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Background: Breast cancer is the most common type of cancer in women, and

vast research is being conducted throughout the world for the treatment of this

malignancy by natural products using various computational approaches.

Xanthohumol, a prenylated flavonoid, is known for its anticancer activity;

however, the mechanism behind its action is still in the preliminary stage.

Methods: The current study aimed to analyze the efficacy of xanthohumol

compared to the currently available anticancer drugs targeting

phosphoinositide-3-kinase (PI3K), serine/threonine kinase (AKT) receptors,

and human epidermal growth factor receptor 2 (HER2) for breast cancer

treatment through in silico analysis.

Results: The result revealed that the target compound showed significant

binding affinity to targets within the PI3K, AKT, and HER2 signaling pathways

with a binding energy of −7.5, −7.9, and −7.9 kcal/mol, respectively. Further

prediction studies were then made concerning this compound’s absorption,

distribution, metabolism, and excretion (ADME) as well as drug-likeness
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Abbreviations: PI3K, phosphoinositide 3-kinases; A

kinase, also known as protein kinase B; HER2, hum

factor receptor 2; PDB, Protein Data Bank; ADME, ab

metabolism, and excretion.
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properties, resulting in its oral bioavailability with only a single violation of

Lipinski’s rule of five.

Conclusions: The finding revealed the ability of xanthohumol to bind with

multiple cancer cell signaling molecules including PI3K, AKT kinase, and HER2.

The current novel study opened the door to advancing research into the

management and treatment of breast cancer.
KEYWORDS

breast cancer, Humulus lupulus, PI3K/AKT signaling, xanthohumol, anastrozole
Introduction

Breast cancer is the second leading cause of death among

women (1). Worldwide statistics in 2020 showed that out of all

the types of cancers diagnosed, there are approximately 2.3

million newly diagnosed cases of breast cancer, accounting for

about 11.7% of the total new cancer cases. This type of cancer is

strictly related to age as a risk factor with only about 5% of cases

confirmed in women less than 40 years of age (2). Currently,

many therapeutic regimes have been developed to specifically

inhibit key oncogenic targets, which play important roles in the

growth of cancer. Consequently, in the inclusion or exclusion of

chemotherapy, the administration of adjuvant tamoxifen

reduces the possibility of death or tumor recurrence in women

with hormone receptor-positive breast cancer (2, 3). This

adjuvant treatment, which acts as an aromatase inhibitor for

early-stage breast cancer, is prescribed for post-menopausal

women diagnosed with hormone receptor- positive breast

cancer (4–7). Clinically, different targeted therapies have also

been reported to have fewer adverse effects in women suffering

from various ailments including endometrial cancer,

cerebrovascular complications, and thromboembolism (2, 3, 8).

According to previous studies, it has been observed that

anastrozole considerably increased the period between tumor

recurrence and illness-free survival (9, 10). Also, the

administration of anastrozole is connected with less serious

side effects than tamoxifen, such as fewer events of thrombo-

embolism, ischemic cerebrovascular, and endometrial cancer but

enhanced numbers of fractures following treatment (11).

Additionally, several research studies on phosphoinositide-3-

kinase (PI3K) and a serine/threonine-protein kinase, also known

as AKT, signaling pathways have led to the development of

numerous pathway inhibitors that are of important therapeutic
KT, serine/threonine
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sorption, distribution,
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use (12–14). PI3K/AKT signaling pathways have been

recognized as the ideal pathway explaining the devolution of

anti-apoptotic signals that promote cancer cell survival while

also regulating cell growth, proliferation, transcription, and

metabolic activities (14–16).

The natural moiety xanthohumol, a polyphenol chalcone

from Hops (Humulus lupulus), has recently garnered interest

due to its potent anticancer properties against colorectal,

leukemia, lung, breast, and cervical cancer types, probably due

to the presence of various phenolic compounds (17–19).

Specifically, several investigations have shown that

xanthohumol suppresses the growth of MCF-7 and SK-BR-3

breast cancer cell lines in vivo and in vitro experiments (20), but

the exact mechanism through which xanthohumol mediates

these effects is not clearly understood. Here, we attempt to

predict the molecular mechanism of the anticancer activity of

xanthohumol by analyzing the anticancer potential of

xanthohumol through its ability to target the cell singling

molecules human epidermal growth factor receptor 2 (HER2),

PI3K, and AKT kinase using in silico approaches.
Results

Ramachandran and hydropathy plots

Sequence analysis revealed that PI3K and AKT proteins

consisted of 850 and 330 amino acid residues, respectively.

