Supporting information

The composition of antibiotic resistance genes is not affected by grazing but is determined by microorganisms in grassland soils

Zhenzhen Zheng^{a,1}, Linfeng Li^{a,b,1}, Thulani P. Makhalanyane^c, Chunming Xu^d, Kaihui Li^e, Kai Xue^f, Cong Xu^a, Ruyan Qian^a, Biao Zhang^a, Jianqing Du^a, Hua Yu^g, Xiaoyong Cui^{a,h}, Yanfen Wang^{a,h}, Yanbin Hao^{a,h},*

^aCollege of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China ^bEnvironmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia

^cCentre for Microbial Ecology and Genomics (CMEG), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa

^dSchool of Light Industry, Beijing Technology and Business University, Beijing, 100048, China ^eState Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

^fCollege of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

^gDepartment of Foreign Languages, University of Chinese Academy of Sciences, Beijing 100049, China ^hCAS Canter for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing 100101, China

¹These authors contributed equally to this work.

*Author for correspondence tel +86 136 6124 1601; email ybhao@ucas.ac.cn

Postal address: University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan

District, Beijing, P.R.China 100049

Fig. S1 Processes and mechanisms underlying impacts of grazing on antibiotic resistance genes (ARGs).

MGEs: Mobile genetic elements.

Fig. S2 Soil pH, content of total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC),

 NH_4-N , NO_3-N , plant richness, and bacterial richness in each sample site. Values are mean \pm SE.

Fig. S3 The content of metallic elements in each sample site. The red dashed lines represent the risk screening value. Values are mean \pm SE. Different letters indicate significant differences ($P \le 0.05$) between sample sites.

Fig. S4 Four significant differential antibiotic resistance genes (ARGs; i.e. Tetracycline (only tet34), Aminogly-cosides (only APH2.llla), MexK, and abeM) in the ungrazed and grazing groups. Values are mean \pm SE. * means significant difference at $P \le 0.05$ level.

Fig. S5 Antibiotic resistance gene types in the fresh sheep feces sampled in the grazing plots. XJ and NM refer to the samples collecting in Sinkiang and Inner Mongolia, respectively.

Fig. S6. The bacterial community compositions and relative abundance at the phylum level in each sample sites. 39-, 38-, and 19-year ungrazed (UN-39, UN-38 and UN-19) and corresponding long-term grazing grasslands (GN-1, GN-3 and GN-2) in the Inner Mongolia. 33- and 13-year ungrazed (US-33 and US-13) and corresponding long-term grazing grassland (GS) in Sinkiang.

Fig. S7 The relationships between the relative abundance of total antibiotic resistance gene (ARGs) and mobile genetic elements (MGEs) in integrons (a) or plasmids (b).

Table	S 1	Information	about	the	locations,	dominant	species	and	management	pattern	of th	e sample
sites.												

Site ID	Location	Dominant species	Management pattern
UN-39	Inner Mongolia	Leymus chinensis	39-year Ungrazed
UN-38	Inner Mongolia	Stipa grandis	38-year Ungrazed
UN-19	Inner Mongolia	Leymus chinensis	19-year Ungrazed
GN-1	Inner Mongolia	Leymus chinensis	Long-term Grazing
GN-2	Inner Mongolia	Leymus chinensis	Long-term Grazing
GN-3	Inner Mongolia	Stipa grandis	Long-term Grazing
US-33	Sinkiang	Stipa purpuea	33-year Ungrazed
US-13	Sinkiang	Stipa purpuea	13-year Ungrazed
GS	Sinkiang	Festuca ovina	Long-term Grazing

	The relative abundance			
AKGS	(×10 ⁻⁶) ^a			
vanJ	7.04			
EXO_beta-lactamase	6.82			
gimA	6.40			
mgtA	5.71			
APH3-Ia	5.65			
AAC3-Ib	2.69			
LRA-8	1.85			
Propionibacterium_acnes_gyrA	1.41			
RImAII	1.39			
dfrG	1.30			
OXA-62	1.26			
Campylobacter_jejuni_gyrA	1.22			

Table S2 12 unique antibiotic resistance genes (ARGs) in the GN-3 in Inner Mongolia Plateau.

^aRelative abundance is calculated as the total number of ARG divided by the number of genes

predicted per sampled site

	R^2	<i>P</i> -value
В	0.13	0.18
V	0.24	0.10
Cr	0.22	0.11
Mn	0.16	0.16
Ni	0.21	0.12
Cu	0.12	0.19
Zn	0.11	0.20
As	0.10	0.22
Cd	0.04	0.29
Pd	0.26	0.10

Table S3 Results of mantel correlations between the antibiotic resistance genes (ARGs) richness and

heavy metals.