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ABSTRACT  
 

The minibus taxi (MBT) is the dominant form of public transport across Sub-Saharan Africa 
(SSA). With a growing global call for greener transport, MBTs are seen as a key sector of 
implementation. The electrification of MBTs entails many challenges, including limited 
electricity resources and the lack of understanding of MBTs’ operational behaviour. In this 
paper, we estimate the electricity demand for future electric MBTs in the City of Tshwane, 
South Africa. We use existing origin and destination mobility data, which originated from 
vehicle-based tracking, and a micro-mobility simulation tool with an embedded electric 
vehicle model, called EV-Fleet-Sim. This simulation tool uses various SUMO packages to 
simulate mobility and calculate energy expenditure. The mobility dataset consists of 
various stop locations from a MBT fleet’s daily operation. The simulator uses a routing 
model, a virtual map, and a virtual driver model to convert the origin and destination data 
to high-fidelity mobility traces. The results are used in the electro-kinetic model to estimate 
the vehicles’ energy needs, from which charging opportunities can be derived. To illustrate 
this process and outputs, eight exemplar taxis with different operational patterns are 
selected for analysis. The results show a minimum and maximum median daily energy 
usage of 56 kWh and 215 kWh respectively, based on the mean observed daily distances 
travelled of 94 km to 330 km. While the energy demand varies significantly according to 
trip length and type of operation of the sub-fleet of 8 vehicles, clear morning and afternoon 
peaks are identified, along with charging opportunities during midday and at night.  
 
1. BACKGROUND  
 
Paratransit, including minibus taxis (MBTs), has increasingly been considered as an 
essential part of public transport systems in Sub Saharan Africa (SSA) (Ferro, 2015). It 
accounts for between 50-98% of passenger trips (Jennings & Behrens, 2017) with up to 
80% of SSA population make use of paratransit for their daily commutes (Slocat, 2021).   
 
The National Travel Survey in South Africa (NHTS, 2020) revealed that the minibus taxi is 
the third preferred mean of household trips across all modes, and is the first preferred 
mode for public transport users. According to NHTS 2020, transport modal share 
breakdown is “walking all the way” (41.7%), “private transport” (25.9%), “minibus taxi” 
(25.7%), “bus” (4.5%), and lastly comes “other” (1.5%) and “train” (0.7%). By province, a 
higher modal use of minibus taxis is reported for Gauteng Province (45,7%) followed by 
Mpumalanga (38,3%), and KwaZulu-Natal (38,2%)(Stats SA, 2019). The industry includes 
more than 200 000 taxis on South Africa’s roads generating about R40 billion per year and 
providing approximately 300 000 direct and indirect job opportunities (GCIS, 2021).  
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The phenomenon has been questioned mostly for its formality and regulatory structure, 
service level, safety and customer satisfaction (Behrens, et al., 2016; Mccormick, et al., 
2016; Gauthier & Weinstock, 2010). It is, however on the other hand, also acknowledged 
for providing several benefits for the operators and users amongst which entrepreneurial 
benefits, job creation and demand responsiveness nature of operation are obvious 
(Mccormick et al., 2016). These contradictories led to many integration and reform debates 
of the sector (Gauthier & Weinstock, 2010; Venter, 2013; Jennings & Behrens, 2017; 
Schalekamp & Klopp, 2018; Bruun & Behrens, 2016).  
 
South Africa occupies the 14th position on the global greenhouse gas (GHG) emission 
rankings, mainly due to its reliance on coal for energy production (CarbonBrief, 2018). The 
transport sector in South Africa, the second largest emitter of CO2, is responsible for 
approximately 14% of the national emissions and about 90% of the total fuel consumption. 
About 90% of these emissions are produced by road transport (Ahjum, et al., 2020; Slocat, 
2021). Calls for decarbonising MBTs have thus emerged in response to the Paris 
Agreement in order to lower GHG emissions and to reduce oil dependency through the 
introduction of vehicle technologies such as electric vehicles (DoT, 2018). However, poor 
electricity resources and scarcity of data required for a sustainable transition towards 
greening the sector are pivotal challenges that need to be addressed (Collett & Hirmer, 
2021). Ongoing research has thus started to identify and fill in the knowledge gaps needed 
for the electrification of MBTs of which the distribution of charging stations and energy 
required, and the potential impact on the already fragile electricity grids are key aspects.  
 