The Ramachandran plot showed that the stereochemical

quality of the target protein demonstrated that the geometry of

the protein target receptor corresponds to the highest likelihood

conformation of the residues in the most favorable regions of the

Ramachandran plot (Figure 1). The stereochemical property

rule, following all the possible dihedral, phi (f), and psi (y)
angle values, are shown in Table 1. Protein structures were

further corroborated by the inclusion of hydrophilic and

hydrophobic sections in the amino acid chain, beginning at

the N terminal and progressing to the C terminal (Figure 2).
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FIGURE 1

Stereo chemical quality of the target protein showing that the geometry of the protein target receptor corresponds to the highest likelihood
conformation by torsional angles —phi and psi of the amino acid residues (Ramachandran plot) of target protein 1e7v (PIK) (A), 4ekl (AKT)
(B), and 3rcd (HER2) (C).
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Molecular docking assessment for
targeting HER2 and PI3K/AKT receptor

The PI3K macromolecule interaction with xanthohumol

targets the GLN 846, GLU 852, and LEU 845 residues with a

binding energy of −7.5 kcal/mol (Figure 3A). Another receptor

AKT possessed a binding site consisting of PHE 161, ASP 190,

GLY 159, THR 160, and GLY 162 residues with a binding energy

of −7.9 kcal/mol (Figure 3B). HER2 receptor interacts with

xanthohumol at LYS 758, LEU 296, and ALA 751 residues

with a binding energy of −7.9 kcal/mol (Figure 3E). However,

the standard anastrozole interacted with PI3K at the active site

consisting of ILE 881, VAL 882, LYS 883, ALA 885, and THR

886 amino acids with a binding energy of −7.7 kcal/mol

(Figure 3C); AKT at residues LYS 189, GLU 191, ASP 190,

ALA 193, and LEU 196 with a binding energy of −8.2 kcal/mol

(Figure 3D); and HER2 receptor at GLU 914 and GLY 919 with a

binding energy of −7.4 kcal/mol (Figure 3F).

Even though the tested ligand binds had similar energy, the

plant- based derivative xanthohumol showed the same affinity to

target the PI3K, AKT, and HER2 at active sites similar to those of

the synthetic drug anastrozole (20) (Table 2).
Absorption, distribution, metabolism, and
excretion and drug-likeness properties

The drug-likeness and absorption, distribution, metabolism,

and excretion (ADME) results of the xanthohumol are shown in

Table 3. It was observed from the results that xanthohumol

achieved the criteria of Lipinski’s rule of five, which meant it is

likely a good drug, which is effective through oral

administration. In a nutshell, these compounds are stated to

have good absorptivity, less toxicity, oral bioavailability,

and permeability.

The bioavailability radar plot provided a summary of a

molecule’s drug-likeness (Figure 4). The effective range of each

property of the molecule (xanthohumol and anastrozole) is

indicated by the pink area (Figures 4A, B).

The Boiled-egg plot between WLOGP and topological polar

surface area (TPSA) anticipates the gastrointestinal permeability

and brain penetrating efficiency of the test molecules as shown in

Figure 5. The plot showed that xanthohumol is rapidly absorbed
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in the gastrointestinal tract as compared to anastrozole, which

