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Abstract

Bats are known reservoir hosts for a wide variety of parasites and pathogens, including bac-

teria and protozoans. Some of these pathogens are vector-borne, and although their role is

poorly studied, ectoparasites may contribute significantly to their transmission. The aim of

this study was to molecularly detect the presence of vector-borne microorganisms in bat-

associated ectoparasites to explore their diversity and distribution in these insects. We

tested the presence of Bartonella spp., Polychromophilus spp., and Trypanosoma spp. in bat

flies and bat fleas collected from 56 Egyptian Rousette bats (Rousettus aegyptiacus), using

conventional PCR. We found a high prevalence of 43.9% (47/107) of Bartonella spp. in bat

flies, but a low prevalence of 6.6% (4/61) in bat fleas. Polychromophilus and Trypanosoma

DNA were absent in both bat flies and bat fleas. Furthermore, we found novel gltA Barto-

nella sequences, as well as genotypes that are highly similar to recently described and poten-

tially zoonotic ones. Our results show high diversity of Bartonella in bat flies, however, their

role in pathogen transmission is still unknown and should be further explored.
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INTRODUCTION

With about 1400 species worldwide, bats (Mammalia: Chiroptera) are

the second most diverse mammalian taxa after rodents (Mammalia:

Rodentia) (Simmons & Cirranello, 2019). Their high morphological and

physiological diversification allow them to live in many different envi-

ronments and have a wide geographical distribution. Bats also show a

unique resistance to intracellular pathogens, and their ability to fly is

indirectly involved in their capacity to mediate those pathogens

(Brook & Dobson, 2015; Mougari et al., 2022). Moreover, the pres-

ence of brown adipose tissue, which is present in all mammals includ-

ing bats (Cannon & Nedergaard, 2004), has been suggested to play an

immunological role in their ability to control the proliferation of patho-

gens (Brook & Dobson, 2015). Bats can form highly dense and large

colonies, although colony size can significantly vary between and

within species. In addition, they have an exceptionally long lifespan,

up to 40 years, compared to other small mammals (Munshi-South &

Wilkinson, 2010). All these ecological, immunological, and physiologi-

cal traits may contribute to making bats ideal candidates for being res-

ervoir hosts of many pathogenic groups without showing clinical signs

of the disease itself (Dobson, 2005; Calisher et al., 2006; Moratelli &

Calisher, 2015; Olival et al., 2017; Irving et al., 2021).
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In this study, we focused on the Egyptian Rousette bat, Rousettus

aegyptiacus (Chiroptera: Pteropodidae). This species is occasionally con-

sumed in rural areas, along with other species such as Eidolon and Ptero-

pus spp., which are more frequently targeted for hunting and trading

(Leroy et al., 2009; Mickleburgh et al., 2009; Bai et al., 2018). Due to

the possibility of human contact with these species, pathogen surveil-

lance of these bats is highly important (Ramanantsalama et al., 2022)

and has previously been explored in the case of R. aegyptiacus

(Table S1). R. aegyptiacus can form colonies of up to thousands of indi-

viduals and is frequently found in mixed colonies with other cave-

dwelling species, such as Miniopterus spp. and Rhinolophus spp. (Amman

et al., 2012, W. Markotter, Personal communication), which potentially

contributes to interspecific parasite and pathogen flow.

We examined the presence of vector-borne blood parasites (Poly-

chromophilus spp. and Trypanosoma spp.) and bacterial pathogens (Barto-

nella spp.) in the bat fly Eucampsipoda africana (Diptera: Nycteribiidae)

and in the bat flea Thaumapsylla breviceps (Siphonaptera: Ischnopsylli-

dae). Both species are highly specialized and frequently found on

R. aegyptiacus (Theodor, 1967; Segerman, 1995). In mixed species colo-

nies in Gabon, E. africana occasionally infects Hipposideros caffer, Hippo-

sideros gigas, andMiniopterus inflatus (Obame-Nkoghe et al., 2016).