Resent work has investigated the potential for MBT electrification in SSA and proposed 
methodologies and technologies to identify energy requirements and possible energy 
sources. Custom-built software was developed by Booysen et al. (2021) to assess the 
impact on the Ugandan grid of electrifying MBTs in Kampala and to investigate charging 
opportunities. Abraham et al. (2021) estimated the energy requirements and charging 
opportunities of nine electric MBTs in the Western Cape Province, South Africa. Using 
GPS tracking and spatio-temporal data, the authors assessed the effectiveness of using a 
photovoltaic charging system to reduce the burden on the electrical grid.  
 
The effect that data collection methods and data reliability have on the accuracy of energy 
demand estimations was explored and discussed in Rix et al. (2022), who concluded that 
more reliable energy estimates could by obtained using vehicle-based tracking method 
rather than using passenger-based tracking method.  
 
With the aid of the simulation tool developed by Abraham et al. (2022), called EV-Fleet-
Sim (EV-Fleet-Sim, 2023), Hull et al. (2022) and Giliomee et al. (2022) investigated 
aspects related to the accuracy of energy consumption estimates in relation to GPS 
tracking methods; and assessed the virtual and actual manifestations of the physical 
infrastructure, the routing, and the driver and driving styles on the estimated energy 
expenditure.  
 
A limitation of the work to date is that EV-Fleet-Sim has only been applied to small 
experimental datasets of MBT vehicle routes of up to 9 vehicles. It is necessary to extend 
this analysis to larger fleets of in-service vehicles that are more representative of fleetwide 
operational conditions.  
 
  



2. CONTRIBUTION  
 
In this paper, the authors show how a micro traffic simulation tool, called SUMO (SUMO, 
2023a), can be used with an electro-kinetic model, called SUMO Electric (SUMO, 2023b), 
to determine energy requirements for electric minibus taxis (eMBTs) in the City of 
Tshwane. This software is packaged as EV-Fleet-Sim (EV-Fleet-Sim, 2023). The ultimate 
intention is to apply this to a representative sample of all MBTs operational in the city, in 
order to deliver insights on the fleetwide impacts of MBT electrification. In addition, this 
will, for the first time identify opportunities and constraints of rolling out such a transition on 
a citywide basis.  
 
3. RESEARCH METHODOLOGY   

 
The methodology used in this research is described in this section, starting with a 
description of the simulation tool followed by the available data and the procedure adopted 
to extract the required inputs for the tool. 
 
3.1 Simulation Tool  
 
EV-Fleet-Sim consists of various packages from a micro-traffic simulator called SUMO 
(SUMO, 2023a). This includes a routing function, virtual driver model and electro-kinetic 
model. EV-Fleet-Sim then processes the results generated by SUMO in various output 
graphs and datasets. This process is summarised in the flow chart in Figure 1. 
 

 
Figure 1: A flow diagram of EV-Fleet-Sim input and outputs (Giliomee et al., 2022) 

 
Input data is required in the form of GPS waypoints. This dataset must include a 
timestamp, latitude, longitude, altitude and speed information. Along with a road network 
file from Open Street Maps (OSM, 2023), a routing function from SUMO uses the input 
data to determine a route between the given waypoints. However, it is shown by Giliomee 
et al. (2022) that the network file provided by Open Street Maps is not always complete. 
The extent of the incomplete road network in the area covered by the dataset in this study 
is unknown.   
 
Along with the routing function, SUMO uses a driver model to convert mobility data from 
1/min samples to 1/sec samples through interpolating mobility simulation. This is done by 
simulating micro-mobility in-between input data points. Traffic features in the road network 
file also have an impact on this modelling. Through this, the inputted timestamp, latitude, 
longitude and altitude information is virtually up-sampled to 1 Hz mobility data. In addition, 
other parameters such as velocity and acceleration are also added in the virtual mobility 
dataset.   
 



 
The electro-kinetic model used in the simulation model is called SUMO Electric. This is 
based on a model proposed by Kurczveil et al. (2014). It uses the virtual 1Hz mobility 
dataset and calculates the power and energy required from the vehicle to move from one 
waypoint to the next. This is an energy-based model as it uses the difference in potential 
and kinetic energy between samples in its calculation, as opposed to a physics-based 
model which calculates force and the subsequent energy output.   
 
