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Abstract  

Conventional production systems assume that during the manufacturing processes, machines operate without breakdown over an 

infinite planning horizon and manufacture only products of good quality. Imperfect production processes as a result of machine 

degradation are common in manufacturing. This paper deals with a problem that concerns the modelling and evaluation of the 

performance of a multi-state production system that is subject to degradation and its effect on lot sizing. Here, we consider that the 

cycle starts with a particular production rate until a point when the inventory reaches a certain level after which the failure mode is 

activated due to the deterioration of certain components, leading to a reduction in the production rate in order to ensure the 

continuity of supply until the maximum inventory level is reached. Production then stops to restore the machine and the cycle starts 

again. We have assumed that the rate at which inventory deteriorates is exponential and that demand is constant. A numerical 

example is used to illustrate the model application, followed by sensitivity analysis. This paper contributes to lot sizing in the area 

of machine reliability by considering a production system in a degraded state with a non-increasing production rate for deteriorating 

items with imperfect quality and partial backlogging. 

 

Keywords- Multi-state systems, Inventory; Shortages, Deteriorating process, Variable production rate. 

 

 

 

1. Introduction 
Manufacturing organizations face significant challenges such as availability of equipment and other 

resources, flexibility of production systems, reliability of the processes, the quality of the output products, 

deterioration of goods, and integration of new products and services into the existing production process. 

The management and control of inventory has become a core part of operations management, and it plays 

a significant role through achieving efficient and profitable operations for many organizations. Hence, 

considerable efforts have been made to develop models that can be implemented to optimize inventory 

systems without compromising customer needs. The classic Economic Order/Production Quantity 

(EPQ/EPQ) model is the most widely used of these models. However, the traditional EPQ model made a 

number of simplifying assumptions that might be unrealistic in real-world situations. Ever since the 

Economic Production Quantity (EPQ) model was first introduced in the early decades of the 21st century, 

researchers have extended it in many ways through the relaxation of key assumptions, including 

considerations of shortages, degradation of equipment, deterioration of goods, variable demand, imperfect 
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quality of the outputs, and some combinations of these. The objective of this paper is to develop a model 

based on the EPQ concept to optimize a flexible manufacturing system that is subject to breakdown of 

machines, to produce both perfect and imperfect items that deteriorate over time and allows partial 

backorders. 

 

2. Literature Review 
Many inventory models assume that the item has an infinite shelf life while it is in storage.  In many real-

life situations, this assumption may not be true.  The management of deteriorating inventories has received 

much attention because deterioration of items is one of the important factors in inventory control problems. 

In many real-life situations, decay or deterioration of items is a natural phenomenon. Chemicals, fruits, 

vegetables, fertilizers, perfumes, pharmaceutical products, radioactive substances, gasoline, and different 

types of oils are examples of deteriorating items. The classic production model of Taft (1918) assumes that 

the depletion of inventory is due only to the constant demand rate, while in many inventory systems, the 

effect of deterioration cannot be ignored. Whitin (1957) was the first to consider the effect of deterioration 

on fashion items after a prescribed date. Ghare and Schrader (1963) proposed a replenishment policy for an 

exponentially decaying inventory. Datta and Pal (1990) proposed a deterministic inventory system for 

deteriorating items with constant deterioration rate and demand rate that is a linear function of stock level. 

Panda et al. (2009) developed an inventory model for perishable products with time varying demand. 

Guchhait et al. (2013) presented an EPQ model for damageable items with variable demand rate in which 

both the inventory carrying cost and the production rate are assumed to be time-dependent. Pandey and 

Vaish (2017) formulated an inventory policy for deteriorating goods with seasonal demand under the effect 

of price discounting on the unit selling price. Agi and Soni (2020) presented a deterministic inventory policy 

for a perishable product subject to both physical deterioration and degradation subject to freshness 

condition. Çalışkan (2022) developed an EOQ model for exponentially deteriorating items with planned 

backorders without using differential calculus. Rahaman et al. (2022) presented an inventory model for 

deteriorating inventory in which preservation technology to recover substantial loss of items during 

production is implemented. 

 

Also, many researchers have studied production systems where perfect quality items are always produced, 

but in actual situations, manufactured products may include a number of imperfect items. This defect in the 

quality of products, which may be the result of many factors such as human errors, wide tolerance, 

equipment failure, mishandling and incorrect specifications of raw materials (Al-Salamah, 2019), is now 

being studied. Zhang and Gerchak (1990) extended the classic EOQ model to systems with imperfect 

quality by including an inspection policy with random yield on lot sizing while assuming that defective 

units are replaced by non-defective ones. Cheng (1991) presented an EOQ model with imperfect production 

processes and price dependent demand. Chang (2004) presented a model in which a proportion of items is 

considered imperfect and the demand rate is assumed to be fuzzy variables. Eroglu and Ozdemir (2007) 

examined an EOQ model with defective items and backordering. Elyasi et al. (2014) presented three distinct 

game theoretical approaches to solve a decentralized EOQ model which considers the defective items in a 

two-echelon decentralized supply chain. Sajjad et al. (2022) discussed a shipping policy that considers the 

imperfections of production processes and some related factors such as transportation cost, actual 

production inventory, defective items and backorders. 

 

Furthermore, typical models of production systems do not consider processes with speed losses or 

breakdown of machines. However, considering the manufacturing system as a complex sequence with 

several unit processes, each with its characteristics, the issues of resource reliability has become an issue 

that producers have to address because the performance of a system depends on the availability of 

machinery. Process degradation is a natural phenomenon in a production process that runs for long time, 
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hence, the problem of degradation of processes has been addressed by several authors. Hall (1983) studied 

the effect of malfunctions of equipment on the quality of products. Sana et al. (2007) extended Krasa and 

Pal (1990)’s model by considering a system with imperfect production (due to staff impatience), constant 

demand, loss of sale, and price discounting based on the quality of items. Sethi et al. (2002) developed a 

stochastic production planning model subject to random failures to control and optimize a flexible 

manufacturing system and used the dynamic programming approach to solve the problem. Ben-Daya et al. 

(2008) studied an EPQ model with a shifting production rate under stoppages due to speed losses. They 

demonstrated that process deterioration could be the result of minor stoppages and speed losses, which in 

practice may affect the efficiency of the process. Kenne´ and Nkeungoue (2008) proposed homogenous 

Markov Processes using the Hedging point policy with failures and repairs of machines. The authors 

assumed that the machine failures were age-dependent. Emami-Mehrgani et al. (2014) studied production 

systems with machines subjected to random breakdowns and repairs under preventive maintenance with 

human error. 

 

The study of a system’s reliability has traditionally been based on binary modelling (using two states), 

namely the operational state and the complete failure state. However, growing literature now considers 

numerous scenarios that may occur during the lifetime of some systems. Systems may be Multi-Production 

Systems (MPS) or Multi-State Systems (MSS). MPS usually start with low production rate and then ramp 

up later in order to lower the average holding cost as smaller stock level is held for longer time, while large 

stocks are held for shorter period. MSS, however, may serve both the purpose of holding cost reduction and 

management of a degraded state. If, from the production point of view, a system is conceived in a way that 

at the occurrence of any failure, a reconfiguration is undertaken automatically allowing the degraded 

machine or any other equipment to be functional but with a decrease of the service delivered, we refer to 

this as a multi-state system (MSS) or degraded system. MSS may be subject to multiple failure modes 

which may have different effects on their performance. Degradation, being one of these failure modes, 

allows a machine to continue to perform its function after a breakdown has occurred, but resulting in a 

partial reduction of its nominal performance However, the continuity of a service depends mainly on the 

state of the manufacturing system. For such systems, the breakdown of any component only minimally or 

at least partially disrupts their performance. This approach differs from the conventional methods that 

normally imply the complete shutdown of the system. 

