝑚𝑐 are the amplitude and phase of

the 𝑘th harmonic, and 𝑁𝑡𝑒𝑒𝑡ℎ is the number of teeth on the gear. The
convolution operator is denoted ⊗. 𝑁𝑔𝑚𝑐 components are included in
the signal. In this work, the model is applied under constant speed
operating conditions, therefore, 𝑀 (𝜔(𝑡)) = 𝜔2 is a constant for all
components. The following parameters are used: 𝐴𝑔𝑚𝑐 = [1, 2, 3], 𝜑𝑔𝑚𝑐 =
[0, 0, 0], 𝑁𝑔𝑚𝑐 = 3, and 𝑁𝑡𝑒𝑒𝑡ℎ = 20. The parameters of the impulse
response function ℎ𝑔𝑚𝑐 (𝑡) are given in Table A.2.

The distributed gear damage component

𝑥𝑑𝑔𝑑 (𝑡) =𝑀(𝜔(𝑡)) ⋅ℎ𝑑𝑔𝑑⊗
⎛

⎜

⎜

⎝

𝜀𝜎 (𝑡) ⋅
𝑁𝑑𝑔𝑑
∑

𝑘=1
𝐴(𝑘)
𝑑𝑔𝑑 ⋅ sin

(

𝑘 ⋅ ∫

𝑡

0
𝜔(𝜏)𝑑𝜏 + 𝜑(𝑘)

𝑑𝑔𝑑

)

⎞

⎟

⎟

⎠

,

17

(A.2)
Table A.2
The impulse response function parameters of the different components. The impulse
response function is modelled as a single degree-of-freedom system and therefore two
parameters need to be specified, namely, the damping ratio and the natural frequency

Damping ratio Natural frequency [Hz]

Outer race bearing damage component 0.05 6000
Inner race bearing damage component 0.05 9000
Distributed gearbox damage component 0.05 2000
Deterministic gear component 0.05 500

has a similar form of the gear mesh component, except for the addition
of a random variable 𝜀𝜎 (𝑡) attributed to the distributed gear damage.

he random variable 𝜀𝜎 (𝑡) is a standardised Gaussian variable in this
ork. The parameters are as follows: 𝐴𝑑𝑔𝑑 = [1, 2, 3], 𝜑𝑑𝑔𝑑 = [0, 0, 0],
nd 𝑁𝑑𝑔𝑑 = 3. The parameters of the impulse response function ℎ𝑑𝑔𝑑 (𝑡)
re given in Table A.2.

The stationary noise component

𝑛(𝑡) =𝑀(𝜔(𝑡)) ⋅ 𝜎𝑛 ⋅ 𝜖𝜎 (𝑡), (A.3)

onsists of the amplitude modification function 𝑀(𝜔(𝑡)), a standardised
aussian random variable 𝜖𝜎 (𝑡) and the standard deviation of the noise
𝑛.

The outer race bearing damage component

𝑏𝑙𝑜(𝑡) =𝑀(𝜔(𝑡)) ⋅ ℎ𝑏𝑙𝑜(𝑡)⊗
⎛

⎜

⎜

⎝

𝑁𝑖𝑚𝑝−1
∑

𝑘=0
𝐴(𝑘)
𝑏𝑙𝑜 ⋅ 𝛿

(

𝑡 − 𝑇 (𝑘)
𝑏𝑙𝑜

)
⎞

⎟

⎟

⎠

, (A.4)

ontains 𝑁𝑖𝑚𝑝 Dirac-impulses, with the 𝑘th impulse denoted by 𝛿 (𝑡−
𝑇 (𝑘)
𝑏𝑙𝑜

)

. Each impulse is scaled with a random variable 𝐴(𝑘)
𝑏𝑙𝑜 and the time

f arrival of the bearing impulse 𝑇𝑏𝑙𝑜 depends on the bearing outer race
haracteristic order, the rotational speed and slip. The impulses are
iltered through the structure to the sensor and this transmission path
s modelled as ℎ𝑏𝑙𝑜(𝑡). The magnitude of the impulses is also scaled with
he amplitude modification function 𝑀(𝜔(𝑡)). The ball pass order of the
uter race component is 4.12.

The inner race bearing damage component

𝑏𝑙𝑖(𝑡) = 𝑧𝑠𝑡𝑟𝑖𝑏𝑒𝑐𝑘

(

∫

𝑡

0
𝜔(𝜏)𝑑𝜏

)

⋅𝑀(𝜔(𝑡)) ⋅ ℎ𝑏𝑙𝑖 ⊗
⎛

⎜

⎜

⎝

𝑁𝑖𝑚𝑝
∑

𝑘=0
𝐴(𝑘)
𝑏𝑙𝑖 ⋅ 𝛿

(

𝑡 − 𝑇 (𝑘)
𝑏𝑙𝑖

)
⎞

⎟

⎟

⎠

,

(A.5)

as a similar form to the outer race bearing damage, except for the
tribeck function 𝑧𝑠𝑡𝑟𝑖𝑏𝑒𝑐𝑘 (⋅). Since the inner race rotates with the shaft
nd the direction of the applied load is constant, the inner race bearing
amage moves in-and-out of the load zone for each shaft rotation. This
esults in additional amplitude modulation, where the impacts in the
oad zone are larger than the impacts out of the load zone. The Stribeck
quation [53]

𝑠𝑡𝑟𝑖𝑏𝑒𝑐𝑘(𝜑) =

{

𝑧0 ⋅
(

1 − 1
2𝜖𝑠𝑡𝑟

(1 − cos(𝜑))
)𝑐𝑠𝑡𝑟

for |wrp(𝜑)| < 𝜑𝑚𝑎𝑥
0 otherwise,

(A.6)

models this modulation as the bearing damage moves in and through
the load zone, where the constants used in this work are 𝜖𝑠𝑡𝑟 = 0.49,
𝜑𝑚𝑎𝑥 = 0.99 ⋅ 𝜋∕2, 𝑐𝑠𝑡𝑟 = 1.5, 𝑧0 = 1 [53]. The |wrp(𝜑)| constrains the
shaft angle −𝜋 ≤ 𝜑 < 𝜋.

The ball pass order of the outer race component and the ball
pass order of the inner race bearing component are 4.12 and 5.88
shaft orders respectively. The impulse response function parameters are
given in Table A.2. The SNR of the signals are included in Table A.3.
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Table A.3
The variance of the different signal components and signal-to-noise ratio of the bearing signals for the two cases. The Signal-to-Noise Ratio (SNR) is calculated as follows:
10 ⋅ log10

(

𝜎2𝑖
𝜎2𝑛

)

where 𝜎2𝑛 denotes the variance of the noise signal 𝑥𝑛 and 𝜎2𝑖 denotes the variance of the either the outer race bearing component 𝑥𝑏𝑙𝑜 or variance of the inner race
earing damage component 𝑥𝑏𝑙𝑖.

var{𝑥𝑔𝑚𝑐} var{𝑥𝑑𝑔𝑑} var{𝑥𝑏𝑙𝑜(𝑡)} var{𝑥𝑏𝑙𝑖(𝑡)} var{𝑥𝑛} SNR𝑏𝑙𝑜 SNR𝑏𝑙𝑖
Outer race 1.040 0.667 0.061 0.000 1.006 −12.1 −inf
Inner race 1.040 0.644 0.000 0.049 1.003 −inf −13.1
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