Results from the simulation are aplenty. From the 1Hz simulated mobility data generated 
by SUMO, EV-Fleet-Sim creates various graphs and box plots ranging from daily distance 
covered to power and energy offtake and speed profiles. It is important to understand that 
all results are generated by various packages within SUMO, where EV-Fleet-Sim only 
further processes it.   
 
3.2 Data  
 
Data used in this study were obtained from iSAHA, an entity that provides management 
and business solutions that mainly focuses on Transport and Health related projects. 
iSAHA conducted an Electronic On-Board survey for the City of Tshwane for the purpose 
of analysing operation business values for minibus taxis in the city and determining the 
effects of the implementation of the Tshwane Rapid Transit (A Re Yeng) on their market 
(iSAHA, 2015). The data captured daily operation and passenger counts for 205 minibus 
taxis from 27 May to 30 October 2014. Data on the daily trips and stops for each taxi are 
available and provide - among other information - the date, number, route, income, and 
duration of trips. The stops data, which provide information on the sequence, stop time, 
passenger count, and geographic coordinates of stops in each trip, constitute the main 
inputs for EV-Fleet-Sim that rely on the stop time and location of each stop. Although 
somewhat dated, the data are still deemed sufficiently representative of the core of MBT 
operations in the city, given that industry transition and replacement strategies linked to 
the A Re Yeng deployment have not yet materialised. 
 
The data preparation process started with analysing the existing trip data to understand 
the variation in taxi operational patterns. MBTs were thus categorised into four groups 
based on the total daily travel distances to reflect the percentage of taxis that travelled less 
than 100 km (category 1), between 100 and 200 km (category 2), between 200 and  
300 km (category 3), and more than 300 km (category 4). The percentage of MBTs in each 
category is illustrated in Figure 2 which shows that more than 70% of taxis in the dataset 
fall in the intermediate range categories, i.e., taxis travelled between 100 – 300 km.  
 
Taxis within each category were then further classified based on the average number of 
trips per day to identify the operational characteristics of each MBT in the dataset. It was 
found that taxis with a smaller average number of trips per day travelled longer average 
distances per trip than those with greater average number of trips within the same 
category of daily travelled distance. This suggests that taxis with a fewer average number 
of trips have an intercity type of operation while those with a higher average number of 
trips of the same distance category are of urban operating typology. This result has been 
confirmed visually by looking at the origins and destinations of these trips using the 
available coordinates of trips and the Quantum Geographic Information System (QGIS) 
software (QGIS, 2023). Two MBTs were selected from each category for simulation to 
reflect the variation in the operational characteristics of intercity and urban travel 
typologies which are illustrated in Table 1. The table also provides information on the 
  



number of days of data gathering for each taxi as well as the average total distance 
travelled. Input data for the simulation was prepared for each taxi using the stops dataset 
and the QGIS software. 
 

 
Figure 2: Categories of MBTs based on the average total daily travel distance 

 
 

Table 1: Characteristics of the eight selected MBTs for simulation 

Category by daily 
distance travelled 

(1) 
<100 km 

(2) 
100-200 km 

(3) 
200-300 km 

(4) 
>300 km 

Taxi code C005 L010 C010 L009 E011 P007 T013 G002 

Type of operation Urban Intercity Urban Intercity Urban Intercity Urban Intercity 

No. of days of data 
gathering 3 1 2 5 3 5 5 2 

Av. No of trips /day 20 3 22 5 24 8 20 8 

Av. Distance 
travelled/trip (km) 5 32 8 32 10 31 18 41 

Av. Total distance 
travelled /day (km) 93 95 170 139 241 222 356 304 

 
A heatmap of input data points from all the MBTs investigated in this paper is shown in 
Figure 3, reflecting the geographical extent of taxis operation throughout the days of data 
gathering. Figure 4 illustrates the differences in daily operation of taxis of group 3  
(200-300 km), where we can easily see the urban travel pattern of taxi E011 and the 
intercity travel pattern of taxi P007 as an example. The simulation was run and output 
results were generated.  
 