Bat flies and fleas are known or suspected vectors of several

pathogens. Bat flies transmit the haemosporidian malaria-like proto-

zoan, Polychromophilus spp., which exclusively infects bats (Gardner &

Molyneux, 1988a). It has been shown that infections by this blood

protozoan occur only in insectivorous bats (Gardner &

Molyneux, 1988a; Megali et al., 2011; Duval et al., 2012). Additionally,

the presence of this pathogen can contribute to weaker body condi-

tion in bats (Witsenburg et al., 2014) and a shorter life span of bat flies

(Witsenburg et al., 2015b).

Trypanosoma spp. are intra- and extracellular protozoan blood

parasites and have been reported to be transmitted to bats by hema-

tophagous insects, such as Cimicidae bugs (Hemiptera) (Gardner &

Molyneux, 1988b); nevertheless, Trypanosoma parasites have been

detected in parasitic bat flies, and it has been suggested that they may

also play a role in the transmission of these blood parasites

(Hoare, 1972; Szentiványi et al., 2019, 2020). R. aegyptiacus infection

by Trypanosoma has only been reported once in Gabon (Stevens

et al., 1999). A previous work supports that bat trypanosomes are

involved in the evolution of the clade of Trypanosoma cruzi, causing

the Chagas disease in humans (Hamilton et al., 2012), and have an

African origin (Clément et al., 2020).

In addition, both bat flies and bat fleas are suspected vectors of Barto-

nella species (Reeves et al., 2007; Morse et al., 2012; Sándor et al., 2018).

Bartonella spp. are Gram-negative bacteria and are facultative intracellular

parasites. Bartonella species are known to cause human diseases, cat

scratch disease and trench fever, which are caused by Bartonella henselae

and B. quintana, respectively, but can also cause additional diseases, both

in humans and animals (Anderson & Neuman, 1997; Chomel et al., 2006).

The aims of this study were to test for the presence and diversity

of three different vector-borne pathogens (Bartonella spp., Polychro-

mophilus spp., and Trypanosoma spp.) in both bat flies and fleas col-

lected from R. aegyptiacus.

MATERIAL AND METHODS

Collection of ectoparasites

Bat ectoparasites (bat flies: n = 107; bat fleas: n = 61) were collected

from a single colony of R. aegyptiacus in Matlapitsi cave, Limpopo,

South Africa (24�11049.700S, 30�12015.100 E), between February 2013

and September 2016. After collection, ectoparasites were individually

stored in 98% ethanol. Bat fly and flea identification was done by

T. Szentiványi based on several identification keys (Theodor, 1967;

Segerman, 1995). All flies were identified as E. africana (Diptera: Nyc-

teribiidae) and fleas as T. breviceps (Siphonaptera: Ischnopsyllidae).

Voucher samples (DNA extractions) are deposited at the Museum

of Zoology, Lausanne, Switzerland, under the accession numbers:

SMA 852_SF1-UP 7002_SM2 (Table S3).

Pathogen detection and analysis

Ectoparasites genomic DNA was extracted using DNeasy Blood and

Tissue Kits (Qiagen, Hilden, Germany) based on the protocol provided

by the manufacturer. PCR primers, protocols, and annealing tempera-

tures are detailed in Data S1. Positive controls for each pathogen

were obtained from previous work (Szentiványi et al., 2020).

Positive PCR products were sent to Microsynth (Switzerland) for

Sanger sequencing (HTS). Multiple sequence alignments were done using

ClustalW software (Thompson et al., 1994). Evolutionary analyses were

conducted in MEGA X (Kumar et al., 2018). We performed the Maximum

Likelihood method based on the Kimura 2-parameter model (Kimura, 1980).

Reference sequences were obtained from GenBank (Table S2).

RESULTS

Ectoparasites were collected from R. aegyptiacus (n = 56). We

detected the presence of Bartonella spp. in 47 out of 107 bat

flies (43.9%) and in four out of 61 bat fleas (6.6%). A single Trypano-

soma infection was present as positive in a bat fly individual;

however, sequencing was unsuccessful, therefore we omitted this

from the results. In addition, Trypanosoma was absent in fleas. We did

not observe the presence of Polychromophilus infection, neither in bat

flies nor in bat fleas. As the presence of Trypanosoma and Polychromo-

philus DNA was negligible, we focused on Bartonella spp. in further

analyses.