 

A manufacturing system’s overall effectiveness is usually determined by combining the system’s 

efficiency, the process’ availability, and the product’s quality. Over the past few years, studies have started 

to address the effects of process availability, however, MSS and its influence on both the efficiency of 

equipment and the quality of the items resulting from such a system have not been fully addressed. Some 

researchers have tried to address this problem by simply inflating the quantity produced in the lot size by 

an amount needed to take care of the quantity that needs to be discarded without considering the 

implications of degraded state of the machine and other factors such as the quality of items produced and 

the shelf life of items stored (Hu et al., 1994; Martinelli, 2007; Nodem et al., 2011). While this assumption 

seems reasonable and may lead to simpler and more direct mathematical solutions, these authors did not 

discuss the issue of having the machine performing continuously at a higher rate of production, which may 

lead to more damage to the system, and may increase the level of defective items produced beyond what 

would have happened by shifting to a lower production rate. Silver (1990) considered the case of a 

manufacturing system in which the production is deliberately slowed down to permit the production rates 

to be treated as a controllable variable without taking into account the degraded mode. Khouja and Mehrez 

(1994) developed an EPQ model by extending the traditional EPQ to cases of flexible production rates with 

variable production cost function. Eiamkanchanalai and Banerjee (1999) extended the work of Khouja and 

Mehrez (1994) by including a linear penalty function due to unused capacity. Sana et al. (2007) considered 
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a production system with adjustable rate, with demand for both perfect and imperfect quality items. Ben-

Daya et al. (2008) developed a two-state production system, demonstrating the effect of varying production 

rate on batch sizing due to speed loss. Bhowmick and Samanta (2011) investigated a production model for 

deteriorating items with shifting production rates and shortages. Uthayakumar and Sekar (2017) developed 

an imperfect EPQ model for deteriorating items, including both the rework and salvage value. Shaikh et al. 

(2020) proposed a replenishment policy for deteriorating items under the effect of reliability and price-

dependent demand. Manna et al. (2021) developed a multi-item non-perfect production-inventory model 

over a finite time horizon. Ritha and Saarumathi (2021) discussed the implementation of EPQ model to 

consider the optimal production time over a finite planning horizon in which the production rate is 

dependent on the demand rate. We now discuss the identified gap in literature filled by this work. 

 

 
Table 1. Analysis of related literature. 

 

Characteristics of the EPQ system 

Year Authors 
Single 

Production 
MPS MSS 

Imperfect 

quality 
Deterioration Rework 

Partial 

backorder 

Complete 

backorder 

1918 Taft (1918) Yes no no no no no no no 

1994 
Khouja & Mehrez 

(1994) 
Yes no yes yes no yes no no 

2008 
Ben-Daya et al. 

(2008) 
No yes no no no no no no 

2012 
Bhowmick & 

Samanta (2012) 
No yes no no no no no yes 

2017 Gothi et al. (2017) Yes yes no no yes no yes no 

2019 Al-Salamah (2019) Yes no no yes no yes no yes 

2022 This paper No yes yes yes yes no yes no 

 

 

An analysis of the published EPQ models with MSS/MPS systems previously studied is provided in Table 

1, which illustrates the various factors considered with the MSS/MPS models by different research articles 

in the extant literature, and what this paper adds to the research on production system with machines in 

degraded mode. A review of current literature seems to suggest that there are no extensions of inventory 

model for deteriorating items which considered a multi-state production system with non-increasing 

production rate, imperfect quality, and partial backlogging. This paper, hence, considers an MSS for a 

deteriorating item with imperfect items and degrading production rates, while also allowing partial 

backlogging of demand with lost sales. The model extends the work of Bhowmick and Samanta (2012) and 

Al-Salamah (2019). The goal is to examine deterioration of both products and processes and their impacts 

on the economic production quantity decisions. 

 

The rest of this article is structured as follows: the development of the mathematical model is outlined in 

section 3, while a numerical example is presented in section 4. Finally, conclusions are given in  

Section 5. 

 

3. Formulation of the Proposed MSS 

3.1 Notations and Assumptions 

3.1.1 Assumptions 
The following assumptions are made for development of the model: 

 

• The production-inventory system produces a single item. 

• Shortages are partially backlogged and partially lost. 
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• The changeover cost and time from 𝑘1 to 𝑘2  is assumed to be negligible 

• All imperfect items are scrapped and disposed as a batch, and a disposal cost is incurred per item 

scrapped. 

• The production shift occurs during the production run, and is consequent to the optimized inventory 

parameters. 

• It is assumed that the cost of repair can be ignored since it is handled by using in house capacity. 

 

The deterioration of an item produced follows the exponential function 𝜃𝑒−𝜃𝑡  for ≥ 0 , where 𝜃 is the 

deterioration rate (0 ≤ 𝜃 ≪ 1). 

 

3.1.2 Notations 
The following notations are adopted to develop the model given in Table 2. 
 

 

Table 2. Summary of notations used. 
 

Symbol Description 

𝑐𝑎 The deterioration cost per item 

𝑐𝑏 The disposal cost per unit item 

𝑐𝑠 The shortage cost per item per time 

𝑐𝑝 The penalty cost per unit lost sale 

𝐷(𝑡) Demand at time 𝑡 which is assumed constant and equal to 𝐴 

𝑑1, 𝑑2 The proportion of defective units produced during the interval [0, 𝑡1]and time interval [𝑡1, 𝑡2] respectively 

0 ≤ 𝑑1, 𝑑2 < 1 

𝐺 The production setup cost 

ℎ The inventory carrying cost per item per time 

𝐻𝑀 The Hessian Matrix 

𝐼(𝑡) The instantaneous state of the inventory level at any time t (0 ≤ 𝑡 ≤ 𝑇) 

𝑘1, 𝑘2 The Constant production rates during the time intervals [0, 𝑡1]and time interval [𝑡1, 𝑡2] respectively 

𝐼1 The inventory level at the end of time 𝑡 = 𝑡1 

𝐼2 The inventory level at the end of time 𝑡 = 𝑡2 

𝑟 The fraction of demand lost due to inventory stock out  (0 < 𝑟 < 1) 

𝑝𝑐1, 𝑝𝑐2 The constant unit production costs when the rate of productions are 𝑘1 and  𝑘2 respectively 

𝑆 The maximum shortage, occurring at 𝑡 = 𝑡4 

𝑇 The total cycle time 

𝑇𝐶 The average total cost for the time period [0, 𝑇] 

𝜃(𝑡) The deterioration rate per (units/unit time). 