permeates the blood– brain barrier by interaction with the inner

yellow yolk. Furthermore, the PAINS (Pan-assay interference

compounds) filter was used to evaluate the promiscuity of the

primed hits. The results indicate that xanthohumol is a unique

compound that bears no chemical resemblance to PAINS.
Target prediction

A pie chart was developed using the top 25 results (probable

targets) (Figure 6). The pie chart predicts that these top targets

are made up of 20% of oxidoreductases, 16% of kinases, 12% of

voltage- gated ion channels, 8% of primary active transporters,

4% of Toll-like and IL-1 receptors, 4% of cytochrome P450, 4%

of hydrolases, and 4% of structural proteins. The various targets

to which the chemical may bind are generally anticipated by the

algorithms, and the likelihood score ranges from 0.376973 to

0.10934. This implies that the molecule may have a high affinity

for the specific binding to which it is directed. The important

conclusions were made as a result of the target predictions,

which are shown on the server page (Supplementary Table S1).
Toxicity prediction

The toxicity prediction was based on toxicity end points

(Immunotoxicity, Carcinogenicity, Mutagenicity, and

Cytotoxicity), organ toxicity (Hepatotoxicity), Tox21 Nuclear

receptor signaling pathways, and Tox21 Stress response

pathways. The results of toxicity prediction are summarized in

Table 4. The LD50 of xanthohumol was found to be 3,800 mg/kg

with class 5 predicted toxicity.
Discussion

H. lupulus (Hops), a primary raw ingredient in beer, has been

widely employed in the brewing industry around the world. It serves

as a preservative in the beer giving it characteristic scent and flavor

(21, 22). Hops has also been implicated as amedicinal plant for a long

time due to its high concentration of various phenolic compounds

(23). Previously published reports have shown that dry hops
TABLE 1 Summary of results from Ramachandran plot of the models.

Target model Region

Most favored Additional allowed Generously allowed Disallowed

PIK(1e7v) 85.1% 14.2% 0.5% 0.1%

AKT(4ekl) 91.4% 6.5% 1.4% 0.7%

HER2(3rcd) 87% 11.3% 1.3% 6.4%
f
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FIGURE 2

Hydropathy analysis showing the inclusion of hydrophilic and hydrophobic sections in the amino acid chain, beginning at the N terminal and
progressing to the C terminal in target protein PIK (A), AKT (B), and HER2 (C).
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FIGURE 3

Lowest energy docking structure of (A) PI3K-Xanthohumol (B) PIK-Anastrozole, (C) AKT-Xanthohumol, (D) AKT-Anastrozole, (E) HER2-
Xanthohumol, and (F) HER2-Anastrozole along with their 2D interactions.
TABLE 2 Representation of binding affinity and RMSD upper and lower bounds.

S. no. Ligand Binding Affinity (kcal/mol) Inhibition constant (mM)

1. PI3K-Xanthohumol −7.5 3.14

2. PI3K-Anastrozole −7.5 3.14

3. AKT-Xanthohumol −7.9 1.59

4. AKT-Anastrozole −8.2 0.96

5. HER2- Xanthohumol −7.9 1.59

6. HER2-Anastrozole −7.4 3.39
Frontiers in Oncology
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RMSD, root mean square deviation.
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consisted of about 4%–14% of polyphenolic compounds, flavonoids,

catechins, prenylated chalcones, and proanthocyanidins (17).

Although xanthohumol has demonstrated good chemopreventive

activity in in vitro analysis, various other compounds (flavonoids,

catechins, prenylated chalcones, and proanthocyanidins) of hops

remain under preliminary research for the welfare of human

beings. We also worked on other important compounds such as

dehydrocycloxanthohumol and isoxanthohumol for the

management of cancer through the best option of herbal medicine.

We have planned to target the dehydrocycloxanthohumol and

isoxanthohumol along with xanthohumol in our in vivo model

study. The 8-prenylnaringenin has been characterized as one of the

most potent phytoestrogens. Xanthohumol is a major prenylated

flavonoid in hops and accounts for 0.1%–1% of the plants’ dry

weight. The concentration of xanthohumol in beer has been observed

to be up to 0.96 mg/L (1.95 mM) (17, 24, 25). It is renowned for its

antioxidant, anti-inflammatory, antibacterial, antiviral, antifungal,

anticancer, and anti-plasmodial properties (26, 27). Xanthohumol

has gained much interest in recent years for its bioactivities,
Frontiers in Oncology 07
particularly in preventing and treating breast cancer. The related

mechanisms underlying its anticancer properties have been revealed

through the inhibition of carcinogenesis initiation and progression, as

well as a therapeutic activity through proliferation suppression,

induction of apoptosis, migration inhibition, and angiogenesis

inhibition (28). Breast cancer is the most common cancer in

women and the leading cause of cancer death globally (29). Cell

propagation is a critical mechanism in carcinogenesis and disease

progression (30). Changes in various cell signaling pathways increase

cancer cell proliferation, growth, and survival. One such example is

the PI3K/Akt/mTOR pathway (31), whose dysregulation has been

linked to a wide range of cancer symptoms, including abnormal cell

growth, genetic mutations, and metabolic reprogramming in

cancerous cells; activation of this system is one of the main causes

of cancer cell resistance to anticancer therapies (32). HER2 is a

transmembrane receptor with intracellular tyrosine kinase activity.