 



 
Figure 3: Heatmap of all the input data-points 

 

      
Figure 4: Illustration of the operational pattern of MBTs of group 3 (200-300 km) 

 
4. RESULTS  
 
The simulation tool outputs a variety of results pertaining to the simulated eMBTs. This 
includes, among others, results on the average rolling distance, power draw from the 
battery, and estimated energy consumption. This is presented both per taxi and as a fleet 
average. In addition, it is shown for each day and as an average across the total timespan 
of the input data. This section presents results of the simulation for individual taxis as well 
as for each defined taxi category to explore the relationship between operational 
characteristics and energy use.  
 
4.1 Individual MBT Analyses 
 
4.1.1 Energy and Power Draw from Battery 
From the simulated mobility dataset generated by SUMO and SUMO Electric, power and 
energy offtake from the battery for every sample in the simulated 1Hz dataset can be 
seen. EV-Fleet-Sim uses these results to generate various graphs for easy analysis. 
Firstly, we look at the daily energy usage for each eMBT, which is presented in the form of 



a boxplot. These results are shown in Figure 5 and in detail in Table 2. Considering the 
fleet of the 8 eMBTs, it is found that a minimum daily energy demand of 17 kWh is 
estimated for the intercity taxi L009 from the second category. However, this can be seen 
as an outlier, with the next minimum daily energy demand being 53 kWh. A maximum of 
277 kWh daily energy demand is determined for the urban taxi T013 from the fourth 
category. The mean daily energy demand for all taxis in the dataset is found to be  
131 kWh, across an average distance of 180 km. The variance in operational patterns of 
MBTs, which leads to a variance in their energy requirements, is evident from this result. 
This indicates the importance of a segmentation approach when exploring the 
opportunities of electrifying the MBTs and to plan roll-out strategies. 
 

 
Figure 5: Box plot of daily energy usage of simulated eMBTs 

 
Table 2: Daily energy usage of simulated eMBTs  

Category Taxi 
code 

Operation 
type 

Min. daily 
energy 
used 
(kWh) 

Max. 
daily 

energy 
used 
(kWh) 

Median 
energy 

used per 
day 

(kWh) 

Mean 
energy 

used per 
day 

(kWh) 

1 
C005 Urban 53 81 56 

56 
L010 Intercity 56 56 56 

2 C010 Urban 86 144 115 87 
L009 Intercity 17 99 60 

3 E011 Urban 165 205 185 165 
P007 Intercity 119 163 145 

4 
T013 Urban 225 277 238 

215 
G002 Intercity 171 216 193 

 
Power and energy profiles from all analysed MBTs are compared in terms of the 
timestamps of each datapoint. EV-Fleet-Sim uses this to create mean power and energy 
profiles for a 24-hour period. For all eight taxis used as input, the mean and distributive 
power draw from the battery is shown in Figure 6a, with the cumulative mean daily energy 
used per simulated eMBT shown in Figure 6b. 
 
Although a large variation in power draw from the vehicle battery across all vehicles is 
seen in Figure 6a, which suggests variation in operations, two clear operational peaks are 
identified in the morning and late afternoon. This suggests that although MBTs have 
different operations, they still roughly follow the same temporal pattern. This is also evident 
from the cumulative energy profile, where a higher gradient is seen during peak operation.  



 
Figure 6: Mean and distribution of daily power and mean energy draw from the battery 

of all 8 simulated eMBTs 
 

4.1.2 Charging Opportunities 
From Figure 6, operational patterns and charging opportunities can be derived. 
Subsequently, the timing of peak grid impact can be estimated. Concluding peak 
operational times, MBTs return to the rank and refuel (or recharge in this context) for the 
following operational peak. In the context of this paper, downtime is seen as a charging 
opportunity for eMBTs. From Figure 6, these times are estimated as 10:00 to 14:00 during 
the day, and 21:00 to 04:00 the following morning over nighttime.  
 
Furthermore, charging opportunities can be identified by analysing the mean daily distance 
profile. EV-Fleet-Sim constructs profiles of mean daily distance versus time for each 
simulated taxi, as shown in Figure 7. The stationary times, and subsequent charging 
opportunity, of the taxis the day can be identified from these profiles. Distances travelled 
and the routing of the simulated eMBTs in SUMO will further be discussed in detail in 
section 4.2.3.  
 