𝜌1, 𝜌2, 𝛽, 𝜏, 𝛹, 𝐵, 𝐶, 𝐸, 𝐹 Aggregation parameters for some known variables 

 

 

3.2 Mathematical Formulation 
In the following system, a company produces a certain item which deteriorates over time, for which  the 

behavior of the inventory profile and the state of the machine that produces the items through a degradable 

process are presented in Figures 1 and 2. The system is designed to start operating at a production rate of 

𝑘1 (Figure 2), and an inventory of goods accumulates during the first part of the cycle at a rate (1 − 𝑑1)𝑘1 −
𝐴 while the imperfect quality items accumulate at the rate 𝑑1𝑘1 and are disposed as a single batch at the 

end of the cycle. We assume the time until when the production switches to a degraded state to be 𝑡1, by 

which time the stock of good items has reached the level  𝐼1 . It is assumed that when breakdown occurs, 
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the system is automatically reconfigured to continue to be operational but at a lower production rate, 𝑘2 

(Figure 2). The same concept was used by Khouja (2005) in dealing with shifts in production. Therefore, 

the production rate switches over to 𝑘2 and inventory of perfect items accumulates at the rate (1 − 𝑑2)𝑘2 −
𝐴 until a level 𝐼2 is reached. The quantity of imperfect quality item continues to accumulate at the rate 𝑑2𝑘2 

in the second production consumption cycle which ends at time 𝑡2 and is also disposed at the end of the 

cycle. We assume the failure state to be static. This implies that no further deterioration occurs over time 

after the system shifts to a failure state. Once the level 𝐼2  is reached, production is then stopped for 

maintenance, and the inventory decreases until the stock level reaches zero (Figure 1). There are unit costs 

of production associated with each of the two states of production. These costs are assumed constant in 

each state of the production. After the stock is drawn down to zero, the system goes into a state of backlog 

of demand up to 𝑆 (the maximum backorder level), and thereafter production starts to clear the backlog in 
[𝑡4, 𝑇]. Gothi et al. (2017) assumed that demand during the time interval [𝑡4, 𝑇] is satisfied as the production 

has already started at time 𝑡 = 𝑡4, and so lost sales cost during this interval is not taken into account (Figure 

1). However, in reality some customers are not willing to wait as the company is still not able to meet all 

the outstanding demand (i.e. backlog) at the time instance. It should be noted that stock cannot build up in 

the period [𝑡4, 𝑇] because there isn’t enough extra capacity to meet the instantaneous demand and also clear 

backlog during the period [𝑡4, 𝑇], hence, it continues to lose some sales until there is no more backlog at 

time T. 

 

 

 
 

Figure 1. Inventory profile with alternating production rates of the MSS. 
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Figure 2. State of a MSS in terms of equipment deterioration. 
 
 

The differential equations that represent the problem statement of the EPQ model in the interval [0, 𝑇] are 

given by: 

 
𝑑𝐼(𝑡)

𝑑𝑡
+ 𝜃𝐼(𝑡) =  (1 − 𝑑1)𝑘1 − 𝑎                          0 ≤ 𝑡 ≤ 𝑡1                                                                                         (1) 

𝑑𝐼(𝑡)

𝑑𝑡
+  𝜃𝐼(𝑡) =  (1 − 𝑑2)𝑘2 − 𝑎                         𝑡1 ≤ 𝑡 ≤ 𝑡2                                                                                       (2) 

𝑑𝐼(𝑡)

𝑑𝑡
+  𝜃𝐼(𝑡) =  −𝑎                                                𝑡2 ≤ 𝑡 ≤ 𝑡3                                                                                       (3) 

𝑑𝐼(𝑡)

𝑑𝑡
=  − (1 − 𝑟)𝑎                                                 𝑡3 ≤ 𝑡 ≤ 𝑡4                                                                                     (4) 

𝑑𝐼(𝑡)

𝑑𝑡
= (1 − 𝑑2)𝑘2 − (1 − 𝑟)𝑎                            𝑡4 ≤ 𝑡 ≤ 𝑇                                                                                      (5) 

 

Under the boundary conditions (0) = 0, 𝐼(𝑡1) = 𝐼1, 𝐼(𝑡2) = 𝐼2 , 𝐼(𝑡3) = 0, 𝐼(𝑡4) = 𝑆, and 𝐼(𝑇) = 0, we 

obtain the following: 

 

𝐼(𝑡) =  [
(1−𝑑1))𝑘1

𝜃
− 

𝑎

𝜃
] (1 − 𝑒−𝜃𝑡)                                                       0 ≤ 𝑡 ≤ 𝑡1                                                    (6) 

𝐼(𝑡) =  [
(1−𝑑2)𝑘2

𝜃
−  

𝑎

𝜃
] + {𝐼1 − [

(1−𝑑2)𝑘2

𝜃
− 

𝑎

𝜃
]} 𝑒−𝜃(𝑡−𝑡1)               𝑡1 ≤ 𝑡 ≤ 𝑡2                                                   (7) 

𝐼(𝑡) = −
𝑎

𝜃
+ (𝐼2 +

𝑎

𝜃
) 𝑒−𝜃(𝑡−𝑡2)                                                            𝑡2 ≤ 𝑡 ≤ 𝑡3                                                 (8) 

𝐼(𝑡) =  −(1 − 𝑟)𝑎(𝑡 − 𝑡3)                                                                     𝑡3 ≤ 𝑡 ≤ 𝑡4                                                  (9) 

𝐼(𝑡) = −𝑆 + (1 − 𝑑2)(𝑡 − 𝑡4)𝑘2 − (1 − 𝑟)𝑎(𝑡 − 𝑡4)                     𝑡4 ≤ 𝑡 ≤ 𝑇                                                  (10) 

 

From (6) we have: 

 

𝐼1 =  [
(1−𝑑1)𝑘1

𝜃
−  

𝑎

𝜃
] (1 − 𝑒−𝜃𝑡1)                                                                                                               (11) 
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𝑡1 = −
1

𝜃
𝑙𝑛 [1 −

𝜃𝐼1

(1−𝑑1)𝑘1− 𝑎
]                                                                                                                     (12) 

 

From Taylor’s series expansion, and the assumption that θ2 ≪ 1 (neglecting higher powers of θ) and the 

boundary conditions, the expansion of the logarithmic function in (12) is given by: 

 

𝑙𝑛 [1 −
𝜃𝐼1

[ (1−𝑑1)𝑘1− 𝑎]
] = −

𝜃𝐼1

(1−𝑑1)𝑘1− 𝑎
−

𝜃2𝐼1
2

2[ (1−𝑑1)𝑘1− 𝑎]2 −
2𝜃3

6[(1−𝑑1)𝑘1− 𝑎]3 𝐼1
3                                          (13) 

 

Therefore: 

 

𝑡1 = −
1

𝜃
[−

𝜃𝐼1

(1−𝑑1)𝑘1− 𝑎
−

𝜃2𝐼1
2

2[ (1−𝑑1)𝑘1− 𝑎]2 −
2𝜃3

6[(1−𝑑1)𝑘1− 𝑎]3 𝐼1
3]                                                                  (14) 

𝑡1 ≈
𝐼1

(1−𝑑1)𝑘1− 𝑎
+

𝜃𝐼1
2

2[ (1−𝑑1)𝑘1− 𝑎]2                                                                                                                             (15) 

 

Thus, 𝑡1 can be written in terms of 𝐼1 and so, 𝑡1 is not a decision variable. 