HER2 receptors usually aid in the regulation of normal breast cell

development (33). However, amplification or overexpression of

HER2 gene and its protein product have been observed in about
TABLE 3 ADME and drug- likeness prediction.

Predictive model and their parameters Compounds

Xanthohumol Anastrozole

Physicochemical properties

Molecular weight (g/mol) 354.40 293.37 g/mol

Fraction Csp3 0.19 0.41

Rotatable bond 6 4

H-bond acceptors 5 4

H-bond donors 3 0

Molar refractivity 102.53 83.81

TPSAa (Å2) 86.99 78.29

Lipophilicity

LogPo/w
b (XLOGP3) 5.07 2.03

LogPo/w (WLOGP) 4.11 2.93

Water solubility

Log Sc (ESOL) −5.18 −3.04

Qualitative solubility Moderately soluble Soluble

Drug-likeness

Lipinski (RO5)d Yes; 0 violation Yes; 0 violation

Ghosee Yes Yes

Veberf Yes Yes

Bioavailability score 0.55 0.55

Lead-likeness

Rule of three (RO3)g No; 2 violations: MW > 350 Yes

Synthetic accessibilityh 3.16 2.21
aTopological polar surface area (TPSA).
bLogPo/w is the partition coefficient between n-octanol and water.
cLog S is the decimal logarithm of the molar solubility in water.
dLipinski (RO5) criteria range are lipophilicity (LogPo/w) ≤ 5, MW ≤ 500, H-bond ≤ 5, and H-bond acceptors ≤ 10.
eGhose filter criteria range LogPo/w in −0.4 to +5.6 range, MR from 40 to 130, MW from 180 to 480, and No. of atoms from 20 to 70.
fVeber’s rule criteria range are RB ≤ 10 and TPSA ≤ 140 Å2.
gRO3 criteria range are as follows: XLOGP3 ≤ 3.5, MW≤ 350, H-bond donors ≤3, H-bond acceptors ≤ 3, and Rotatable bond ≤ 3.
hSynthetic accessibility (SA) score ranges from 1 (very easy) to 10 (very difficult).
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10% to 20% of breast cancers (34). Overexpression of this gene in the

breast causes an increase in HER2 receptors leading to uncontrolled

division and growth of breast cells. When a ligand binds to

extracellular domains of HER proteins, it leads to dimerization and

trans-phosphorylation of their intracellular domains, s ince HER2

receptors lack a ligand binding domain/site and can only be activated

by homo-dimerization with itself and hetero-dimerization with

another family member (35, 36). These phosphorylated tyrosine

residues interact with a wide range of intracellular signaling

molecules, resulting in secondary messenger activation and
Frontiers in Oncology 08
interaction with several other membrane signaling cascades (35).

HER2 is considered a potent stimulator of the PI3K/AKT anti-

apoptosis pathway (37, 38). A previous study has found that patients

with estrogen receptor- positive/HER2- positive breast cancers may

benefit more from drugs that disrupt the PI3K/AKT molecular

pathway than patients with estrogen receptor- negative/HER2-

positive breast cancers (37). Furthermore, activation of the PI3K/

Akt pathway is one of the primary causes of the resistance of cancer

cells to antitumor therapies (39). As a result, PI3K/Akt signaling is an

important target for research into the genesis and course of cancer
A B

FIGURE 4

Bioavailability radar plots of (A) xanthohumol and (B) anastrozole. LIPO= lipophilicity (between −0.7 and +5.0), SIZE =molecular weight
(between 150 and 500 g/mol), POLAR = polarity (between 20 and 130 Å2), INSOLU= solubility (not higher than 6), INSATU = saturation (fraction
of carbons in the sp3 hybridization not less than 0.25), FLEX = flexibility (no more than 9 rotatable bonds).
FIGURE 5