 
Figure 7: Mean daily distance profile of each simulated eMBT 

 
  



However, it would not be accurate to determine a grid load profile from these results. For 
this, additional data regarding charging stations, the number of chargers and charging 
speed is required. This is recommended as future work and further addressed in the 
conclusion.  
 
4.2 Groups Analyses 
 
4.2.1 Energy and Power Draw from the Battery 
In Table 2 we have shown summaries of the energy demand results for each vehicle, 
which are further examined in the box plots shown in Figure 4. 
 
Table 2 provides details on the minimum and maximum daily energy used by each eMBT 
in the fleet, as well as the mean energy required by each group of taxis. It is seen that the 
total energy requirements for eMBTs directly correlates with the distance travelled, with 56 
kWh used by the first category and 215 kWh for the fourth category.  
 
Also seen from this, is that urban trips require more energy than intercity trips; apart from 
those who travel short daily distances, which consumed the same amount of energy. This 
is due to the constant breaking and acceleration associated with urban driving. This uses 
significantly more energy opposed to driving at a constant velocity, such as with intercity 
driving. 
 
4.2.2 Charging Opportunities 
From analysing each taxi’s individual battery power draw profile, we further assess their 
peak operational times. From this, we specify charging opportunities according to urban or 
intercity operational profiles. 
 
Although the specific power draw stated in the simulation results is not relevant to city and 
electrical infrastructure planning, it gives an indication when the taxi is active or not. The 
value itself would only be useful in the case of defining proposed parameters for the 
powertrain of an eMBT. 
 
The morning operational peak is determined as 07:30 to 10:00 for urban trips, and 05:30 to 
07:30 for intercity trips. Here, a clear separation can be made between the charging 
opportunities of taxis doing intercity and urban trips, as current data shows a taxi only does 
one or the other. The afternoon/evening peak for the two operational profiles overlaps 
slightly. For urban trips, peak operational time is found to be between 15:00 and 21:30, 
where 16:00 to 18:30 is estimated for intercity travel.  
 
The results show a variance in peak operational time for the different trip types. However, 
as we are working with a limited dataset, more investigation is suggested with a larger 
number of MBTs to confirm the peak operational times and subsequent charging 
opportunities. With the inclusion of charging station information, grid impact can further be 
determined. 
 
From the battery power draw profile for each taxi, along with the mean daily distance 
profile, inactive times of taxis can be derived for the 24-hour period. A summary of times 
the taxi had zero power draw from the battery, indicating inactivity, is shown in Table 3. 
This shows 7 out of the 8 MBTs to have stationary times of around 7 hours at night, and  
5 having stationary times of at least 1.5 hours during the day.  
 
  



Table 3: Inactive periods of simulated eMBTs 

MBT category Taxi 
code 

Inactive periods over 24 hours  
1st 2nd 3rd 4th 5th 

1 
C005 19:40 - 05:00 

(≈ 9 hrs) - - - - 

L010 19:20 - 06:00 
(≈ 10 hrs) 

09:40 - 18:00 
(≈ 9 hrs) - - - 

2 
C010 22:30 - 04:20 

(≈ 6 hrs) 
12:00 - 12:20 

(≈ 30 min) 
14:30 - 14:46 

(≈ 15 min) - - 

L009 19:31 - 03:20 
(≈ 8 hrs) 

05:40 - 06:00 
(≈ 2 hrs) 

10:00 - 11:00 
(1 hrs) 

14:00 -15:15 
(≈ 1.5 hrs) 

16:30 - 17:00 
(≈ 1.5 hrs) 

3 
E011 19:30 - 04:40 

(≈ 9 hrs) - - - - 

P007 22:40 - 04:00 
(≈ 7 hrs) 

08:15- 14:30 
(≈ 6 hrs) - - - 

4 
T013 02:40 - 05:40 

(≈ 3 hrs) - - - - 

G002 20:40 - 05:00 
(≈ 10 hrs) 

10:00 - 01:00 
(3 hrs) - - - 

 
These stationary periods, in addition to information on their spatial distribution, gives an 
indication of the charging opportunities for eMBTs. This includes locations of charging 
stations, the number of charging points, and charging speed (power). 
 