 

From (7), under the boundary condition (𝑡2) = 𝐼2 , we have: 

 

𝐼2 = [
(1−𝑑2)𝑘2

𝜃
−  

𝑎

𝜃
] + {𝐼1 − [

(1−𝑑2)𝑘2

𝜃
−  

𝑎

𝜃
]} 𝑒−𝜃(𝑡2−𝑡1)                                                                            (16) 

𝑡2 − 𝑡1 =
1

𝜃
𝑙𝑛 [1 −

𝜃𝐼1

(1−𝑑2)𝑘2+𝑎
] −

1

𝜃
𝑙𝑛 [1 −

𝜃𝐼2

(1−𝑑2)𝑘2+𝑎
]                                                                              (17) 

 

From Taylor’s series expansion, and the assumption that θ2 ≪ 1 (neglecting higher powers of θ), the 

expansion of the logarithmic functions in (17) is given by: 
 
1

𝜃
𝑙𝑛 [1 −

𝜃𝐼1

(1−𝑑2)𝑘2+𝑎
] −

1

𝜃
𝑙𝑛 [1 −

𝜃𝐼2

(1−𝑑2)𝑘2+𝑎
]  

=
1

𝜃
[−

𝜃𝐼1

(1−𝑑2)𝑘2− 𝑎
−

𝜃2𝐼1
2

2[ (1−𝑑2)𝑘2− 𝑎]2 −
2𝜃3𝐼1

3

6[(1−𝑑2)𝑘2− 𝑎]3] −
1

𝜃
[−

𝜃𝐼2

(1−𝑑2)𝑘2− 𝑎
−

𝜃2𝐼2
2

2[ (1−𝑑2)𝑘2− 𝑎]2 −

2𝜃3𝐼2
3

6[(1−𝑑2)𝑘2− 𝑎]3]                                                                                                                                        (18) 

 

Therefore: 

 

𝑡2 − 𝑡1 =
1

𝜃
[−

𝜃𝐼1

(1−𝑑2)𝑘2− 𝑎
−

𝜃2𝐼1
2

2[ (1−𝑑2)𝑘2− 𝑎]2 −
2𝜃3𝐼1

3

6[(1−𝑑2)𝑘2− 𝑎]3] −
1

𝜃
[−

𝜃𝐼2

(1−𝑑2)𝑘2− 𝑎
−

𝜃2𝐼2
2

2[ (1−𝑑2)𝑘2− 𝑎]2 −

2𝜃3𝐼2
3

6[(1−𝑑2)𝑘2− 𝑎]3]                                                                                                                              (19) 

 

That is, 

 

𝑡2 =
𝐼2−𝐼1

(1−𝑑2)𝑘2− 𝑎
+

𝜃(𝐼2
2−𝐼1

2)

2[ (1−𝑑2)𝑘2− 𝑎]2 +
𝐼1

(1−𝑑1)𝑘1− 𝑎
+

𝜃𝐼1
2

2[ (1−𝑑1)𝑘1− 𝑎]2                                                            (20) 

 

Thus, 𝑡2 can be written in terms of 𝐼1 and 𝐼2 . Therefore, 𝑡2 is not a decision variable. 
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From (8), under the boundary condition 𝐼(𝑡3) = 0, we get: 
 

0 = −
𝑎

𝜃
+ [𝐼2 +

𝑎

𝜃
] 𝑒−𝜃(𝑡3−𝑡2)                                                                                                                     (21) 

𝑡3 − 𝑡2 =
1

𝜃
𝑙𝑛 (

𝑎+𝜃𝐼2

𝑎
)                                                                                                                                             (22) 

 

For small values of 𝜃 and using Taylor series approximation, we expand the logarithmic function in (22) as 

follow:  
 

𝑙𝑛 (
𝑎+𝜃𝐼2

𝑎
) =

𝜃𝐼2

𝑎
−

𝜃2𝐼2
2

2𝑎2 +
2𝜃3𝐼2

3

6𝑎3                                                                                                                               (24) 

 

Therefore: 

 

𝑡3 − 𝑡2 =
1

𝜃
[

𝜃

𝑎
𝐼2 −

𝜃2

2𝑎2 𝐼2
2 +

2𝜃3

6𝑎3 𝐼2
3]                                                                                                                 (25) 

 

That is, 

 

𝑡3 =
𝐼2

𝑎
−

𝜃𝐼2
2

2𝑎2 +
𝐼2−𝐼1

(1−𝑑2)𝑘2− 𝑎
+

𝜃(𝐼2
2−𝐼1

2)

2[ (1−𝑑2)𝑘2− 𝑎]2 +
𝐼1

(1−𝑑1)𝑘1− 𝑎
+

𝜃𝐼1
2

2[ (1−𝑑1)𝑘1− 𝑎]2                                            (26) 

 

Thus, 𝑡3 can be written in terms of 𝐼1 and 𝐼2 . Therefore, 𝑡3 is not a decision variable. 

 

From (9) and the boundary condition 𝐼(𝑡4) = −𝑆, we get: 

 

−(1 − 𝑟)𝑎(𝑡4 − 𝑡3) = −𝑆                                                                                                                          (27) 

𝑡4 =
𝑆

(1−𝑟)𝑎
+

𝐼1

(1−𝑑1)𝑘1− 𝑎
+

𝜃𝐼1
2

2[ (1−𝑑1)𝑘1− 𝑎]2 +
𝐼2−𝐼1

(1−𝑑2)𝑘2− 𝑎
+

𝜃(𝐼2
2−𝐼1

2)

2[ (1−𝑑2)𝑘2− 𝑎]2 +
𝐼2

𝑎
−

𝜃𝐼2
2

2𝑎2                             (28) 

  

Thus, 𝑡4 can be written in terms of 𝐼1 and 𝐼2. Therefore, 𝑡4 is not a decision variable. 

 

From (10) and the boundary condition 𝐼(𝑇) = 0, we get: 

 

−𝑆 + (1 − 𝑑2)(𝑇 − 𝑡4)𝑘2 − (1 − 𝑟)𝑎(𝑇 − 𝑡4) = 0                                                                                   (29) 

𝑇 − 𝑡4 =
𝑆

[(1−𝑑2)𝑘2−(1−𝑟)𝑎]
                                                                                                                          (30) 

 

Substituting (27) into (30), we get: 

 

𝑇 − 𝑡3 −
𝑆

(1−𝑟)𝑎
=

𝑆

[(1−𝑑2)𝑘2−(1−𝑟)𝑎]
                                                                                                                                    (31) 

𝑆 =
(1−𝑟)𝑎[(1−𝑑2)𝑘2−(1−𝑟)𝑎]

(1−𝑑2)𝑘2
[𝑇 −

𝐼2

𝑎
+

𝜃𝐼2
2

2𝑎2 −
𝐼2−𝐼1

𝜌2
−

𝜃(𝐼2
2−𝐼1

2)

2𝜌2
2 −

𝐼1

𝜌1
−

𝜃𝐼1
2

2𝜌1
2]   

    =
(1−𝑟)𝑎[(1−𝑑2)𝑘2−(1−𝑟)𝑎]

(1−𝑑2)𝑘2
[𝑇 − 𝐵𝐼2 +

𝜃

2
𝐶𝐼2

2 + 𝐸𝐼1 +
𝜃

2
𝐹𝐼1

2]                                                                             (32) 

 

With 

(1 − 𝑑1)𝑘1 −  𝑎 = 𝜌1                                                                                                                                 (33) 
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(1 − 𝑑2)𝑘2 −  𝑎 = 𝜌2                                                                                                                                            (34) 
1

𝑎
+

1

𝜌2
= 𝐵                                                                                                                                                   (35) 

1

𝑎2 −
1

𝜌2
2 = 𝐶                                                                                                                                                                    (36) 

1

𝜌2
−

1

𝜌1
= 𝐸                                                                                                                                                 (37) 

 
1

𝜌2
2 −

1

𝜌1
2 = 𝐹                                                                                                                                                (38) 

 

Thus, 𝑆 can be written in terms of 𝐼1 ,𝐼2 and 𝑇. Therefore, 𝑆 is not a decision variable. 