Phylogeny of Bartonella in bat flies

For the phylogenetic analysis, only the highest quality sequences were

selected (n = 21). Seven Bartonella genotypes (unique sequence variants

with ≥1 bp differences (Kosoy et al., 2010)) have been obtained from gltA

sequences from bat flies (Figure 1). Bartonella sequences shared together

83.9% to 100% nucleotide pairwise identity between each other.
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BLAST analysis of the gltA sequences showed 94% to 99.7% simi-

larity to different bat associated Bartonella sequences. We found

sequences that exhibited 99.85% identity to sequences found in Mini-

opterus natalensis and its bat fly, Nycteribia schmidlii scotti from

South Africa (MW007702-MW007711). In addition, we retrieved a

single sequence with 99% identity from Eucampsipoda madagascaren-

sis (KT751158) collected from Rousettus madagascariensis in

Madagascar (Wilkinson et al., 2016). Some sequences showed 98.8%

identity with the potentially zoonotic Bartonella rousetti (HM363764),

which was recently described from R. aegyptiacus, and >99% identity

with Bartonella isolated from its bat flies, E. africana from Nigeria (Bai

et al., 2018). Some of our sequences showed 94% identity (highest

match) with a Bartonella strain isolated from the straw-coloured fruit

bat (Eidolon helvum) from Ghana (KM030516, KM030517).

F I GU R E 1 Phylogenetic tree of bat associated Bartonella species. The evolutionary history was inferred by using the maximum likelihood
method based on the Kimura 2-parameter model (Kimura, 1980). The bootstrap consensus tree inferred from 1000 replicates. Grey dots indicate
bootstrap values 0.7–0.9, whereas black dots indicate values >0.9. Purple codes indicate samples from this study. Branches corresponding to
partitions reproduced in less than 50% bootstrap replicates are collapsed. Phylogenetic tree was rooted from Rhizobiaceae.
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Furthermore, some sequences exhibited 90% identity with Barto-

nella bovis, obtained from cattle in Malaysia (KR733183) and France

(KF199895), as well as from water buffalo in Thailand (KF199899)

and Guatemala (KF199897).

DISCUSSION

During this study, we found the presence of Bartonella DNA in bat

flies and bat fleas collected from the Egyptian Rousette bat,

R. aegyptiacus. The presence of Bartonella DNA has been previously

observed in several bat species and in bat flies in South Africa, includ-

ing our target species, R. aegyptiacus and E. africana (Dietrich

et al., 2016; Szentiványi et al., 2019, 2020; Ramanantsalama

et al., 2022). Here, we found highly similar sequences to the poten-

tially zoonotic Bartonella rousetti in bat flies in South Africa. In a recent

study, antibodies against bat associated Bartonella rousetti were

described in humans (Bai et al., 2018), indicating that bat-associated

bacteria can potentially infect humans. However, antibodies against

Bartonella tend to be highly cross reactive within the genus and with

other non-Bartonella agents. Therefore, the true zoonotic potential of

B. rousetti needs to be further explored. In some communities, such as

in Nigeria, people enter caves during the annual bat festival to capture

and consume bats, including R. aegyptiacus, in large numbers. Barto-

nella rousetti has also been found in Zambia in the same host species

(Qiu et al., 2020). Transmission routes of zoonotic pathogens can be

diverse, either vector-borne, or via contacting body fluids and/or fae-

ces of the infected animals. For instance, Bartonella DNA has been

detected in bat saliva (Dietrich et al., 2017), bat guano (Veikkolainen

et al., 2014; Dietrich et al., 2017), and urine (Dietrich et al., 2017).

Even though it might be a rare scenario, bat flies are known to

occasionally bite humans, which could facilitate pathogen transmis-

sion (Dick & Patterson, 2006). Close contact with bats and their ecto-

parasites could potentially contribute to the spillover of new and

emerging infectious diseases, as in the case of certain viruses (Calisher

et al., 2006); nevertheless, the occurrence of these spillover events is

supposedly rare.