Boiled- egg plot between lipophilicity (WLOGP) and polarity (TPSA) showing anastrozole is able to permeate blood– brain barrier (BBB) and
xanthohumol showing passive absorption by gastrointestinal tract. Molecules with red dots are anticipated to be unaffected by P-glycoprotein-
mediated central nervous system (CNS) extrusion.
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(31). The complex pathways that any chemical entity takes to reach

its target frequently include the passage throughmany hurdles as well

as the survival of the compound through a complex biological process

(30). The bioavailability of any chemical entity is determined by a set
Frontiers in Oncology 09
of processes and several attributes, which can have a significant

impact on its pharmacokinetic properties. In the past, the

development of novel drugs had a significant attrition rate;

approximately 40% of all treatment failures were connected to
FIGURE 6

Top 25 targets predicted for xanthohumol.7
TABLE 4 Toxicity model report of xanthohumol.

Classification Target Shorthand Result Probability
(%)

Organ toxicity Hepatotoxicity Dili − 59

Toxicity end points Carcinogenicity Carcino − 70

Toxicity end points Immunotoxicity Immune + 99

Toxicity end points Mutagenicity Mutagen − 72

Toxicity end points Cytotoxicity Cyto − 69

Tox 21 —Nuclear receptor signaling
pathways

Aryl hydrogen receptor (AhR) nr_ahr − 72

Tox 21 —Nuclear receptor signaling
pathways

Androgen receptor (AR) nr_ar − 97

Tox 21— Nuclear receptor signaling
pathways

Androgen receptor ligand binding domain (AR-LBD) nr_ar_lbd − 99

Tox 21— Nuclear receptor signaling
pathways

Aromatase nr_aromatase − 80

Tox 21— Nuclear receptor signaling
pathways

Estrogen receptor alpha nr_er + 51

Tox 21— Nuclear receptor signaling
pathways

Estrogen receptor ligand binding domain (ER-LBD) nr_er_lbd − 65

Tox 21— Nuclear receptor signaling
pathways

Peroxisome proliferator-activated receptor gamma (PPAR- Gamma) nr_ppar_gamma − 84

Tox 21— Stress response pathways Nuclear factor (erythroid- derived 2)- like/antioxidant responsive element
(Nrf2/ARE)

sr_are − 56

Tox 21— Stress response pathways Heat shock factor response element (HSE) sr_hse − 56

Tox 21— Stress response pathways Mitochondrial membrane potential (MMP) sr_mmp + 81

Tox 21— Stress response pathways Phosphoprotein (tumor suppressor) p53 sr_p53 − 52

Tox 21— Stress response pathways ATPase family AAA domain-containing protein 5 (ATAD5) sr_atad5 − 90
+, active; −, inactive.
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ADMEdifficulties (40). The combined assessment of the effectiveness

and biological characteristics of active compounds has been

standardized, and extensive investigations of ADME procedures are

regularly performed at the preliminary phase of drug development to

decrease the attrition rate. Computational approaches are being

pursued by researchers to forecast the fate of a drug by

determining the early risk of toxicity. In silico -based ADMET

profiling approaches are frequently used to provide a basic idea

before performing in vitro experiments.

Therefore, xanthohumol was used as a ligand to compare the

compound’s potential with the reference drug (anastrozole) as

an anticancer drug using molecular docking by utilizing the

xanthohumol’s ability to bind and downregulate the PIP3/

ATK pathway.
Materials and methods

Structure preparation

Crystallographic structures and sequences of PI3K, AKT, and

HER2 were downloaded from the RCSB protein database (http://

www.rcsb.org) with Protein Data Bank (PDB) ID 1E7V, 4EKL, and

3RCD respectively. Water and heteroatoms including inhibitors

were manually removed from the receptor molecule. The structures

of the ligands xanthohumol and anastrozole (reference drug) were

made using RPBS frog 2 web portal servers via canonical SMILES

obtained from the Pubchem database with Pubchem IDs of 639665

and 2187, respectively (32, 41) (Table 5). TheMol2 file format of the

ligands was downloaded from the RPBS frog server, which was then

converted into PDB file format through Open Babel 2.4.1 software

(23). The chimera UCSF suite was used to eliminate the steric

clashes on the targets (PI3K and AKT) and ligand molecules by

energy minimization steps after the addition of H-atoms (42).
Ramachandran plot and
hydropathy analysis