 

3.3 Cost Components Involved in the Mathematical Formulation 
To find the optimum quantities, we first calculate the total cycle cost, which is the sum of setup cost, 

deteriorating cost, inventory holding cost, shortage costs, loss of sales cost, production cost, and cost of 

disposing defective items. The cost components are derived as follows: 

 

3.3.1 Setup Cost (SUC) 
The setup cost is considered fixed and is represented by: 

 

𝑆𝑈𝐶 =  𝐺                                                                                                                                                                    (39) 

 

3.3.2 Deteriorated Items’ Cost (DC) 
The total number of deteriorated items over the time interval [0, 𝑇] is obtained by integrating the 

deterioration function over the interval [0, t3]. It should be noted that the product can only deteriorate in 

the interval [0, t3] when there is stock. There is no stock in the interval [t3, T]. Hence, 

 

∫ [(1 − 𝑑1)𝑘1 − 𝑎]
𝑡1

0
𝑑𝑡 + ∫ [(1 − 𝑑2)𝑘2 − 𝑎]

𝑡2

𝑡1
𝑑𝑡 − ∫ 𝑎

𝑡3

𝑡2
𝑑𝑡                                                                             (40) 

= [(1 − 𝑑1)𝑘1 − 𝑎]𝑡1 + [(1 − 𝑑2)𝑘2 − 𝑎](𝑡2 − 𝑡1) − 𝑎(𝑡3 − 𝑡2)                                                               (41) 

 

Substituting (15), (20), and (26) appropriately, the total cost of deteriorated items over [0, 𝑇] is given by: 

 

𝐷𝐶 = 𝐶𝑎 [
𝜃𝐼1

2

2𝜌1
+

𝜃(𝐼2
2−𝐼1

2)

2𝜌2
+

𝜃𝐼2
2

2𝑎
]                                                                                                                   (42) 

 

3.3.3 Inventory Carrying Cost (ICC) 
According to Figure 1, it can be concluded that the total holding cost over [0, 𝑇] can be summarized as 

follow: 

 

𝐼𝐶𝐶 =  ℎ × {∫ 𝐼(𝑡)𝑑𝑡
𝑡1

0
+ ∫ 𝐼(𝑡)

𝑡2

𝑡1
𝑑𝑡 +  ∫ 𝐼(𝑡)𝑑𝑡

𝑡3

𝑡2
}                                                                                 (43) 

∫ 𝐼(𝑡)𝑑𝑡
𝑡1

0
= ∫ {[ 

(1−𝑑1)𝑘1

𝜃
−  

𝑎

𝜃
] (1 − 𝑒−𝜃𝑡)} 𝑑𝑡 

𝑡1

0
=

𝐼1
2

2[ (1−𝑑1)𝑘1− 𝑎]
+

θ𝐼1
3  

3[(1−𝑑1)k1− a]2                               (44) 

∫ 𝐼(𝑡)
𝑡2

𝑡1
𝑑𝑡 = ∫ [

(1−𝑑2)𝑘2

𝜃
−  

𝑎

𝜃
] + {𝐼1 − [

(1−𝑑2)𝑘2

𝜃
−  

𝑎

𝜃
]} 𝑒−𝜃(𝑡−𝑡1)𝑡2

𝑡1
𝑑𝑡  

=    
(𝐼2

2−𝐼1
2)

2[(1−𝑑2)𝑘2− 𝑎]
+

𝜃(𝐼2
3−𝐼1

3)

3[(1−𝑑2)𝑘2− 𝑎]2                                                                                                (45) 

∫ 𝐼(𝑡)𝑑𝑡
𝑡3

𝑡2
= ∫ [−

𝑎

𝜃
+ (𝐼2 +

𝑎

𝜃
) 𝑒−𝜃(𝑡−𝑡2)] 𝑑𝑡

𝑡3

𝑡2
 =

𝐼2
2

2𝑎
−

𝜃𝐼2
3

3𝑎2                                                                       (46) 
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Therefore, the total inventory carrying cost over the period [0, T] is given by: 

 

𝐼𝐶𝐶 = ℎ × [
𝐼1

2

2𝜌1
+

𝜃𝐼1
3

3𝜌1
2 +

(𝐼2
2−𝐼1

2)

2𝜌2
+

𝜃(𝐼2
3−𝐼1

3)

3𝜌2
2 +

𝐼2
2

2𝑎
−

𝜃𝐼2
3

3𝑎2]                                                                              (47) 

 

3.3.4 Shortage Cost (SC) 
The shortage cost over the period [𝑡3, 𝑇] can be obtained as follow: 

 

𝑆𝐶 =  𝐶𝑠 × {∫ −𝑎(1 − 𝑟)(𝑡 − 𝑡3)𝑑𝑡
𝑡4

𝑡3
+ ∫ [−𝑆 + (1 − 𝑑)𝑘2 − 𝑎(1 − 𝑟)](𝑡 − 𝑡4)𝑑𝑡

𝑇

𝑡4
}                         (48) 

∫ −𝑎(1 − 𝑟)(𝑡 − 𝑡3)𝑑𝑡
𝑡4

𝑡3
= [−𝑎(1 − 𝑟)(

1

2
𝑡2 − 𝑡𝑡3)]

𝑡3

𝑡4
  = −

1

2

𝑆2

(1−𝑟)𝑎
                                                      (49) 

 

With: 

𝑡4 − 𝑡3 =
𝑆

𝑎(1−𝑟)
                                                                                                                                           (50) 

 

∫ {−𝑆 + [(1 − 𝑑2)𝑘2 − 𝑎(1 − 𝑟)](𝑡 − 𝑡4)}𝑑𝑡
𝑇

𝑡4
= −

𝑠2

2[(1−𝑑2)𝑘2−𝑎(1−𝑟)]
                                                     (51) 

 

Hence the total quantity backordered over the period [𝑡3, 𝑇] is given by: 

=
−𝑆2(1−𝑑2)𝑘2

2𝑎(1−𝑟)[(1−𝑑2)𝑘2−𝑎(1−𝑟)]
                                                                                                                           (52) 

 

Therefore, the cost of shortage over [t3, T] is: 

 

𝑆𝐶 = 𝐶𝑠
𝑎(1−𝑟)[(1−𝑑2)𝑘2−𝑎(1−𝑟)]

2(1−𝑑2)𝑘2
[𝑇 − 𝐵𝐼2 +

𝜃

2
𝐶𝐼2

2 + 𝐸𝐼1 +
𝜃

2
𝐹𝐼1

2]
2
                                                          (53) 

 

3.3.5 Disposal Cost (DIC)  
During each production cycle, a proportion 𝑑𝑖  of manufactured items is defective and a cost is incurred by 

the company to dispose those imperfect items, and thus the disposal cost per cycle is given by: 

 