4.2.3 Distance and Routing 
By comparing the measured daily distance travelled to that of the routing algorithm in the 
simulation, as shown in Table 4, it is clear that the routing function by SUMO is not perfect. 
This highlights both the shortcomings of simulations and the importance of high frequency 
measured data. As only stop locations are used as input to the simulation, the actual 
routes taken between these stops are unknown to the simulation. As described by Rix  
et al. (2022), the SUMO routing algorithm used EV-Fleet-Sim aims to find the shortest path 
between two input data points. As the measured distance covered by the MBTs exceed 
that of the simulated distance, it is clear that taxis do not always take the shortest route. 
This shortcoming of the simulation tool has previously been investigated by Giliomee et al. 
(2022), where they quantified the effect this has on the total daily energy usage. Improving 
on this inaccuracy is recommended as further work on the simulation tool.  
 

Table 4: Measured distances vs simulated distance from the simulation tool 

MBT category 

Urban trips Intercity trips 

Taxi 
code 

Measured 
distance 

(km) 

Simulated 
distance 

(km) 
Taxi 
code 

Measured 
distance 

(km) 

Simulated 
distance 

(km) 
1 C005 93 64 L010 95 98 
2 C010 170 149 L009 139 97 
3 E011 241 228 P007 222 213 
4 T013 356 290 G002 304 302 

Average 
distance (km)  215 183  190 177 

  



5. CONCLUSION AND RECOMMENDATIONS 
 

The work presented in this paper represents an initial attempt towards planning for the  
roll-out of the electrification of minibus taxis (MBTs) in the City of Tshwane, South Africa. 
Two activities needed early on are to develop tools to help estimate the energy 
requirements of electrified vehicles, and to identify typical operational patterns and routes 
that can help to understand the impacts of the electrification process on the already fragile 
national grid. This paper demonstrated both tasks. A segmentation approach has been 
applied to a readily available GPS tracking data to explore the opportunities of electrifying 
the MBTs using the EV-Fleet-Sim simulation tool. The tool generated estimates for the 
energy demands for a fleet of 8 simulated eMBTs, given their different trip and operational 
typologies. The taxi trips were segmented into four different categories based on the 
average distances travelled as well as on their operational pattern as urban or intercity 
trips. Urban trips are found to consume more energy than intercity trips. It is estimated that 
this is due to the nature of the constant breaking and accelerating driving style observed in 
urban scenarios. Such results, expanded to larger fleets of representative vehicles, will 
help transport planners to devise and evaluate implementation strategies for incremental 
electrification of the MBT fleet. 
 
The EV-Fleet-Sim simulation tool provides detailed information on the energy demands of 
future electric minibus taxis (eMBTs). A mean energy demand of 130 kWh per day is found 
across the fleet of 8 taxis. Additionally, the minimum and maximum daily energy demand 
for the shortest and longest distance-based categories is found to be 56 kWh and  
215 kWh, respectively 
 
Across all 8 taxis, a morning peak of between 05:30 to 10:00 and an afternoon peak of 
15:00 to 21:30 is seen. Seven of the 8 taxis reported a night stationary time of more than  
7 hours, with 5 taxis having at least 1.5 hours stationary time during the day. These 
stationary times indicate the potential for charging opportunities for future eMBTs. When 
comparing charging opportunities to the national electrical grid load profile, it is seen that 
these times coincide with a reduced demand. Nonetheless, with the fragile nature of the 
current electrical grid, the additional strain cannot be supported. Also seen is charging 
opportunities during the day, which indicates the possibility of incorporating solar charging 
stations. Thus, careful planning is required if eMBTs are to be adopted in South Africa. 
Synchronising charging times and load with grid and solar power availability is paramount. 
Furthermore, we suggest a segmented approach of electrifying the MBTs according to 
their operational pattern.  
 
The EV-Fleet-Sim software generates detailed outcomes on the energy and power profiles 
for the simulated eMBT fleet. It provides a powerful means for assessing MBT 
electrification requirements and planning according to different operational characteristics. 
However, a maximum usefulness of the tool may only be achieved by the presence of 
sufficient and accurate data. Further work is needed on understanding the minimum 
requirements for such data to address limitations in data sources, and in simulation tools. 
We recommend that further research should be conducted as an extension to the work 
done in this paper to include more taxis from each of the defined distance-based 
categories. Additionally, attempting other operational-based segmentation of the available 
datasets in order to obtain a holistic overview of the electrification potential of the industry.  
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