The stereochemical quality of the protein structure retrieved

from PDB was checked using the Procheck server (43).
Frontiers in Oncology 10
Ramachandran plot analysis was performed to test for the

significance of the position of the secondary structural

features, such as alpha helices and beta sheets, and the

polypeptide backbone was decided by Ø & Y bond angles

in the protein conformation. The angles depicted in

the Ramachandran plot were employed for protein modeling

and determination of structural properties. The statistical

parameters of the protein exhibited the distribution of amino

acids in the secondary structure (44). The hydropathy plot was

analyzed using BIOVIA Software (Discovery Studio) for the

validation of the hydrophilic or hydrophobic nature of the

receptor molecule.
Molecular docking

In order to assess the efficacy of xanthohumol and

anastrozole for targeting PI3K and AKT proteins, a molecular

docking study was carried out at their respective catalytic targets.

The input contained flexible receptor, rigid receptor, docking

box, and ligand, while the output involved a catalog of models

ranked by the predicted binding energy in kcal/mol. The target

protein and selected ligand compounds were primed via the

PyRx software (45). Docking simulations of PI3K, AKT, and

HER2 were initiated with active sites as predicted by the CASTp

server (46). The docking model with the lowest energy was

extracted and aligned with the receptor using the Discovery

Studio Visualizer. The binding efficacy of ligands to receptors

was calculated according to the Lamarckian genetic algorithm

(LGA) with a maximum of 250,000 (units) energy. Following

this, the inhibition constant (Ki) was calculated from the binding

energy (DG) using the formula Ki = exp (DG/RT), where R is

acting as the universal gas constant (1.985 × 10−3 kcal mol−1 K−1)

and T is the temperature (298.15 K).
Absorption, distribution, metabolism,
and excretion properties and
drug-likeness prediction

The absorption, distribution, metabolism, and excretion

(ADME) properties and drug-likeness prediction of ligands were

analyzed using Swiss ADME a freely available web tool (47).

Lipinski’s rule of five criteria were used for the determination

of the drug-likeness of the molecule. That is, the number

of hydrogen bond donors is 5, and the number of hydrogen

bond acceptors is 10. The molecular weight of the drug is

< 500 Da. A calculated Log p ≤ 5 and polar surface area

(PSA) ≤ 140 Å2. Violation of more than two of these criteria

indicates that the test molecule is said to be impermeable or not

orally bioavailable (48).
TABLE 5 PubChem ID and canonical SMILES of xanthohumol and
anastrozole.

Ligands PubC
hem ID

Canonical SMILES

Xanthohumol 639665 CC(=CCC1=C(C(=C(C=C1O)OC)C(=O)
C=CC2=CC=C(C=C2)O)O)C

Anastrozole 2187 CC(C)(C#N)C1=CC(=CC(=C1)CN2C=NC=N2)C
(C)(C)C#N
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Target prediction

Pharmacological investigations are critical for identifying

possible cross-reactivity or phenotypic side effects induced by

the interaction of small biomolecules (28). For target prediction

studies, canonical SMILES of xanthohumol were put in the Swiss

Target Prediction webserver, and outputs were analyzed.
Toxicity prediction

The prediction of a molecule’s toxicological profile is critical

for estimating the molecule’s acceptability before it is

administered in both animal and human models. The toxicity

of the molecule was analyzed by the Protox II server (https://

toxnew.charite.de/protox_II/index.php?site=compound_input).

The canonical SMILES of xanthohumol retrieved from

PubChem were used as input to predict toxicity (49).

Conclusions

Through this in silico docking study, we examined the

potency of the binding capacity of xanthohumol against breast

cancer cell signaling molecules, namely, PI3K and AKT, which

are reported to be involved in proliferation, regulating cell

growth, transcription, and metabolic processes. A comparative

docking study of xanthohumol with a commercially available

drug anastrozole revealed that the binding affinity of

xanthohumol is comparable or in some cases even better than

the specific signaling inhibitor function of anastrozole- like

drugs, which are already in clinical trials. Therefore,

xanthohumol appears to be an alternative candidate to the

presently available anastrozole- like drugs. However, further in

vitro and in vivo studies followed by stepwise clinical trials are

required to establish it as an effective drug candidate.
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