𝐷𝐼𝐶 = 𝐶𝑏 × [𝑑1𝑘1𝑡1 + 𝑑2𝑘2(𝑡2 − 𝑡1) + 𝑑2𝑘2(𝑇 − 𝑡4)]   

= 𝐶𝑏 × {𝑑1𝑘1 [
𝐼1

𝜌1
+

𝜃𝐼1
2

2𝜌1
2] + 𝑑2𝑘2 [

𝐼2−𝐼1

𝜌2
+

𝜃(𝐼2
2−𝐼1

2)

2𝜌2
2 ] +

(1−𝑟)𝑎

(1−𝑑2)
𝑑2 [𝑇 − 𝐵𝐼2 +

𝜃

2
𝐶𝐼2

2 + 𝐸𝐼1 +
𝜃

2
𝐹𝐼1

2]}  (54) 

 

3.3.6 Lost Sale Cost (LC)  
The expression for the loss of sale per cycle is determined by:  

 

𝐿𝐶 = 𝐶𝑝 × 𝑟 [∫ 𝑎 × 𝑑𝑡
𝑇

𝑡3
] = 𝐶𝑝 × 𝑟 × 𝑎 [𝑇 − 𝐵𝐼2 +

𝜃

2
𝐶𝐼2

2 + 𝐸𝐼1 +
𝜃

2
𝐹𝐼1

2]                                                (55) 

 

3.3.7 Production Cost (PC)  
The production cost over the period [0, T] is: 

 

𝑃𝐶 = 𝑝𝑐1𝑘1𝑡1 + 𝑝𝑐2𝑘2(𝑡2 − 𝑡1) + 𝑝𝑐2𝑘2(𝑇 − 𝑡4)  

= 𝑝𝑐1𝑘1 [
𝐼1

𝜌1
+

𝜃𝐼1
2

2𝜌1
2] + 𝑝𝑐2𝑘2 [

𝐼2−𝐼1

𝜌2
+

𝜃(𝐼2
2−𝐼1

2)

2𝜌2
2 ]  +  𝑝𝑐2

(1−𝑟)𝑎

(1−𝑑2)
[𝑇 − 𝐵𝐼2 +

𝜃

2
𝐶𝐼2

2 + 𝐸𝐼1 +
𝜃

2
𝐹𝐼1

2]        (56) 
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3.4 Total Cost (TC)  
The total cost per cycle [0, 𝑇] is, therefore: 

 

𝑇𝐶 =
1

𝑇
{[𝑝𝑐1𝑘1 + 𝐶𝑏𝑑1𝑘1] [

𝐼1

𝜌1
+

𝜃𝐼1
2

2𝜌1
2] + [𝑝𝑐2𝑘2 + 𝐶𝑏𝑑2𝑘2] [

𝐼2−𝐼1

𝜌2
+

𝜃(𝐼2
2−𝐼1

2)

2𝜌2
2 ] +  [𝑝𝑐2

(1−𝑟)𝑎

(1−𝑑2)
+

𝐶𝑏𝑑2
(1−𝑟)𝑎

(1−𝑑2)
+ 𝐶𝑝 × 𝑟 × 𝑎] [𝑇 − 𝐵𝐼2 +

𝜃

2
𝐶𝐼2

2 + 𝐸𝐼1 +
𝜃

2
𝐹𝐼1

2] + 𝐶𝑠
𝑎(1−𝑟)[(1−𝑑2)𝑘2−𝑎(1−𝑟)]

2(1−𝑑2)𝑘2
[𝑇 −

𝐵𝐼2 +
𝜃

2
𝐶𝐼2

2 + 𝐸𝐼1 +
𝜃

2
𝐹𝐼1

2]
2

+ ℎ × [
𝐼1

2

2𝜌1
+

𝜃𝐼1
3

3𝜌1
2 +

(𝐼2
2−𝐼1

2)

2𝜌2
+

𝜃(𝐼2
3−𝐼1

3)

3𝜌2
2 +

𝐼2
2

2𝑎
−

𝜃𝐼2
3

3𝑎2] + 𝐶𝑎 [
𝜃𝐼1

2

2𝜌1
+

𝜃(𝐼2
2−𝐼1

2)

2𝜌2
+

𝜃𝐼2
2

2𝑎
] + 𝐺}                                                                                                                                                  (57) 

 

3.4.1 Proof of Convexity 

From (57), the MSS may be classified as an unconstrained multivariate optimization problem with a 

differentiable objective function at 𝐼1 ,𝐼2 and 𝑇. The optimum values could be obtained by solving the 

following three equations concurrently: 

 
𝜕𝐶𝑇

𝜕𝐼1
= 0,

𝜕𝐶𝑇

𝜕𝐼2
= 0,

𝜕𝑇𝐶

𝜕𝑇
= 0                                                                                                                                          (58) 

 

Due to highly non-linearity of the functions in (58), a closed form analytical proof is difficult to obtain. 

However, the convexity of the cost function can be proven numerically by showing that it is positive 

(semi)definite through the matrix minor relations in (59), (60) and (61):  

 

𝐻1 =
∂2𝑇𝐶

∂𝐼1
2 ≥ 0                                                                                                                                                 (59) 

𝐻2 = [
∂2TC

∂𝐼1
2

∂2TC

∂𝐼2
2 ] − [

∂2TC

∂𝐼1 ∂𝐼2
]

2

≥ 0                                                                                                               (60) 

𝐻𝑀 =
∂2TC

∂𝐼1
2 [

∂2TC

∂𝐼2
2 ⋅

∂2TC

∂𝑇2 −
∂2TC

∂𝐼2 ∂𝑇
⋅

∂2TC

∂𝑇 ∂𝐼2
] −

∂2TC

∂𝐼2 ∂𝐼1
[

∂2TC

∂𝐼1 ∂𝐼2
⋅

∂2TC

∂𝑇2 −
∂2TC

∂𝐼1 ∂𝑇
⋅

∂2TC

∂𝑇 ∂𝐼2
]

+
∂2TC

∂𝑇 ∂𝐼1
[

∂2TC

∂𝐼1 ∂𝐼2
⋅

∂2TC

∂𝐼2 ∂𝑇
−

∂2TC

∂𝐼2
2 ⋅

∂2TC

∂𝐼1 ∂𝑇
] ≥ 0

                                                 (61) 

 

Many researchers such as Al-Salamah (2019), Uthayakumar and Sekar (2017) and Sana (2007) used this 

approach in solving their inventory problems. This proof is presented with the data used in the numerical 

example. 

 

4. Numerical Examples and Sensitivity Analysis 

4.1 Numerical Examples 

To demonstrate the effectiveness of the proposed model, an example with various data ranges has been 

studied. A sensitivity analysis is also performed to demonstrate the reliability of the model. The Newton 

Raphson method is used to solve the problem since it is difficult to find analytical solution.  

 

Consider a production process for making a single item where the demand rate for the items is 25 units per 

time. The first and second production rates are 80 units and 55 units per time respectively (per time here 

can be per year, month or day as appropriate). Defective rates in the two production-consumptions cycles 

are 7% and 14% respectively. The setup cost is $2700. The holding cost of one unit of the finished product 

is $0.5 per time. The production costs of one unit of the finished item during the two production phases are 

$21 and $20 respectively. The cost of deterioration is charged at $18 per item. The imperfect quality items 
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that are screened may be disposed of at a unit cost of $3 per item. The proportion of stock out demand sale 

lost is 20%, the rate at which items deteriorate is 0.002, the shortage cost is $5 per unit per time and the lost 

sales cost is $11 per unit.  