There is some evidence that pathogen presence might be driven

by ecological factors as well, such as host habitat preference. For

instance, Spinturnix myoti mites infecting greater mouse-eared bats

(Myotis myotis) inhabiting caves showed a higher prevalence of Barto-

nella spp. than S. myoti infecting M. myotis inhabiting buildings

(Szubert-Kruszy�nska et al., 2019). Similarly, it has been found that bat

flies collected from cave-dwelling species exhibited the highest Barto-

nella spp. prevalence (Sándor et al., 2018). These observations might

be explained by microclimatic conditions in caves that favour ectopar-

asitic abundance (Szubert-Kruszy�nska et al., 2019), which has been

observed to positively correlate with the presence of Bartonella DNA

in hosts (Stuckey et al., 2017).

Bartonella usually occurs in high diversity in bats and their para-

sites (Morse et al., 2012; McKee et al., 2016), which our results fur-

ther confirm. Previous work has found six major bat-associated

Bartonella clades (Corduneanu et al., 2018). As several highly similar

Bartonella lineages inhabit different geographical regions, host distri-

bution, and sympatry might not be the major drivers of Bartonella

diversification. Indeed, it has been observed that Bartonella diversity

corresponds to host phylogeny, with different pathogen lineages likely

occurring within their specific bat suborders or families (McKee

et al., 2016). In addition, increasing taxonomic distance in hosts

decreased the likelihood of transition rates (McKee et al., 2016).

Therefore, host phylogeny is more likely to be the determinant of Bar-

tonella distribution rather than host spatial distribution, although there

is increasing evidence of Bartonella transmission between phylogenet-

ically distant species, including domestic animals and wildlife (Frank

et al., 2018). Here we found that most of our Bartonella sequences

were highly similar to strains isolated from either R. aegyptiacus or

their ectoparasites. Furthermore, we found 94% similarity between

our sequences and Bartonella isolated from Eidolon helvum from

Ghana, which belongs to the same family (Pteropodidae) as

R. aegyptiacus, however, only a small region of the genome was tar-

geted in this study; therefore, more and extensive molecular work is

needed in the future to determine the zoonotic potential of these bat-

associated pathogens.

Overall, we found a high prevalence of Bartonella DNA in bat flies

and lower in bat fleas, of the cave-dwelling bat species, R. aegyptiacus.

These results match the observation of a previous study, which showed a

high level of pathogen prevalence in bat flies whereas bat fleas of fruit

bats were not infected (Brook et al., 2015), although the sample size was

relatively low to withdraw this conclusion. Nevertheless, as fleas are gen-

erally smaller compared to nycteribiid bat flies, it is possible that the smal-

ler amount of blood-meal inside these parasites results in lower pathogen

DNA detectability, hence a lower prevalence rate. However, our results

indicate that different ectoparasite species and groups might harbour dif-

ferent infection levels of this bacterial pathogen, and therefore their vec-

torial or reservoir roles might differ. Nonetheless, we have no direct proof

of the viability of Bartonella in our samples, as we did not perform cultur-

ing of these pathogens. Likewise, the vectorial capacity of the ectopara-

sites would require experimental studies to be demonstrated.

Similarly, to a recent study performed in Gabon (Rosskopf

et al., 2019), we did not find evidence of Polychromophilus, neither in

bat flies nor in bat fleas. Nevertheless, a study showed that

P. melanipherus infection was present in a single pool of E. africana

flies collected on R. aegyptiacus, suggesting a previous blood-meal

from a non-primary host, as P. melanipherus is only known to infect

bats belonging to the family Miniopteridae (Witsenburg et al., 2015a;

Obame-Nkoghe et al., 2016). Based on literature records, there is no

evidence of Polychromophilus infection in R. aegyptiacus, whereas the

closely related haemosporidian parasite Hepatocystis has been found

in Nigeria (Atama et al., 2019).

We detected the presence of Trypanosoma DNA in a single bat fly

sample; however, as the quality of the acquired sequence was not sat-

isfactory, we cannot argue if it was a genetically identical or similar

sequence to the Trypanosoma strain identified from R. aegyptiacus in

Gabon (Stevens et al., 1999) (Table S1). Either it is indicating the pres-

ence of Trypanosoma sp. in this colony of R. aegyptiacus or it suggests

that even highly host-specific bat flies, such as E. africana, occasionally
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feed on other bat species before returning to their main host, poten-

tially contributing to the distribution of new pathogen species to naïve

hosts. Studies targeting Trypanosoma infection in Rousettus bats need

to address this question.
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