 

To verify whether or not the solution obtained from the total cost function (57) is actually optimal, we first 

establish the sufficiency conditions of optimality by substituting the data provided into (59), (60) and (61). 

We confirmed the three conditions to be greater than or equal to zero (|𝐻1|  =  0, |𝐻2|  =  0, |𝐻3|  =  0). 

This result proves that the cost function is positive (semi)definite. 

 

 
Table 3. Results from the numerical example. 

 

𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝑻∗ 𝑰𝟏
∗  𝑰𝟐

∗  S 𝑮 𝑫𝑪 𝑰𝑪𝑪 𝑺𝑪 𝑫𝑰𝑪 𝑳𝑪 𝑷𝑪 𝑻𝑪∗ 

4.6 8.95 21.6 24.1 25.92 224.18 319.88 50.06 2700 134 1860 543 220 239 14511 20207 

 

 

The optimum values from the numerical example summarised in Table 3 show that the company reaches a 

maximum inventory of 224.18 units in the first production-consumption cycle and stops production once a 

stock level of 319.88 units is reached. A maximum backlog of 50.06 units is allowed. This maximum 

backlog is reached at 𝑡4 = 24.1 time units, and it takes 1.82 time units for the company to clear this backlog 

in the system. The total cycle time is 25.92 time units, after which the cycle starts again. Deterioration, 

inventory holding, shortage, disposal, loss of profit, setup, and production costs per unit time are $2700, 

$134, $1860, $543, $220, $239 and $14511 respectively, with a total cost $20207 per cycle. 

 

The graphical illustration is shown in Figure 3, which shows the total cost against two decision variables. 

 

 

 
 

Figure 3. Total cost per cycle vs. inventories levels and cycle time. 
 

 

4.2 Sensitivity Analysis  

In this section, sensitivity analysis was performed to analyse the effects of parameter changes on the total 

cost. Results from the previous numerical example is considered for this sensitivity analysis. The effects of 

parameter changes on 𝑇, 𝐼1, 𝐼2, 𝑆 and 𝑇𝐶 are shown on Tables 4 to 8, and graphical representations of how 

these changes affect the cycle time and the total cost are presented in Figures 4 and 5. 
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(i)  𝑇 decreases with increase in holding cost rate, ℎ, deteriorating cost rate, 𝐶𝑎 , shortage cost rate, 𝐶𝑠 , 

production rates, 𝑘1 and  𝑘2, fraction of demand lost (𝑟) and deterioration rate (𝜃), whereas it increases 

with increase in setup cost 𝐺 , disposal cost 𝑐𝑏 , penalty cost for lost sales, 𝐶𝑝, and proportion, 𝑑2 , of 

defective units produced. As demand rate increases, the cycle time, 𝑇, automatically decreases, resulting in 

lower average inventory holding cost.  

 

(ii) The optimum inventory levels 𝐼1 and 𝐼2 decrease with an increase in the deteriorating cost, holding  

cost rate, disposal cost, deterioration rate, production rate 𝑘2, fraction of demand lost 𝑟, and proportion 

 𝑑2  of defective items produced. It is seen that higher production rate 𝑘1,  setup cost  𝐺, proportion 

 𝑑1 of defective items produced during the first production cycle and shortage costs increase the optimum 

level, of 𝐼1  and 𝐼2 . However, higher demand rate, 𝑎 , results in higher optimal level of 𝐼1  and lower  

level of 𝐼2.  
 

(iii) The backorder level, S, increases with an increase in the unit deterioration cost, holding cost rate, item 

deterioration rate, production rates 𝑘1 and 𝑘2, fraction of demand lost 𝑟, and proportions  𝑑1 and 𝑑2 of 

defectives items produced. Consequently, higher shortage cost rate, unit disposal cost and lost sale cost rate 

lead to lower optimal backorder level.  
 

(iv) The total cost TC, increases considerably with the increase in set up cost 𝐺 and demand rate 𝑎. 
  
The following is observed about the level of sensitivity of the decision variables to the parameters:  

 

(i) 𝑇 is highly sensitive to changes in ℎ, 𝐺 and 𝑎. T is slightly sensitive to changes in values of 𝑐𝑠, 𝑘1, 𝜃,
𝑘2, 𝑑1 and 𝑑2. However, 𝑇 remains fairly insensitive to changes 𝑐𝑎 , 𝑐𝑏 , 𝑐𝑝 and 𝑟.  

 

(ii) 𝐼1is insensitive to changes in 𝑐𝑎, however, it is considerably sensitive to  𝑐𝑠,  𝑐𝑝, ℎ, 𝑐𝑏 and 𝑟. Moreover, 

𝐼1 increases drastically with the increase in 𝐺, 𝑘1 and 𝑑1 due to its high sensitivity, whereas it decreases 

with the increase in  𝑑2 and 𝑘2. 

 

(iii) 𝐼2 is not very sensitive to changes in 𝑐𝑏 , moderately sensitive to changes in 𝑐𝑠, 𝑐𝑎 , 𝑐𝑝,

𝑝𝑐1,  𝑝𝑐2, 𝑎, 𝑟, 𝑑1,  and 𝑑2, and highly sensitive to changes in ℎ and 𝐺.  

 

(iv) The backorder level increases drastically with an increase in ℎ, 𝐺 and 𝑎, and decreases with the increase 

in 𝐶𝑠. The backorder level increases moderately with the increase in  𝑘1, 𝑘2, 𝑑1, and 𝑑2  and decreases with 

the increase in 𝐶𝑝. 

 

(v) The cost TC is insensitive to changes in  𝑐𝑎 , 𝑐𝑏 , 𝑐𝑝, 𝑟 and  𝜃, and slightly sensitive to changes in 

ℎ, 𝑘1 , 𝑘2, 𝑑1 and 𝑑2 . Moreover, it has been observed that TC is highly sensitive to changes in 𝐺, and 𝑎. 

 

 

4.3 Managerial Insights 
(i) It can be seen that the set up costs and demand rate have significant impact on the rate of increase of the 

cost rate, hence the manager should pay attention to these cost parameters. These are seen to also negatively 

affect the optimum inventory levels 𝐼1 and 𝐼2 significantly. Larger batch sizes mean higher holding costs, 

which escalates the total costs. The reverse is also true, and this gives manager the lever to reduce total 

costs through carrying less inventory. 
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(ii) Managers should also be concerned about production rates 𝑘1 and 𝑘2.  It may be tempting to increase 

production capacity, but it comes at a cost because higher values of 𝑘1and 𝑘2 imply higher holding and 

disposal costs, which increase the total cost rate. In order to keep total costs down, managers should consider 

producing items at lower production rates because they can reduce the total costs. 

 

 

 
Table 4. Variation of T with respect to parameter changes. 

 

Change in T (%) 

Change in 

parameter 
𝒄𝒂 𝒉 𝒄𝒃 𝒄𝒔 𝑮 𝒌𝟏 𝒄𝒑 𝜽 𝒌𝟐 a 𝒅𝟏 r 𝒅𝟐 

-35 0.99 17.76 -0.33 3.70 -18.81 * -0.26 2.34 3.58 13.59 2.73 0.05 * 

-20 0.56 8.87 -0.79 1.73 -10.21 7.66 -0.14 1.32 1.74 6.14 1.43 0.04 -2.09 

-5 0.14 1.98 -0.05 0.37 -2.45 1.38 -0.03 0.32 0.39 1.22 0.32 -0.28 -0.77 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 -0.28 -3.57 0.10 -0.64 4.73 -2.19 0.06 -0.64 0.14 -1.94 -0.55 -0.02 2.03 

25 -0.69 -8.14 0.25 -1.41 11.45 -4.56 0.13 -1.26 1.19 -3.82 -1.14 -0.07 6.14 

30 -0.82 -9.49 0.31 -1.63 13.60 -5.19 0.13 -1.88 1.94 -4.08 -1.27 -0.09 7.77 

 

 

 

Table 5. Variation of 𝐼1 with respect to parameter changes. 
 

Change in  𝑰𝟏 (%) 

Change in 

parameter 
𝒄𝒂 𝒉 𝒄𝒃 𝒄𝒔 𝑮 𝒌𝟏 𝒄𝒑 𝜽 𝒌𝟐 a 𝒅𝟏 r 𝒅𝟐 

-35 0.75 12.32 5.39 -8.31 -31.7 * -2.61 1.09 26.5 -28.8 -32.7 3.1 * 

-20 0.43 6.73 3.07 -3.99 -17.22 -41.2 -1.47 0.62 24.6 -14.7 -19.4 1.8 50.65 

-5 0.11 1.61 0.77 -0.86 -4.14 -6.0 -0.36 0.15 15.9 -3.27 -5.1 0.21 11.65 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 -0.21 -3.06 -1.53 1.51 8.00 8.72 0.72 -0.3 -18.7 5.79 10.6 -0.97 -21.4 

25 -0.53 -7.29 -3.82 3.37 19.38 17.29 1.77 -0.6 -70.3 13.06 27.5 -2.51 -49.3 

30 -0.64 -8.61 -4.58 3.91 23.03 19.44 1.92 -0.9 -100 14.5 33.52 -3.05 -57.5 

 

 

 

Table 6. Variation of 𝐼2 with respect to parameter changes. 
 

Change in  𝑰𝟐 (%) 

Change in 

parameter 
𝒄𝒂 𝒉 𝒄𝒃 𝒄𝒔 𝑮 𝒌𝟏 𝒄𝒑 𝜽 𝒌𝟐 a 𝒅𝟏 r 𝒅𝟐 

-35 1.22 21.27 0.78 -5.74 -21.9 * -1.8 2.7 -7.35 -8.07 -3.36 2.12 * 

-20 0.69 10.83 0.44 -2.75 -11.89 -4.92 -1.02 1.52 -4.68 -3.37 -2.13 1.25 8.43 

-5 0.17 2.45 0.11 -0.59 -2.86 -1.09 -0.25 0.37 -1.94 -0.56 -0.59 -0.34 1.87 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 -0.34 -4.48 -0.22 1.04 5.52 1.90 0.49 -0.74 1.33 0.6 1.31 -0.67 -3.3 

25 -0.85 -10.33 -0.53 2.32 13.36 4.17 1.22 -1.46 3.85 0.24 3.62 -1.73 -7.34 

30 -1.01 -12.08 -0.64 2.69 15.88 4.80 1.32 -2.17 5.08 -0.21 4.49 -2.11 -8.47 
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Table 7. Variation of 𝑆 with respect to parameter changes. 
 

Change in  𝑺 (%) 

Change in 

parameter 
𝒄𝒂 𝒉 𝒄𝒃 𝒄𝒔 𝑮 𝒌𝟏 𝒄𝒑 𝜽 𝒌𝟐 a 𝒅𝟏 r 𝒅𝟐 

-35 -0.72 -11.28 0.2 47.27 -16.32 * 6.35 -1.81 -6.21 -14.7 -2.5 -7.33 * 

-20 -0.41 -6.1 0.11 22.4 -8.86 -3.66 3.64 -1.02 -3.85 -7.49 -159 -4.16 -3.66 

-5 -0.1 -1.45 0.03 4.8 -2.13 -0.82 0.91 -0.25 -1.66 -1.66 -0.4 -0.20 -0.8 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.2 2.77 -0.05 -8.4 4.11 1.42 -1.83 0.5 1.05 2.93 0.97 2.05 1.42 

25 0.5 6.63 -0.12 -18.6 9.96 3.11 -4.59 1 2.98 6.56 2.7 5.07 3.11 

30 0.6 7.85 -0.15 -21.53 11.83 3.58 -5.01 1.5 3.91 7.27 3.34 6.07 3.58 

 

 

Table 8. Variation of 𝑇𝐶 with respect to parameter changes. 
 

Change in  𝑻𝑪 (%) 

Change in 

parameter 
𝒄𝒂 𝒉 𝒄𝒃 𝒄𝒔 𝑮 𝒌𝟏 𝒄𝒑 𝜽 𝒌𝟐 a 𝒅𝟏 r 𝒅𝟐 

-35 -0.23 -3.62 -0.38 -1.37 -5.23 * -0.43 -0.58 -1.99 -28.5 -0.8 0.51 * 

-20 -0.13 -1.96 -0.22 -0.66 -2.84 -1.18 -0.24 -0.33 -1.24 -16 -0.5 0.3 -075 

-5 -0.03 -0.47 -0.05 -0.14 -0.68 -0.26 -0.06 -0.08 -0.50 -3.93 -014 0.07 -0.26 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.07 0.89 0.11 0.11 1.32 0.45 0.12 0.16 0.34 7.73 0.31 -0.16 0.66 

25 0.16 2.13 0.27 0.27 3.19 1.00 0.29 0.32 0.96 19.8 0.86 -0.41 1.96 

30 0.19 2.52 0.33 0.33 3.79 1.15 0.32 0.48 1.26 22.7 1.07 -0.5 2.47 

 
 

 
 

Figure 4. How the cycle time changes with the change of key parameters. 
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Figure 5. How the total cost changes with the change of key parameters. 

 

 

5. Conclusion  
This study presents an imperfect EPQ model for a multi-state system with deteriorating items and 

alternating production rates, while allowing shortages leading to partial backlogging and lost sale. In this 

model, the equipment’s deterioration affects the quantity and quality of the outputs, i.e. the system operates 

in a degraded state. In such systems, the productivity is assumed to be dependent on the equipment’s speed. 

In addition, it is assumed that the system produces both good and bad items. After screening, the imperfect 

items are disposed as a batch after the production process is completed, whilst the perfect quality items are 

used to meet customer demand. A portion of stock-out demand is allowed in the model formulation. The 

demand for the item is considered constant, and the deterioration rate follows an exponential function. It is 

assumed that items start to deteriorate right from when finished inventory begins to accumulate after 

production. Numerical examples were presented to demonstrate the use of the model. The model can be 

under different areas such as assembly lines for automotive parts subject to non-essential equipment 

failures, manufacturing plants for mechanical parts, in hydrometallurgical plants for production of metals 

such as copper, cobalt, zinc and other production systems configured in line with the model proposed in 

this paper. Sensitivity analysis indicated the parameters to which the cycle time, stock level and total cost 

are most sensitive. The model can be extended in many ways, for example, it may be extended to multiple 

machines problem and that of multiple items with rework. Also, the model can be extended to cases 

considering time dependent deterioration and different demand conditions like power demand and price 

dependent demand. 
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